FINITE QUOTIENTS OF THE AUTOMORPHISM GROUP OF A FREE GROUP

ROBERT GILMAN

1. Introduction. Let G and F be groups. A G-defining subgroup of F is a normal subgroup N of F such that F / N is isomorphic to G. The automorphism group Aut (F) acts on the set of G-defining subgroups of F. If G is finite and F is finitely generated, one obtains a finite permutation representation of Out (F), the outer automorphism group of F. We study these representations in the case that F is a free group. We denote by F_{n} a free group on n free generators x_{1}, \ldots, x_{n}.

Theorem 1. Fix $n \geqq 3$. For any prime $p \geqq 5$, Out $\left(F_{n}\right)$ acts on the $\operatorname{PSL}(2, p)$ defining subgroups of F_{n} as the alternating or symmetric group, and both cases occur for infinitely many primes.

Corollary 1. If $n \geqq 3$, Out $\left(F_{n}\right)$ is residually finite alternating and residually finite symmetric.

The meaning of Corollary 1 is that for any $\alpha \in$ Out $\left(F_{n}\right)$ there is a homomorphism ρ from Out $\left(F_{n}\right)$ onto a finite alternating group such that $\rho(\alpha) \neq 1$. E. Grossman proved that for all n, Out $\left(F_{n}\right)$ is residually finite [9]. Theorem 1 and Corollary 1 are proved in Section 5. The conclusion of Theorem 1 does not hold for $n=2$. Out (F_{2}) acts intransitively on the PSL (2,5)-defining subgroups of $F_{2}[\mathbf{1 2}, \S 10 ; \mathbf{1 4}$, Proposition 4], and on the $P S L$ (2,7)-defining subgroups of $F_{2}[\mathbf{1 5}$, Theorem 1]. We have the following partial extensions of Theorem 1.

Theorem 2. If $n \geqq 4$ and G is a finite nonabelian simple group generated by $n-2$ elements, Out $\left(F_{n}\right)$ acts as the alternating or symmetric group on at least one of its orbits on the G-defining subgroups of F_{n}.

Theorem 3. If G is a finite group of order $g>1$, and $n \geqq 2 \log _{2}(g)$, Out $\left(F_{n}\right)$ is transitive on the G-defining subgroups of F_{n}.

In connection with Theorem 2 we note that all currently known simple groups seem to be generated by two elements $[8, \S 78]$. If G is a finite abelian simple group of order p, the action of Out $\left(F_{n}\right)$ on the G-defining subgroups of F_{n} is well-known.

A much sharper form of Theorem 3 holds if G is solvable. M. Dunwoody has shown that in this case one need only assume that n is greater than the size of the smallest set of generators of $G[\mathbf{6}]$. In [5, Theorem 1] he shows that this
bound is sharp. His discussion in [6] of the action of Out $\left(F_{3}\right)$ on the A_{5}-defining subgroups of F_{3} motivated the present work. Theorem 3 is a corollary of a result of F. Cappel, a student of J. Neubuser [2].
2. G-vectors. For any group G a G-vector of length n is an n-tuple $\boldsymbol{a}=$ $\left(a_{1}, \ldots, a_{n}\right), a_{i} \in G, 1 \leqq i \leqq n$. A generating G-vector is one whose entries generate G. G-vectors were introduced in [12, Kap. II] in order to define an action of Aut $\left(F_{n}\right)$ which is equivalent to its action on G-defining subgroups of F_{n} but easier to work with. If $W=x_{i_{1}}{ }^{\epsilon_{1}} \ldots x_{i_{t}}{ }^{\epsilon_{t}}$ is a word in x_{1}, \ldots, x_{n}, we define

$$
W(\boldsymbol{a})=a_{i_{1}}{ }^{\epsilon_{1}} \ldots a_{i_{t}}{ }^{\epsilon_{t}} .
$$

Let E be the set of epimorphisms from F_{n} to G. The direct product Aut (G) $\times \operatorname{Aut}\left(F_{n}\right)$ acts on E; for $\alpha \in \operatorname{Aut}(G)$ and $\sigma \in \operatorname{Aut}\left(F_{n}\right)$ the element (α, σ) sends $\rho \in E$ to the composite $\alpha \rho \sigma^{-1}$. Clearly the action of Aut (F_{n}) on the Aut (G)-orbits of E is equivalent to its action on G-defining subgroups of F_{n}. Let $V(G, n)$ be the set of generating G-vectors of length n. The map π sending ρ to $\left(\rho\left(x_{1}\right), \ldots, \rho\left(x_{n}\right)\right)$ gives a one to one correspondence between E and $V(G, n)$ and induces an action of Aut $(G) \times \operatorname{Aut}\left(F_{n}\right)$ on $V(G, n)$ by $\alpha \pi(\rho) \sigma=$ $\pi(\alpha \rho \sigma)$.

