FINITE QUOTIENTS OF THE AUTOMORPHISM GROUP OF A FREE GROUP

ROBERT GILMAN

1. Introduction. Let G and F be groups. A G-defining subgroup of F is a normal subgroup N of F such that F/N is isomorphic to G. The automorphism group Aut (F) acts on the set of G-defining subgroups of F. If G is finite and F is finitely generated, one obtains a finite permutation representation of Out (F), the outer automorphism group of F. We study these representations in the case that F is a free group. We denote by F_n a free group on n free generators x_1, \ldots, x_n .

THEOREM 1. Fix $n \ge 3$. For any prime $p \ge 5$, Out (F_n) acts on the PSL(2, p)-defining subgroups of F_n as the alternating or symmetric group, and both cases occur for infinitely many primes.

COROLLARY 1. If $n \ge 3$, Out (F_n) is residually finite alternating and residually finite symmetric.

The meaning of Corollary 1 is that for any $\alpha \in \text{Out}(F_n)$ there is a homomorphism ρ from Out (F_n) onto a finite alternating group such that $\rho(\alpha) \neq 1$. E. Grossman proved that for all n, Out (F_n) is residually finite [9]. Theorem 1 and Corollary 1 are proved in Section 5. The conclusion of Theorem 1 does not hold for n = 2. Out (F_2) acts intransitively on the PSL (2,5)-defining subgroups of F_2 [12, § 10; 14, Proposition 4], and on the PSL (2,7)-defining subgroups of F_2 [15, Theorem 1]. We have the following partial extensions of Theorem 1.

THEOREM 2. If $n \ge 4$ and G is a finite nonabelian simple group generated by n - 2 elements, Out (F_n) acts as the alternating or symmetric group on at least one of its orbits on the G-defining subgroups of F_n .

THEOREM 3. If G is a finite group of order g > 1, and $n \ge 2 \log_2(g)$, Out (F_n) is transitive on the G-defining subgroups of F_n .

In connection with Theorem 2 we note that all currently known simple groups seem to be generated by two elements [8, § 78]. If G is a finite abelian simple group of order p, the action of Out (F_n) on the G-defining subgroups of F_n is well-known.

A much sharper form of Theorem 3 holds if G is solvable. M. Dunwoody has shown that in this case one need only assume that n is greater than the size of the smallest set of generators of G [6]. In [5, Theorem 1] he shows that this

Received June 14, 1976 and in revised form, October 8, 1976.

ROBERT GILMAN

bound is sharp. His discussion in [6] of the action of Out (F_3) on the A_5 -defining subgroups of F_3 motivated the present work. Theorem 3 is a corollary of a result of F. Cappel, a student of J. Neubuser [2].

2. *G*-vectors. For any group *G* a *G*-vector of length *n* is an *n*-tuple $a = (a_1, \ldots, a_n)$, $a_i \in G$, $1 \leq i \leq n$. A generating *G*-vector is one whose entries generate *G*. *G*-vectors were introduced in [12, Kap. II] in order to define an action of Aut (F_n) which is equivalent to its action on *G*-defining subgroups of F_n but easier to work with. If $W = x_{i_1} \epsilon_1 \ldots x_{i_t} \epsilon_t$ is a word in x_1, \ldots, x_n , we define

$$W(\boldsymbol{a}) = a_{i_1}^{\epsilon_1} \dots a_{i_r}^{\epsilon_t}.$$

Let *E* be the set of epimorphisms from F_n to *G*. The direct product Aut (*G*) \times Aut (F_n) acts on *E*; for $\alpha \in$ Aut (*G*) and $\sigma \in$ Aut (F_n) the element (α, σ) sends $\rho \in E$ to the composite $\alpha \rho \sigma^{-1}$. Clearly the action of Aut (F_n) on the Aut (*G*)-orbits of *E* is equivalent to its action on *G*-defining subgroups of F_n . Let V(G, n) be the set of generating *G*-vectors of length *n*. The map π sending ρ to ($\rho(x_1), \ldots, \rho(x_n)$) gives a one to one correspondence between *E* and V(G, n) and induces an action of Aut (*G*) \times Aut (F_n) on V(G, n) by $\alpha \pi(\rho) \sigma = \pi(\alpha \rho \sigma)$.

