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1. INTRODUCTION

Young (1961) has developed formulae relating to genetic gains to be expected when
a population of animals or plants on which several traits have been measured is
subjected to selection. He considered tandem selection, independent culling levels,
and index selection. The purpose of the present paper is to generalize his results so
that the only restrictions on their validity are that: (i) the genetic values of the traits
follow a multivariate normal distribution, (ii) the phenotypic values are the genetic
with the addition of independent environmental components that also follow a
multivariate normal distribution.

Unfortunately, Young's notation is not very convenient for the general theory,
and has had to be substantially modified.

2. NOTATION

a Column vector of economic weights of traits (elements a>).
b Column vector of coefficients bt of arbitrary linear function of the yi

B = by .
e Column vector of environmental effects (elements ej.
G Genetic value of individual, = Sc^x,-.
Af Heri tabi l i ty of t ra i t i, = o-ti/^ii-

H Expected genetic gain in G as result of selection, with suffix to indicate type

of selection.
i,j Suffixes having range 1, 2, . . . , n.
m Column vector of covariances of â  with G (elements m,).
n Number of traits considered.
Pi Fraction of population selected by taking yi ^ Yt for one particular i:

00

P Fraction of whole population to be selected.
u Column vector of elements ut = w^1/2 z{ &n_ 1. (.
x Column vector of genetic values (elements xj .
y Column vector of phenotypic values (elements y^; y = x + e.
Y Column vector of cut-off points (elements FJ.
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Tt.T

Zi Ordinate of standardized normal curve for truncation of area p{, which

Z Ordinate of standardized normal curve for truncation of area P.
8 Column vector of means of the yt conditional on yt > Yt for all i, having

elements 6^
<j>n (yi; w{j) n-variate normal frequency function for the yt.

00 00 0071 J J J
Yr Y, Yn

<&n-\.r Integral corresponding to &n, but taken over (n— 1) variates excluding yr,
having the Yt,r as lower limits and the a> .̂f as the variances and co-
variances of the (n— l)-variate normal integrand.

a Variance-covariance matrix for x (elements a^).
to Variance-covariance matrix for y (elements cuy).

3. INDEPENDENT CULLING

The distributions of x, e, y will be supposed w-variate normal, and without loss
of generality all means can be taken to be zero. The economic value, G, of an in-
dividual is assumed to be represented by a linear function of the genetic values for
the separate traits:

0 = x 'a. (1)

If selection is to be by independent culling levels, all individuals are selected for
which

yi ^ Yt for all i,

the Yi being constrained in such a way as to make

#« = P. (2)

The mean values of the yi subject to this condition have been obtained by Tallis
(1961), whose result can be written

6 = cou/P. (3)

Now because x and y jointly have a 2ra-variate normal distribution, each xt can be
regarded as having a linear regression on the set of y{. Evidently

m = E(Qy) = oa, (4)
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and therefore p, the column vector of partial regression coefficients of G on the y{

is the solution of

u>P = m. (5)

Hence the mean value of G in the selected portion of the population is

6' (3 = u ' w(3/P

= u' m/P. (6)

This quantity is Hc, the expected genetic gain in G as a result of the selection. It can
be written

Hc = S m^Wz^^lP. (7)
i = \

Both the genetic and the phenotypic correlations enter into Hc; the a^ appear in
the wii and the ŵ - affect the 0 functions. The formula for Hc is in a different form
from Young's formula, and is perhaps a somewhat simpler expression, but the two
are of course algebraically identical for n = 2. If the traits are genetically un-
correlated,

TOf = diOu, (8)

and Hc then depends on the genetic parameters only through the heritabilities

hf = -5L* • (9)

On the other hand, if the traits are phenotypically uncorrelated, P is simply the
product of fractions selected for each trait separately; that is to say

and also P = Pi&n-x.i-

Hence Hc = J ™i ««1/2 ( - ) • (12)
c

Young did not distinguish between the consequences of genetic and phenotypic
independence. If genetic independence is a reasonable approximation, m^ from
equation (8) may be substituted in equation (7). On the other hand, phenotypic
independence alone is unlikely, for it would require exact compensation between the
genetic and the purely environmental components of covariance. Hence, although
equation (12) is appropriate to phenotypic independence even with the general form
of mf, equation (4), it is unlikely to be needed except when genetic independence
permits w^ to be given by equation (8).

If the proportion selected, P, is fixed, the optimal system of independent culling
will be that which maximizes the expectation of genetic gain. Unfortunately no
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analytic procedure for maximizing Hc in equation (7) is available. Young & Weiler
(1960) have provided a system of nomographs for n = 2 and for several values of the
phenotypic correlation coefficient, but for any larger n purely numerical methods of
trial and error would be needed. In the special case of no phenotypic correlation, if
all the w^w^1'2 (Young's \) are equal, symmetry indicates that the maximization
will have all Yi co^1/z equal, so making

Pi = P1/n (13)

and Hc = nmocooo1'2!-), U4)

where the suffix 0 indicates a common value for all traits.