The induced action is equivalent to the action of Aut (G) \times Aut $\left(F_{n}\right)$ on E whence the action of Aut $\left(F_{n}\right)$ on G-defining subgroups of F_{n} is equivalent to its action on Aut (G)-orbits of $V(G, n)$. Let $\bar{V}(G, n)$ be the set of Aut (G)-orbits of $V(G, n)$. Write $\boldsymbol{a} \sim \boldsymbol{b}$ if \boldsymbol{a} and \boldsymbol{b} are in the same Aut $\left(F_{n}\right)$-orbit of $\bar{V}(G, n)$. If $\sigma\left(x_{i}\right)=W_{i}, 1 \leqq i \leqq n$ for words W_{i} in $x_{j}, 1 \leqq j \leqq n$, we have

$$
\alpha \boldsymbol{a}_{\sigma}=\left(\alpha\left(W_{1}(\boldsymbol{a})\right), \ldots, \alpha\left(W_{n}(\boldsymbol{a})\right)\right) .
$$

The elementary automorphisms of F_{n} are

$$
\begin{aligned}
& P(i, k): x_{i} \rightarrow x_{k}, x_{k} \rightarrow x_{i} \\
& \sigma(i): x_{i} \rightarrow x_{i}^{-1} \\
& L(i, k): x_{i} \rightarrow x_{k} x_{i} \\
& R(i, k): x_{i} \rightarrow x_{i} x_{k}
\end{aligned}
$$

where $1 \leqq i, k$, $\leqq n, i \neq k$, and unmentioned generators are left fixed [11, Sec. 3.5]. The effect of these automorphisms on $\boldsymbol{a} \in V(G, n)$ is to interchange any two entries, invert any entry, or multiply one entry by a different one.

The following lemma is used in the proof of Theorem 2 and is the only place we use the simplicity of G in the proof of that theorem.

Lemma 1. Let G be a finite nonabelian simple group. Suppose $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ $\in V(G, n)$ and $G=\left\langle a_{i} \mid i \neq j\right\rangle$ for some $j, 1 \leqq j \leqq n$. For any $c \in G$, there is a word

$$
W\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)
$$

such that for

$$
\beta=W(R(j, 1), \ldots, R(j, j-1), R(j, j+1), \ldots, R(j, n))
$$

we have

$$
\boldsymbol{a} \beta=\left(a_{1}, \ldots, a_{j-1}, a_{j} c, a_{j+1}, \ldots, a_{n}\right)
$$

and for any $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right) \in V(G, n)$ either $\boldsymbol{b} \boldsymbol{\beta}=\boldsymbol{b}$ or there exists $\alpha \in$ Aut (G) such that $b_{i}=\alpha\left(a_{i}\right), 1 \leqq i \leqq n, i \neq j$.

Proof. For any vector \boldsymbol{v} of length n, let \boldsymbol{v}^{\prime} be the vector of length $n-1$ obtained by omitting the j th entry of \boldsymbol{v}. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in V\left(F_{n}, n\right)$; the entries of \boldsymbol{x}^{\prime} generate a free group $F \subseteq F_{n}$.

Let N be the kernel of the homomorphism $\rho: F \rightarrow G, \rho\left(x_{i}\right)=a_{i}, 1 \leqq i \leqq n$, $i \neq j$; and let M be the intersection of the kernels of all homomorphisms $\mu: F \rightarrow G$ with kernel distinct from N. Because G is simple, $F=N M$ and we can find $W=W\left(\boldsymbol{x}^{\prime}\right) \in M$ such that $W\left(\boldsymbol{a}^{\prime}\right)=\rho(W)=c$. If we define μ by $\mu\left(x_{i}\right)=b_{i}$, then $W\left(\boldsymbol{b}^{\prime}\right)=\mu\left(W\left(\boldsymbol{x}^{\prime}\right)\right)=1$ unless μ and ρ have the same kernel in which case $\mu=\alpha \rho$ and $b_{i}=\alpha\left(a_{i}\right), 1 \leqq i \leqq n, i \neq j$, for some $\alpha \in$ Aut (G). Clearly β has the desired effect.
3. Proof of Theorem 3. Let S be a finite set of generators of G and let $\left\{a_{1}, \ldots, a_{r}\right\} \subseteq S$ be of minimum order such that $\left\langle a_{1}, \ldots, a_{r}\right\rangle=G$. If $H_{i}=$ $\left\langle a_{1}, \ldots, a_{i}\right\rangle$, then H_{1} has order at least 2 and the index $\left|H_{i+1}: H_{i}\right| \geqq 2$. Thus G has order $g \geqq 2^{r}$ whence $r \leqq k$ where k is the greatest integer less than or equal to $\log _{2}(g)$.

Now pick $a_{1} \ldots a_{k} \in G$ so that $\left\langle a_{1}, \ldots, a_{k}\right\rangle=G$. For $n \geqq 2 k$ define

$$
\boldsymbol{w}=\left(a_{1}, \ldots, a_{k}, 1, \ldots, 1\right) \in V(G, n)
$$

Consider any $\boldsymbol{v} \in V(G, n)$; it suffices to reduce \boldsymbol{v} to \boldsymbol{w} by elementary automorphisms of F_{n}. By the preceding paragraph k of the entries of \boldsymbol{v} generate G. Permute the entries of \boldsymbol{v} so that the last k entries generate G. Multiplying the first k entries by the last k, we can change \boldsymbol{v} so that its first k entries are a_{1}, \ldots, a_{k}. Now multiplying the last $n-k$ entries by the first k, we can reduce \boldsymbol{v} to \boldsymbol{w}.
4. Proof of Theorem 2 and part of Theorem 1. It suffices in the proof of Theorem 2 to show that Aut (F_{n}) acts as the alternating or symmetric group on some subset of $\bar{V}(G, n)$. We will show first that Aut $\left(F_{n}\right)$ acts doubly transitively on one of its orbits and then estimate the degree and minimal degree of the action. At this point a theorem of Bochert [1, p. 144] gives the desired result.