The induced action is equivalent to the action of Aut (G) × Aut (F_n) on Ewhence the action of Aut (F_n) on G-defining subgroups of F_n is equivalent to its action on Aut (G)-orbits of V(G, n). Let $\overline{V}(G, n)$ be the set of Aut (G)-orbits of V(G, n). Write $\boldsymbol{a} \sim \boldsymbol{b}$ if \boldsymbol{a} and \boldsymbol{b} are in the same Aut (F_n)-orbit of $\overline{V}(G, n)$. If $\sigma(x_i) = W_i$, $1 \leq i \leq n$ for words W_i in x_j , $1 \leq j \leq n$, we have

$$\alpha \boldsymbol{a} \sigma = (\alpha(W_1(\boldsymbol{a})), \ldots, \alpha(W_n(\boldsymbol{a}))).$$

The elementary automorphisms of F_n are

$$P(i, k): x_i \to x_k, x_k \to x_i$$

$$\sigma(i): x_i \to x_i^{-1}$$

$$L(i, k): x_i \to x_k x_i$$

$$R(i, k): x_i \to x_i x_k$$

where $1 \leq i, k, \leq n, i \neq k$, and unmentioned generators are left fixed [11, Sec. 3.5]. The effect of these automorphisms on $a \in V(G, n)$ is to interchange any two entries, invert any entry, or multiply one entry by a different one.

The following lemma is used in the proof of Theorem 2 and is the only place we use the simplicity of G in the proof of that theorem.

LEMMA 1. Let G be a finite nonabelian simple group. Suppose $\mathbf{a} = (a_1, \ldots, a_n) \in V(G, n)$ and $G = \langle a_i | i \neq j \rangle$ for some $j, 1 \leq j \leq n$. For any $c \in G$, there is a word

$$W(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n)$$

such that for

$$\beta = W(R(j, 1), \dots, R(j, j-1), R(j, j+1), \dots, R(j, n))$$

we have

$$a\beta = (a_1, \ldots, a_{j-1}, a_j c, a_{j+1}, \ldots, a_n)$$

and for any $\mathbf{b} = (b_1, \ldots, b_n) \in V(G, n)$ either $\mathbf{b}\beta = \mathbf{b}$ or there exists $\alpha \in Aut(G)$ such that $b_4 = \alpha(a_4), 1 \leq i \leq n, i \neq j$.

Proof. For any vector \boldsymbol{v} of length n, let \boldsymbol{v}' be the vector of length n-1 obtained by omitting the *j*th entry of \boldsymbol{v} . Let $\boldsymbol{x} = (x_1, \ldots, x_n) \in V(F_n, n)$; the entries of \boldsymbol{x}' generate a free group $F \subseteq F_n$.

Let N be the kernel of the homomorphism $\rho: F \to G$, $\rho(x_i) = a_i, 1 \leq i \leq n$, $i \neq j$; and let M be the intersection of the kernels of all homomorphisms $\mu: F \to G$ with kernel distinct from N. Because G is simple, F = NM and we can find $W = W(\mathbf{x}') \in M$ such that $W(\mathbf{a}') = \rho(W) = c$. If we define μ by $\mu(x_i) = b_i$, then $W(\mathbf{b}') = \mu(W(\mathbf{x}')) = 1$ unless μ and ρ have the same kernel in which case $\mu = \alpha \rho$ and $b_i = \alpha(a_i), 1 \leq i \leq n, i \neq j$, for some $\alpha \in \text{Aut } (G)$. Clearly β has the desired effect.

3. Proof of Theorem 3. Let S be a finite set of generators of G and let $\{a_1, \ldots, a_r\} \subseteq S$ be of minimum order such that $\langle a_1, \ldots, a_r \rangle = G$. If $H_i = \langle a_1, \ldots, a_i \rangle$, then H_1 has order at least 2 and the index $|H_{i+1}: H_i| \ge 2$. Thus G has order $g \ge 2^r$ whence $r \le k$ where k is the greatest integer less than or equal to $\log_2(g)$.