4. TANDEM SELECTION

Young has stated the well-known and completely general results applicable when
all selection is concentrated on a single trait; in the present notation, the expecta-
tion of gain in G is

(|) (15)

Tandem selection involves selecting in any one generation for one trait only. If
trait i is the one chosen, equation (15) represents the expectation of genetic gain.
Naturally one would wish to take for i the trait that maximizes mjO)^1'2. Young
appears to assume for his calculations that this is achieved, thereby setting an upper
limit to the gain from tandem selection. If little advance information on the a^ and
oiy is available, possibly a more reasonable value to take for the expectation of
genetic gain is the average over all possible traits:

5. INDEX SELECTION

Suppose now that

B = b 'y (17)

is an arbitrary linear function of the yt. Then the expectation of genetic gain from
selection by taking the fraction P of highest values of B is easily seen to be

Hjt = ( b ' c o b ^ ' p -

If the index is to be chosen so as to maximize HB, the vector b must satisfy
wb = am
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where a is a constant which can be taken as unity without loss of generality. Hence

b = CO"1!!!.

The optimal selection index is therefore

JB/ = m'o>-1y, (19)

with expectation of genetic gain in G

Hi = (m' to- im) 1 / 2 ! , (20)

which is Young's equation (5).

6. COMPARISON OF SELECTION METHODS

Ratios between the expressions for H in equation (7) and its simplifications
(15), (16), and (20) enable the relative efficiencies of the three methods of selection
to be compared in terms of expectations of total genetic gain. The formulae are
essentially the same as those given by Young, but with somewhat greater generality.
The approach used here emphasizes the central role of the m{ the covariances of the
genetic values of the separate traits, with 0, the genetic value ofthe whole individual.
All the formulae are expressed in terms ofthe m^, which appear as more fundamental
than the

A, = aJiW^ = aiaacoU112

used by Young. The introduction of the mf would enable some of Young's interest-
ing numerical comparisons to be given wider applicability.

Of course, the assumption underlying the comparisons made here is that the aim
of selection is to maximize a single linear combination of the xu and this need not
always be appropriate. The wish of the investigator may indeed be to maximize
two or more ofthe xi (or two or more functions ofthe x>) simultaneously; recognizing
the impossibility of this, he may compromise by seeking to maximize a particular
Xj subject to conditions that there shall be only small probabilities that certain
others of the xx fall below specified limits. In such circumstances, independent
culling and tandem selection may compare more favourably with index selection.

7. SELECTION OVER SEVERAL GENERATIONS

Many writers on selection, including Young, and also Hazel & Lush (1942), write
ofthe genetic gain from one stage of selection as though it is a gain to be maintained
over a number of generations. In theory, however, even if the initial genetic and
phenotypic distributions are exactly normal, any of the methods of selection dis-
cussed here (and indeed almost any method likely to be used) will destroy the
normality at its first application. The distortion of normality will be greatest if
heritabilities are high and the fraction to be selected is small, but the recombinations
that occur in the production of a new generation and the accumulation of new
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environmental variation will perhaps tend towards the partial restoration of
normality. Possibly in many practical situations, the development of non-
normality (particularly skewness) as a consequence of selection is sufficiently slow
for the use of formulae based on normality not to be seriously wrong over several
generations. This will be more true with domestic animals, because of the limita-
tions on intensity of selection imposed by low multiplication rates, than with insects
or plants. I t must not be forgotten however that the conditions that conduce to the
validity of normal formulae over several successive stages of selection (high pt and
low hf) are precisely those that are unfavourable to success in achieving substantial
genetic gains. I have published elsewhere (Finney, 1956,1961) methods of adjusting
mean values after selection in order to take account of the non-normality induced by
previous selections, but even for two stages the series required are laborious in use.
Qualitatively, the general consequence of the negative skewness produced by selec-
tion is that the assumption of normality in calculating expected gains under further
selection usually overestimates the true gains (cf. Hazel & Lush).

Whether or not normality may safely be assumed for more than one generation of
selection, it must not be forgotten that any selection applied in one generation will
reduce the genetic variances of all traits correlated with the function used as the
basis of selection and will also modify the covariances between these traits; the
phenotypic variances and covariances in subsequent generations will therefore also
be changed. Relevant formulae are well known for the situation in which the in-
dividual genetic values are reproduced exactly in each generation of those selected,
as with a population of selfed homozygotes (Pearson, 1902, 1912; Tallis, 1961;
Finney, 1956, 1961, 1962), but may need to be substantially more complicated if
there is much genetic segregation and recombination between generations. When
selective intensities are low, several generations might elapse without the reductions
in genetic variances and correlations becoming very important, but if P were less
than 0-1 in each generation both this effect and non-normality could rapidly com-
plicate the formulae relevant to selection.

SUMMARY

Results obtained by Young for the expectation of genetic gain in an arbitrary
linear function of several traits under selection by independent culling levels, under
tandem selection, and under index selection have been obtained in slightly more
general form and their dependence on basic genetic and phenotypic parameters
exhibited. A warning is given about the effects of selection in modifying the
distribution of traits; when the distribution has become appreciably non-normal,
any calculation of genetic gains from formulae based on normality will tend to
o verestimation.
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