For the first part of the proof, we assume only that $n \geqq 3$ and G is generated by $n-1$ elements in order to apply our argument to the proof of Theorem 1. Let $\left\{a_{1}, \ldots, a_{n-1}\right\}$ be a fixed set of generators for G. Let V^{\prime} be the orbit of

Aut $(G) \times$ Aut $\left(F_{n}\right)$ containing

$$
\boldsymbol{v}=\left(a_{1}, \ldots, a_{n-1}, 1\right)
$$

and let \bar{V}^{\prime} be the set of Aut (G)-orbits of V^{\prime}.
From [11, Sec. 3.5] the elementary automorphisms of F_{n} generate Aut $\left(F_{n}\right)$, and

$$
N=\langle L(i, k), R(i, k) \mid 1 \leqq i, k \leqq n, i \neq k\rangle
$$

is a normal subgroup of Aut $\left(F_{n}\right)$. We claim Aut $(G) \times N$ acts transitively on V^{\prime}.

Clearly $\boldsymbol{v} \sigma(n)=\boldsymbol{v}$, and further if i, j, n are distinct,

$$
\boldsymbol{v} P(i, j)=\boldsymbol{v} R(n, i) R(i, n)^{-1} R(i, j) R(j, i)^{-1} R(j, n) R(n, j)^{-1},
$$

while for $i \neq n$

$$
\boldsymbol{v} P(i, n)=\boldsymbol{v} R(n, i) R(i, n)^{-1}
$$

As the transpositions $\{(i, n)\}$ generate the symmetric group on $\{1,2, \ldots, n\}$, it follows that Aut $\left(F_{n}\right)=N C_{\mathrm{Aut}\left(F_{n}\right)}(\boldsymbol{v})$. Thus our claim is valid.

We will show that N acts doubly transitively on \bar{V}^{\prime}. Let

$$
\boldsymbol{w}=\left(b_{1}, \ldots, b_{n}\right)
$$

be an element of V^{\prime} not in the Aut (G)-orbit of \boldsymbol{v}. It suffices to show that for a fixed $e \in G, e \neq 1, \boldsymbol{w}$ can be reduced to

$$
\boldsymbol{y}=\left(a_{1}, \ldots, a_{n-1}, e\right)
$$

by applying elements of Aut (G) or elements of $C_{N}(\boldsymbol{v})$. Clearly $y \in V^{\prime}$. We have $\boldsymbol{y}=\alpha \boldsymbol{w} \delta, \alpha \in \operatorname{Aut}(G), \delta \in N$. We may assume $\alpha=1$. Express δ as a word in the $R(i, k)$'s and $L(i, k)$'s. The problem is that some of the $R(i, k)$'s and $L(i, k)$'s do not fix \boldsymbol{v}. Consider the $R(i, k)$'s; the $L(i, k)$'s are handled similarly. For $1 \leqq i<n, R(i, n)$ fixes \boldsymbol{v}, and for $1 \leqq i, k,<n, i \neq k$,

$$
R(i, k)=R(n, k)^{-1} R(i, n)^{-1} R(n, k) R(i, n) .
$$

Thus we need only show that for any \boldsymbol{w} chosen as above and $i, 1 \leqq i<n$, we can find an element $\beta \in N$ such that $\boldsymbol{w} \beta=\boldsymbol{w} R(n, i)$ and β fixes $\boldsymbol{\nu}$. We can do this by Lemma 1 unless $b_{i}=\alpha\left(a_{i}\right), 1 \leqq i \leqq n-1$, for some $\alpha \in$ Aut (G). Thus we are reduced to dealing with the case

$$
\begin{equation*}
\boldsymbol{w}=\left(a_{1}, \ldots, a_{n-1}, b\right) \quad 1 \neq b \neq e . \tag{1}
\end{equation*}
$$

At this point we assume the hypothesis of Theorem 2. In particular $n \geqq 4$ and we may suppose $a_{n-1}=1=b_{n-1}$. We will reduce \boldsymbol{w} to \boldsymbol{y}. First of all $R(n-1, n) R(n, n-1)^{-1}$ fixes \boldsymbol{v} and moves \boldsymbol{w} to

$$
\boldsymbol{u}=\boldsymbol{w} P(n-1, n)=\left(a_{1}, \ldots, a_{n-2}, b, 1\right)
$$

By Lemma 1 we can find $\beta \in C_{N}(\boldsymbol{v})$ such that

$$
\boldsymbol{u} \beta=\left(a_{1}, \ldots, a_{n-2}, b, e\right)
$$

and likewise we can find $\beta^{\prime} \in C_{N}(\boldsymbol{v})$ for which $\boldsymbol{u} \beta \beta^{\prime}=\boldsymbol{y}$.
Now we estimate the degree r and minimal degree s of the action of Aut $\left(F_{n}\right)$ on \bar{V}^{\prime}. The vectors ($\left.a_{1}, \ldots, a_{n-2}, e, f\right) e, f \in G$ lie in g^{2} distinct Aut (G)-orbits of V^{\prime} where g is the order of G. Thus $r \geqq g^{2}$.