Now pick $a_1 \ldots a_k \in G$ so that $\langle a_1, \ldots, a_k \rangle = G$. For $n \ge 2k$ define

 $\boldsymbol{w} = (a_1, \ldots, a_k, 1, \ldots, 1) \in V(G, n).$

Consider any $\mathbf{v} \in V(G, n)$; it suffices to reduce \mathbf{v} to \mathbf{w} by elementary automorphisms of F_n . By the preceding paragraph k of the entries of \mathbf{v} generate G. Permute the entries of \mathbf{v} so that the last k entries generate G. Multiplying the first k entries by the last k, we can change \mathbf{v} so that its first k entries are a_1, \ldots, a_k . Now multiplying the last n - k entries by the first k, we can reduce \mathbf{v} to \mathbf{w} .

4. Proof of Theorem 2 and part of Theorem 1. It suffices in the proof of Theorem 2 to show that Aut (F_n) acts as the alternating or symmetric group on some subset of $\tilde{V}(G, n)$. We will show first that Aut (F_n) acts doubly transitively on one of its orbits and then estimate the degree and minimal degree of the action. At this point a theorem of Bochert [1, p. 144] gives the desired result.

For the first part of the proof, we assume only that $n \ge 3$ and G is generated by n - 1 elements in order to apply our argument to the proof of Theorem 1. Let $\{a_1, \ldots, a_{n-1}\}$ be a fixed set of generators for G. Let V' be the orbit of Aut (G) \times Aut (F_n) containing

 $\boldsymbol{\nu} = (a_1, \ldots, a_{n-1}, 1)$

and let \overline{V}' be the set of Aut (G)-orbits of V'.

From [11, Sec. 3.5] the elementary automorphisms of F_n generate Aut (F_n) , and

 $N = \langle L(i,k), R(i,k) | 1 \leq i, k \leq n, i \neq k \rangle$

is a normal subgroup of Aut (F_n) . We claim Aut $(G) \times N$ acts transitively on V'.

Clearly $\boldsymbol{v} \sigma(n) = \boldsymbol{v}$, and further if *i*, *j*, *n* are distinct,

$$\mathbf{v} P(i, j) = \mathbf{v} R(n, i) R(i, n)^{-1} R(i, j) R(j, i)^{-1} R(j, n) R(n, j)^{-1},$$

while for $i \neq n$

$$\boldsymbol{\nu} P(i,n) = \boldsymbol{\nu} R(n,i)R(i,n)^{-1}.$$

As the transpositions $\{(i, n)\}$ generate the symmetric group on $\{1, 2, \ldots, n\}$, it follows that Aut $(F_n) = N C_{Aut(F_n)}(v)$. Thus our claim is valid.

We will show that N acts doubly transitively on \bar{V}' . Let

 $\boldsymbol{w} = (b_1, \ldots, b_n)$

be an element of V' not in the Aut (G)-orbit of v. It suffices to show that for a fixed $e \in G$, $e \neq 1$, w can be reduced to

$$\mathbf{y} = (a_1, \ldots, a_{n-1}, e)$$

by applying elements of Aut (G) or elements of $C_N(\mathbf{v})$. Clearly $y \in V'$. We have $\mathbf{y} = \alpha \mathbf{w} \delta$, $\alpha \in \text{Aut } (G)$, $\delta \in N$. We may assume $\alpha = 1$. Express δ as a word in the R(i, k)'s and L(i, k)'s. The problem is that some of the R(i, k)'s and L(i, k)'s do not fix \mathbf{v} . Consider the R(i, k)'s; the L(i, k)'s are handled similarly. For $1 \leq i < n$, R(i, n) fixes \mathbf{v} , and for $1 \leq i$, k, < n, $i \neq k$,

$$R(i, k) = R(n, k)^{-1}R(i, n)^{-1}R(n, k)R(i, n).$$

Thus we need only show that for any \boldsymbol{w} chosen as above and $i, 1 \leq i < n$, we can find an element $\beta \in N$ such that $\boldsymbol{w} \beta = \boldsymbol{w} R(n, i)$ and β fixes \boldsymbol{v} . We can do this by Lemma 1 unless $b_i = \alpha(a_i), 1 \leq i \leq n - 1$, for some $\alpha \in \text{Aut } (G)$. Thus we are reduced to dealing with the case

(1) $\mathbf{w} = (a_1, \ldots, a_{n-1}, b)$ $1 \neq b \neq e$.