By Lemma 1 some $\beta \in N$ fixes all elements of $V(G, n)$ except those in the Aut (G)-orbits of ($\left.a_{1}, \ldots, a_{n-1}, f\right), f \in G$, whence $s \leqq g$. By the theorem of Bochert referred to above if $\operatorname{Aut}(F)$ does not act as the alternating or symmetric group,

$$
s \geqq r / 3-2 \sqrt{r} / 3
$$

As the righthand side is an increasing function of r for $r \geqq 1$, we have

$$
g \geqq g^{2} / 3-2 g / 3
$$

whence $g \leqq 5$ which is impossible. This completes the proof of Theorem 2.
5. The proof of Theorem 1 and Corollary 1. First we show that the theorem implies the corollary. It suffices to show that if $\alpha \in \operatorname{Aut}\left(F_{n}\right), n \geqq 3$, and α normalizes every $\operatorname{PSL}(2, p)$-defining subgroup of F_{n} for all primes $p>3$, then α is inner. Let x be a primitive element of F_{n}, and let R be the normal closure of x in $F_{n}, F_{n} / R$ is free on $n-1$ generators. In [13] it is shown that for $n \geqq 2 F_{n}$ is residually $P S L(2, p)$, p a prime >3. Applying this result to F_{n} / R, we see that α must normalize R. By [11, Theorem 4.11] $\alpha(x)$ is conjugate in F_{n} to x or x^{-1}. Considering the action of α on the commutator quotient of F_{n}, we see that either $\alpha(x)$ is conjugate to x for every primitive element x or $\alpha(x)$ is conjugate to x^{-1} for every primitive x. In the first case α is inner by [9, Lemma 1]. In the second case the obvious extension of [9, Lemma 1] and its proof suffice to show α is inner.

The proof of Theorem 1 rests on explicit knowledge of the lattice of subgroups of $P S L(2, p)[\mathbf{4}$, Ch XII; 10, §3]. As $P S L(2, p)$ is generated by two elements, Theorem 2 applies to the action of Out $\left(F_{n}\right)$ on PSL ($2, p$)-defining subgroups of F_{n} when $n \geqq 4$. We will show that the conclusion of Theorem 2 holds when $n=3$.

Let a and b be the elements of G of order p represented by the matrices
(2) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
respectively. As $N_{G}(\langle a\rangle)$ is the unique maximal subgroup of G containing $\langle a\rangle,\langle a, b\rangle=G$. Let

$$
\boldsymbol{v}=(a, b, 1), \quad \boldsymbol{y}=(a, b, a b)
$$

and define V^{\prime} and \bar{V}^{\prime} as in the proof of Theorem 2. By the reduction to (1) in
the proof of Theorem 2 we need only show for

$$
\boldsymbol{w}=(a, b, c) \quad 1 \neq c \neq a b
$$

how to reduce \boldsymbol{w} to \boldsymbol{y} be elements of $C_{N}(v)$. If $c \notin N_{G}(\langle a\rangle) \cap N_{G}(\langle b\rangle)$, either $\langle a, c\rangle=G$ or $\langle b, c\rangle=G$. If, however $c \in N_{G}(\langle a\rangle) \cap N_{G}(\langle b\rangle)$, then c has matrix representation

$$
\left[\begin{array}{ll}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right]
$$

whence $b c b^{-1} \notin N_{G}(\langle a\rangle)$; since $\boldsymbol{w} \sim\left(a, b, b c b^{-1}\right)$, we may assume $\langle a, c\rangle=G$. By Lemma 1,

$$
\boldsymbol{u}=\boldsymbol{w} \beta=(a, a b, c)
$$

for some $\beta \in C_{N}(\boldsymbol{v})$. Since 1 is not an eigenvalue of the product of the matrices in (2), no automorphism of G moves b to $a b$. By Lemma 1,

$$
\boldsymbol{t}=\boldsymbol{u} \beta^{\prime}=(a, a b, a b)
$$

for some $\beta^{\prime} \in C_{N}(\boldsymbol{v})$, and another application of Lemma 1 moves \boldsymbol{t} to \boldsymbol{y}.
We have shown that Aut $\left(F_{3}\right)$ acts doubly transitively on one of its $\bar{V}(G, 3)$ orbits. As in the proof of Theorem 2, the minimal degree of this action is at most g. Once we show that Aut $(G) \times$ Aut $\left(F_{3}\right)$ acts transitively on $V(G, 3)$, the degree of the action will be the number of G-defining subgroups of F_{3}. We can then calculate this number by the method of [9] and show as in the proof of Theorem 2 that Aut (F_{3}) acts as the alternating or symmetric group on \bar{V}^{\prime}.

We will show the required transitivity. Let

$$
\boldsymbol{v}=(a, b, 1, \ldots, 1)
$$

where a and b are chosen as above, and let

$$
\boldsymbol{w}=\left(c_{1}, \ldots, c_{n}\right)
$$

be an arbitrary group vector in $V(G, n)$. Suppose first that a proper subset of $S=\left\{c_{1}, \ldots, c_{n}\right\}$ generates G. By permuting the entries of \boldsymbol{w} we may assume $G=\left\langle c_{2}, \ldots, c_{n}\right\rangle$. Multiplying the first entry by the others we may assume $c_{1}=a$. Now $\left\langle c_{1}, c_{j}\right\rangle=G$ for some $j, 2 \leqq j \leqq n$. We may assume $\left\langle c_{1}, c_{n}\right\rangle=G$. Now we can achieve $c_{2}=b$ and then $c_{3}=\ldots=c_{n}=1$. Thus in this case we can move \boldsymbol{w} to \boldsymbol{v}.