At this point we assume the hypothesis of Theorem 2. In particular $n \ge 4$ and we may suppose $a_{n-1} = 1 = b_{n-1}$. We will reduce w to y. First of all $R(n-1, n)R(n, n-1)^{-1}$ fixes v and moves w to

$$\boldsymbol{u} = \boldsymbol{w} P(n-1, n) = (a_1, \ldots, a_{n-2}, b, 1)$$

544

By Lemma 1 we can find $\beta \in C_N(\mathbf{v})$ such that

 $\boldsymbol{u} \boldsymbol{\beta} = (a_1, \ldots, a_{n-2}, b, e)$

and likewise we can find $\beta' \in C_N(\mathbf{v})$ for which $\mathbf{u}\beta\beta' = \mathbf{y}$.

Now we estimate the degree r and minimal degree s of the action of Aut (F_n) on \overline{V}' . The vectors $(a_1, \ldots, a_{n-2}, e, f)e, f \in G$ lie in g^2 distinct Aut (G)-orbits of V' where g is the order of G. Thus $r \geq g^2$.

By Lemma 1 some $\beta \in N$ fixes all elements of V(G, n) except those in the Aut (G)-orbits of $(a_1, \ldots, a_{n-1}, f), f \in G$, whence $s \leq g$. By the theorem of Bochert referred to above if Aut (F) does not act as the alternating or symmetric group,

 $s \ge r/3 - 2\sqrt{r/3}.$

As the righthand side is an increasing function of r for $r \ge 1$, we have

$$g \geq g^2/3 - 2g/3$$

whence $g \leq 5$ which is impossible. This completes the proof of Theorem 2.

5. The proof of Theorem 1 and Corollary 1. First we show that the theorem implies the corollary. It suffices to show that if $\alpha \in Aut(F_n)$, $n \geq 3$, and α normalizes every *PSL* (2,p)-defining subgroup of F_n for all primes p > 3, then α is inner. Let x be a primitive element of F_n , and let R be the normal closure of x in F_n , F_n/R is free on n - 1 generators. In [13] it is shown that for $n \geq 2$ F_n is residually *PSL* (2,p), p a prime > 3. Applying this result to F_n/R , we see that α must normalize R. By [11, Theorem 4.11] $\alpha(x)$ is conjugate in F_n to x or x^{-1} . Considering the action of α on the commutator quotient of F_n , we see that either $\alpha(x)$ is conjugate to x for every primitive element x or $\alpha(x)$ is conjugate to x^{-1} for every primitive x. In the first case α is inner by [9, Lemma 1]. In the second case the obvious extension of [9, Lemma 1] and its proof suffice to show α is inner.

The proof of Theorem 1 rests on explicit knowledge of the lattice of subgroups of *PSL* (2,p) [4, Ch XII; 10, § 3]. As *PSL* (2,p) is generated by two elements, Theorem 2 applies to the action of Out (F_n) on *PSL* (2,p)-defining subgroups of F_n when $n \ge 4$. We will show that the conclusion of Theorem 2 holds when n = 3.

Let a and b be the elements of G of order p represented by the matrices

$$(2) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

respectively. As $N_G(\langle a \rangle)$ is the unique maximal subgroup of G containing $\langle a \rangle$, $\langle a, b \rangle = G$. Let

$$v = (a, b, 1), \quad y = (a, b, ab),$$

and define V' and \bar{V}' as in the proof of Theorem 2. By the reduction to (1) in

the proof of Theorem 2 we need only show for

 $\mathbf{w} = (a, b, c) \quad 1 \neq c \neq ab$

how to reduce \boldsymbol{w} to \boldsymbol{y} be elements of $C_N(\boldsymbol{v})$. If $c \notin N_G(\langle a \rangle) \cap N_G(\langle b \rangle)$, either $\langle a, c \rangle = G$ or $\langle b, c \rangle = G$. If, however $c \in N_G(\langle a \rangle) \cap N_G(\langle b \rangle)$, then c has matrix representation

$$\begin{bmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{bmatrix}$$

whence $bcb^{-1} \notin N_G(\langle a \rangle)$; since $\boldsymbol{w} \sim (a, b, bcb^{-1})$, we may assume $\langle a, c \rangle = G$. By Lemma 1,

$$\boldsymbol{u} = \boldsymbol{w}\boldsymbol{\beta} = (a, ab, c)$$

for some $\beta \in C_N(\nu)$. Since 1 is not an eigenvalue of the product of the matrices in (2), no automorphism of *G* moves *b* to *ab*. By Lemma 1,

$$\boldsymbol{t} = \boldsymbol{u} \, \beta' = \, (a, \, ab, \, ab)$$

for some $\beta' \in C_N(v)$, and another application of Lemma 1 moves t to y.