Assume $n \geqq 4$ and let $H=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$. By the preceding paragraph we may assume that H is a proper subgroup of G. With the exception of A_{5}, the proper subgroups of G are all solvable and generated by 2 elements. By [6], we see that with the exception of $H \cong A_{5}$, that $\boldsymbol{u}=\left(c_{1}, c_{2}, c_{3}\right)$ can be moved by an element of Aut $\left(F_{3}\right)$ to an H-vector with one entry equal to the identity. It follows that \boldsymbol{w} can be moved to \boldsymbol{v} as before. Once we have dealt with the case $n=3$, then as $A_{5} \cong P S L(2,5)$, this argument will apply to $H \cong A_{5}$ as well.

Now we deal with the case $n=3$. Assume there exists an Aut $(G) \times$ Aut $\left(F_{3}\right)$-orbit, W, of $V(G, 3)$ with $\boldsymbol{v} \notin W$. We will derive a contradiction. Let

$$
\boldsymbol{w}=(c, d, e)
$$

be an arbitrary element of W, and let H be the subgroup of G generated by two entries of \boldsymbol{w}. From the discussion above we know
(i) $H \neq G$.

We claim that H is noncyclic. Suppose $H=\langle c, d\rangle$ and H is cyclic; then $H=$ $\left\langle c d^{i}\right\rangle$ for some integer i and

$$
\boldsymbol{w} \sim \boldsymbol{u}=\left(c d^{\mathfrak{t}}, d, e\right) \in w
$$

which is impossible by (i) as $G=\left\langle c d^{i}, e\right\rangle$. Thus we have established
(ii) H is noncyclic.

Now assume that H normalizes a Sylow p-subgroup, P, of G. By (ii) and the structure of $N_{G}(P), P \subseteq H$ and H / P is cyclic. We assume again that $H=$ $\langle c, d\rangle ; H$ is a Frobenius group. For some $i, f=c d^{i}$ generates a complement to P in H and for some $j, g=d f^{j}$ generates P. We have

$$
\boldsymbol{w} \sim(f, d, e) \sim \boldsymbol{u}=(f, g, e) \in W
$$

$N_{G}(P)$ is the unique maximal subgroup of G containing P, and it follows from $G=\langle f, g, e\rangle$ that $e \notin N_{G}(P)$ and $G=\langle g, e\rangle$ contrary to (i). Hence
(iii) H does not normalize a Sylow p-subgroup of G.

By (i)-(iii), $\langle c, d\rangle$ must be dihedral, elementary abelian of order 4 or isomorphic to A_{4}, S_{4}, or A_{5}. If $d^{2} \neq 1$, we wish to move \boldsymbol{w} to (x, y, e) with $y^{2}=1$. In the dihedral case $x=c, y=c d$ suffices, while if $H \cong A_{4}$, either $c^{2}=1$ and we can interchange c and d or $|c|=|d|=3$ and $c d$ or $c^{2} d$ is an involution. If $H \cong S_{4}$ and c and d are both not involutions, the orders of c and d are 3 or 4 . If $|c|=|d|=4$, then $|c d|=2$ or 3 , so we may assume $|c|=3,|d|=4$. Either $|c d|=2$ or $\left|c^{2} d\right|=2$. Finally in the case $H \cong A_{5}$, we appeal to [11, § 10] which says that for some automorphism $x_{i} \rightarrow w_{i}\left(x_{1}, x_{2}\right)$ of $F_{2}, w_{2}(c, d)$ will be an involution. As we may extend this automorphism to F_{3} by $x_{3} \rightarrow x_{3}$, we can move \boldsymbol{w} to (x, y, e) as desired. Applying the same argument to x and e, we have
(iv) $\boldsymbol{w} \sim \boldsymbol{u}=(x, y, z)$ with $\quad|x|=|y|=2$.

We let $\boldsymbol{u}=(x, y, z)$ stand for an arbitrary element of W whose first two entries have order 2 . Suppose $[x, y] \neq 1$ so that $\langle x, y\rangle$ is dihedral of order at least 6 and $f=x y$ has order at least 3. As

$$
\boldsymbol{u} \sim(x, f, z) \in W
$$

(i)-(iii) imply that $K=\langle f, z\rangle$ is dihedral or isomorphic to A_{4}, S_{4} or A_{5}. With the exception of $K \cong A_{4}, f$ is inverted by some $g \in K$. Since g is equal to a word in f and z,

$$
(x, f, z) \sim(x g, f, z)
$$

But x also inverts f so that $\langle x g, f\rangle$ is abelian. By (ii) $\langle x g, f\rangle$ must be elementary abelian of order 4 contrary to $|f| \geqq 3$. We conclude that
(v) $\langle x y, z\rangle \cong A_{4} \quad$ or $\quad[x, y]=1$.

Since G is simple, the $\langle x, z\rangle$-conjugates of y generate G, and likewise x does not commute with some $\langle x, z\rangle$-conjugate, y_{1}, of y. Thus

$$
\boldsymbol{u} \sim \boldsymbol{u}_{1}=\left(x, y_{1}, z\right)
$$

with $|x|=\left|y_{1}\right|=2$ and $\left[x, y_{1}\right] \neq 1$. Consequently $\left|x y_{1}\right| \geqq 3$ and by (v) $\left\langle x y_{1}, z\right\rangle \cong A_{4}$. We must have $\left|x y_{1}\right|=3$ and $\left|\left(x y_{1}\right)^{j} z\right|=2$ for some j. Hence

$$
\boldsymbol{u}_{1} \sim \boldsymbol{u}_{2}=\left(x, y_{1}, z_{1}\right)
$$

with $\left|z_{1}\right|=2$. By (v) G is a quotient of

$$
G_{1}=\left\langle x, y_{1}, z_{1} \mid x^{2}, y_{1}^{2}, z_{1}^{2},\left(x y_{1}\right)^{3},\left(x z_{1}\right)^{m},\left(y_{1} z_{1}\right)^{n}\right\rangle
$$

with m and n each equal to 2 or 3 . If $m=2$ or $n=2$, then G_{1} has order 12 or 24 by [3, §4.3]. But $|G| \geqq 60$, so we must have $\left|x z_{1}\right|=\left|y_{1} z_{1}\right|=3$ (in which case G_{1} has infinite order). Now

$$
\boldsymbol{u}_{2} \sim\left(x, y_{1}, y_{1} z_{1}\right) \in W
$$

so (v) implies $\left\langle x y_{1}, y_{1} z_{1}\right\rangle \cong A_{4}$. Further $\left|y_{1} z_{1}\right|=3$ and $\left|x y_{1} y_{1} z_{1}\right|=\left|x z_{1}\right|=3$. But then $\left|x y_{1}\left(y_{1} z_{1}\right)^{-1}\right|=2$; and as $\left|y_{1}\right|=\left|z_{1}\right|=2,\left(y_{1} z_{1}\right)^{-1}=z_{1} y_{1}$. We have $\left|x y_{1} z_{1} y_{1}\right|=2$. In other words x commutes with

$$
z_{2}=y_{1} z_{1} y_{1}=y_{1} z_{1} y_{1}{ }^{-1}
$$

But

$$
\boldsymbol{u}_{2} \sim\left(x, y_{1}, z_{2}\right) \in W
$$

with $|x|=\left|y_{1}\right|=\left|z_{2}\right|=\left|x z_{2}\right|=2,\left|x y_{1}\right|=3,\left|y_{1} z_{2}\right|=\left|z_{1} y_{1}\right|=3$ gives a contradiction as above.

Our results so far guarantee that Aut $\left(F_{n}\right)$ acts as the alternating or symmetric group on $\bar{V}(G, n)$. By [11, Sec. 3.5] $\langle\sigma(1)\rangle$ covers the commutator quotient of $\operatorname{Aut}\left(F_{n}\right)$. By Dirichlet's theorem on primes, Theorem 3 will be proved once we show that the sign (as a permutation) of $\sigma=\sigma(1)$ is odd if $p \equiv 1(\bmod 80)$ and even if $p \equiv 17(\bmod 80)$. We will count the number of points of $\bar{V}(G, n)$ moved by σ and divide by 2 . The Aut (G)-orbit of $\boldsymbol{w}=$ $\left(c_{1}, \ldots, c_{n}\right)$ is fixed by σ exactly when there is an automorphism α of G with $\alpha\left(c_{1}\right)=c_{1}{ }^{-1}, \alpha\left(c_{i}\right)=c_{i} 2 \leqq i \leqq n$. Since $\left\langle c_{1}, \ldots, c_{n}\right\rangle=G, \boldsymbol{w}$ determines α.

First we count the number $\psi(G)$ of generating G-vectors \boldsymbol{w} which are not fixed by σ; i.e., the number of \boldsymbol{w} 's with $\left|c_{1}\right|>2$. The number of H-vectors of this type for a group H is $f(H)|H|^{n-1}$ where $f(H)$ is the number of elements of H of order at least 3. To calculate $\psi(G)$ we use the Möbius inversion of P. Hall [9] and obtain a sum over the subgroups of G.

$$
\psi(G)=\Sigma_{\mu} \mu(H) f(H)|H|^{n-1}
$$

where μ is given in [$\mathbf{1 0}, \S 3.9]$. Combining terms corresponding to conjugate subgroups, we obtain

$$
\begin{equation*}
\psi(G)=\Sigma^{\prime} a_{H} f(H)|H|^{n-1} \tag{3}
\end{equation*}
$$

where the sum is carried out over conjugacy classes of subgroups as in [10, Theorem 3.9]. As it will suffice to determine $\psi(G)$ modulo $8 g$, we may ignore terms in (3) which are divisible by 8 g . If we note that a_{H} is always divisible by $|G: H|$ (as it must be by [7, Corollary 2]), and $n \geqq 3$, we may ignore any H for which 8 divides $f(H)|H|$. By inverting elements of H we see that $f(H)$ is even whence we may ignore terms corresponding to H 's of even order.

We obtain

$$
\begin{align*}
& \psi(G) \equiv 4 g(\bmod 8 g) \quad \text { if } p \equiv 1(\bmod 80) \tag{4}\\
& \psi(G) \equiv 0(\bmod 8 g) \quad \text { if } p \equiv 17(\bmod 80)
\end{align*}
$$

Among the $\psi(G)$ vectors not fixed by σ will be some which are in an Aut (G) orbit fixed by σ. Let $\theta(G)$ be the number of these vectors; $\theta(G)$ is the number of generating G-vectors

$$
\boldsymbol{w}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

for which $\left|c_{1}\right|>2$ and there is an automorphism $\alpha \in$ Aut (G) inverting c_{1} and centralizing $c_{i}, 2 \leqq i \leqq n$. The Aut (G)-orbit of \boldsymbol{w} has size $2 g=\mid$ Aug $(G) \mid$, and all its vectors are moved by σ. Thus σ is a product of $(\psi(G)-\theta(G)) / 4 g$ disjoint transpositions. We will show $\theta(G) \equiv 0(\bmod 8 g)$ when $n \geqq 4$. For $n=3$, similar but harder computation gives the same result. We identify Aut (G) with $P G L$ $(2, p)$ and think of G as a subgroup of $\operatorname{Aut}(G)$.

As we have noted, \boldsymbol{w} determines α uniquely and $\left\langle\alpha, c_{1}\right\rangle=D$ is a dihedral subgroup of Aut (G). For each choice of α and c_{1} we obtain a group vector \boldsymbol{w} by choosing $c_{i} \in C_{G}(\alpha), 2 \leqq i \leqq n$. If \boldsymbol{w} is not a generating G-vector, then $\left\langle c_{i} \mid 1 \leqq i \leqq n\right\rangle$ lies in a maximal subgroup of G and $\left\langle\alpha, c_{i} \mid 1 \leqq i \leqq n\right\rangle$ lies in a maximal subgroup of Aut (G). To count the number of generating group vectors corresponding to the pair $\left(\alpha, c_{1}\right)$ we count the number of sequences c_{2}, \ldots, c_{n} in $C_{G}(\alpha)$ such that $\left\langle c_{i} \mid 2 \leqq i \leqq n\right\rangle$ is not contained in $C_{H} \cap G(\alpha)$ for any maximal subgroup H of Aut (G) containing D. We divide the enumeration into cases according to the value of $m=\left|c_{1}\right|$. Define $q=(p-1) / 2$ and $r=(p+1) / 2$ so that $g=2 p q r$.

Suppose $p \neq m>5$. D lies in a unique maximal subgroup H of Aut (G) and H is dihedral of order $4 q$ if m divides q or dihedral of order $4 r$ if m divides r. (The maximal subgroups of Aut (G) are the normalizers of the maximal subgroups of G, and their structure is determined by knowledge of the subgroups of $P S L\left(2, p^{2}\right)$ and the fact that $P S L\left(2, p^{2}\right)$ has a subgroup isomorphic to $P G L(2, p)$.) Suppose $|H|=4 q$. H contains $\varphi(m)$ elements of order m, where φ is Euler's function. There are $p r$ choices for H (of order $4 q$) and $2 q$ involutions in $H-Z(H)$. These divide into $2 H$-conjugacy classes each of order q. From the involutions in a single H-conjugacy class we obtain $q_{\varphi}(m)$ pairs $\left(\alpha, c_{1}\right)$. For each pair we may choose c_{2}, \ldots, c_{n} in $\left|C_{G}(\alpha)\right|^{n-1}-\left|C_{H} \cap G(\alpha)\right|^{n-1}$ ways. As
$|H \cap G|$ is even and $n \geqq 4$, the number of choices of c_{2}, \ldots, c_{n} is divisible by 4 , and the number of generating group vectors we obtain is congruent to 0 modulo $16 q$. From the $r p$ choices for H, then the total number of generating group vectors we obtain is congruent to zero modulo $16 r p q=8 g$. The same conclusion holds if $m>5$ and m divides r.

Suppose $p \neq m=5 . D$ lies in a unique dihedral group H of order $4 q$ or $4 r$ and if $D \subseteq G, D$ also lies in two icosahedral groups K_{1} and K_{2}. The argument of the previous paragraph gives $0(\bmod 8 \mathrm{~g}) \boldsymbol{w}$'s once we show that for a fixed α and c_{1}, the number of choices of c_{2}, \ldots, c_{n} is divisible by 8 . If α is outer, the desired conclusion follows exactly as before. If α is inner, $\left\langle c_{2}, \ldots, c_{n}\right\rangle$ must not lie in $C_{H} \cap{ }_{G}(\alpha)$ or $C_{K_{i}}(\alpha), i=1,2$. We can calculate the number of choices for c_{2}, \ldots, c_{n} by Möbius inversion on the lattice of subgroups consisting of $C_{G}(\alpha)$ and all intersections of $C_{H \cap G}(\alpha)$ and $C_{K_{i}}(\alpha), i=1,2$. The answer will be a linear combination of the orders of the groups in the lattice raised to the power $n-1$. As $\langle\alpha\rangle$ is the minimum element of this lattice and $n \geqq 4$, our answer will be divisible by 8 .

Next we suppose $m=4 . D$ lies in a unique maximal dihedral subgroup H. If M is any maximal subgroup of Aut (G) containing $D, Z(D) \subseteq C_{M \cap G}(\alpha)$ implies $\left|C_{M \cap G}(\alpha)\right|$ is even and the argument of the previous paragraph with $Z(D)$ in place of $\langle\alpha\rangle$ shows that the number of choices of c_{2}, \ldots, c_{n} is divisible by 4 . We again obtain $0(\bmod 4 g) \boldsymbol{w}$'s.

Consider $m=3 . D$ lies in a unique H dihedral of order $4 q$ or $4 r$. If $D \nsubseteq G$ and $p \equiv \pm 3(\bmod 8), D$ lies in two octahedral groups. If $D \subseteq G, D$ lies in two octahedral subgroups of G if $p \equiv \pm 1(\bmod 8)$. When $D \subseteq G$, (that is when α lies in the H-conjugacy class of involutions in $H \cap G-Z(H)$) we obtain as in the case $p \neq m=5,0(\bmod 8 g)$ generating group vectors. Suppose $D \nsubseteq G$ and $|H|=4 q$. From the $r p$ choices for H and q choices for $\alpha \in$ $H-G$, we have $(r p)(q) \varphi(3)=g$ pairs $\left(\alpha, c_{1}\right)$. If $p \equiv \pm 1(\bmod 8), H$ is the only maximal subgroup of Aut (G) containing D and we obtain $0(\bmod 8 g)$ generating vectors as before. However if $p \equiv \pm 3(\bmod 8), D$ lies in two octahedral subgroups J_{1}, J_{2} of Aut (G). Let $E_{i}=C_{J_{i} \cap G}(\alpha), i=1,2 .\left|E_{i}\right|=2$ and $J_{i}=\left\langle D, E_{i}\right\rangle$. We have $E_{1} \neq E_{2}$ else $J_{1}=J_{2}$ and $E_{i} \nsubseteq C_{H}(\alpha)$ else $J_{i} \subseteq H$. By Möbius inversion the number of choices for c_{2}, \ldots, c_{n} is

$$
\left|C_{G}(\alpha)\right|^{n-1}-\left|C_{H} \cap M(\alpha)\right|^{n-1}-2.2^{n-1}+2
$$

which is congruent to $2(\bmod 8)$. We obtain in this case $2 g(\bmod 8 g)$ generating group vectors, and we obtain the same result if $|H|=4 r$.

In summary if $\theta_{p}(G)$ is the number of \boldsymbol{w} 's with $m=p$ and $\theta_{p}{ }^{\prime}(G)$ is the number with $m \neq p$, we have

$$
\begin{align*}
& \theta_{p^{\prime}}(G) \equiv 0(\bmod 8 g) \quad \text { if } p \equiv \pm 1(\bmod 8) \text { and } n \geqq 4 \tag{5}\\
& \theta_{p^{\prime}}(G) \equiv 2 g(\bmod 8 g) \quad \text { if } p \equiv \pm 3(\bmod 8) \text { and } n \geqq 4
\end{align*}
$$

It remains to calculate $\theta_{p}(G)$. We have $m=p$, and D lies in a unique maximal subgroup H of Aut (G). H is the normalizer of a Sylow p-subgroup
$\left\langle c_{1}\right\rangle$ of G and is a Frobenius group with $H /\left\langle c_{1}\right\rangle$ cyclic of order $2 q$. H has one class of involutions, which has size p. From the $2 r$ choices for H we have $2 r p \varphi(p)$ choices of the pair $\left(\alpha, c_{1}\right)$ we may choose c_{2}, \ldots, c_{n} in $\left|C_{G}(\alpha)\right|^{n-1}-$ $\left|C_{H} \cap{ }_{G}(\alpha)\right|^{n-1}$ ways we have

$$
\theta_{p}(G)=2 r p(p-1)\left[(2 q)^{n-1}-q^{n-1}\right]
$$

whence
(6) $\quad \theta_{p}(G) \equiv 0(\bmod 4 g) \quad$ if $p \equiv 1(\bmod 4)$.

By (4), (5), (6) the following table is correct for $p \equiv 1$ or $17(\bmod 80)$ and $n \geqq 4$.

Sign of σ as a permutation on $\bar{V}(P S L(2, p), n), n \geqq 3$					
Congruence of $p(\bmod 8)$	1	3	5	7	
Congruence of $p(\bmod 5)$	± 1	-1	1	$(-1)^{n-1}$	1
	± 2	1	-1	$(-1)^{n}$	-1

For $p=5$ the sign of σ is $(-1)^{n}$.

References

1. H. Bochert, Ueber die Classe der transitiven Substitutionengruppen, Math. Ann. 49 (1897), 131-144.
2. F. Cappel, Diplomarbeit (Aachen, 1974).
3. H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups (Springer Verlag, New York, 1965).
4. L. E. Dickson, Linear groups with an exposition of the Galois field theory (Dover Publications Inc., New York, 1958).
5. M. J. Dunwoody, On T-systems of groups, J. Australian Math. Soc. 3 (1963), 172-179.
6. Nielsen transformations, in Computational Problems in Abstract Algebra, J. Leech ed. (Pergamon Press, Oxford and New York, 1969).
7. R. Gilman, A combinatorial identity with applications to representation theory, Illinois J. Math. 17 (1972), 347-351.
8. D. Gorenstein ed., Reviews on finite groups (Amer. Math. Soc., Providence, R.I., 1974).
9. E. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2) 9 (1974), 160-164.
10. P. Hall, The Eulerian functions of a group, Quarterly J. Math. 7 (1936), 134-151.
11. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory (Interscience Publishers, New York, 1966).
12. B. H. Neumann and H. Neumann, Zwei Klassen Charakterischer Untergruppen und ihre Faktorgruppen, Math. Nachr. 4 (1950), 106-125.
13. A. Peluso, A residual property of free groups, Comm. Pure Appl. Math. 19 (1966), 435-437.
14. D. Stork, Structure and applications of Schreier coset graphs, Comm. Pure Appl. Math. 24 (1971), 797-805.
15. -— The action of the automorphism group of F_{2} upon the A_{6} and PSL(2, 7)-defining subgroups of F_{2}, Trans. Amer. Math. Soc. 172 (1972), 111-117.

Stevens Institute of Technology, Castle Point Station, Hoboken, New Jersey