We have shown that Aut (F_3) acts doubly transitively on one of its $\bar{V}(G,3)$ orbits. As in the proof of Theorem 2, the minimal degree of this action is at most g. Once we show that Aut $(G) \times \text{Aut}(F_3)$ acts transitively on V(G, 3), the degree of the action will be the number of G-defining subgroups of F_3 . We can then calculate this number by the method of [**9**] and show as in the proof of Theorem 2 that Aut (F_3) acts as the alternating or symmetric group on \bar{V}' .

We will show the required transitivity. Let

 $\boldsymbol{\nu} = (a, b, 1, \ldots, 1)$

where a and b are chosen as above, and let

 $\boldsymbol{w} = (c_1, \ldots, c_n)$

be an arbitrary group vector in V(G, n). Suppose first that a proper subset of $S = \{c_1, \ldots, c_n\}$ generates G. By permuting the entries of \boldsymbol{w} we may assume $G = \langle c_2, \ldots, c_n \rangle$. Multiplying the first entry by the others we may assume $c_1 = a$. Now $\langle c_1, c_j \rangle = G$ for some $j, 2 \leq j \leq n$. We may assume $\langle c_1, c_n \rangle = G$. Now we can achieve $c_2 = b$ and then $c_3 = \ldots = c_n = 1$. Thus in this case we can move \boldsymbol{w} to \boldsymbol{v} .

Assume $n \ge 4$ and let $H = \langle c_1, c_2, c_3 \rangle$. By the preceding paragraph we may assume that H is a proper subgroup of G. With the exception of A_5 , the proper subgroups of G are all solvable and generated by 2 elements. By [6], we see that with the exception of $H \cong A_5$, that $\boldsymbol{u} = (c_1, c_2, c_3)$ can be moved by an element of Aut (F_3) to an H-vector with one entry equal to the identity. It follows that \boldsymbol{w} can be moved to \boldsymbol{v} as before. Once we have dealt with the case n = 3, then as $A_5 \cong PSL$ (2,5), this argument will apply to $H \cong A_5$ as well.

546

Now we deal with the case n = 3. Assume there exists an Aut $(G) \times$ Aut (F_3) -orbit, W, of V(G, 3) with $v \notin W$. We will derive a contradiction. Let

$$\boldsymbol{w} = (c, d, e)$$

be an arbitrary element of W, and let H be the subgroup of G generated by two entries of w. From the discussion above we know

(i) $H \neq G$.

We claim that *H* is noncyclic. Suppose $H = \langle c, d \rangle$ and *H* is cyclic; then $H = \langle cd^i \rangle$ for some integer *i* and

$$\boldsymbol{w} \sim \boldsymbol{u} = (cd^{\boldsymbol{i}}, d, e) \in \boldsymbol{w}$$

which is impossible by (i) as $G = \langle cd^i, e \rangle$. Thus we have established (ii) H is noncyclic.

Now assume that H normalizes a Sylow *p*-subgroup, P, of G. By (ii) and the structure of $N_G(P)$, $P \subseteq H$ and H/P is cyclic. We assume again that $H = \langle c, d \rangle$; H is a Frobenius group. For some $i, f = cd^i$ generates a complement to P in H and for some $j, g = df^j$ generates P. We have

 $\boldsymbol{w} \sim (f, d, e) \sim \boldsymbol{u} = (f, g, e) \in W.$

 $N_G(P)$ is the unique maximal subgroup of G containing P, and it follows from $G = \langle f, g, e \rangle$ that $e \notin N_G(P)$ and $G = \langle g, e \rangle$ contrary to (i). Hence

(iii) H does not normalize a Sylow p-subgroup of G.

By (i)-(iii), $\langle c, d \rangle$ must be dihedral, elementary abelian of order 4 or isomorphic to A_4 , S_4 , or A_5 . If $d^2 \neq 1$, we wish to move \mathbf{w} to (x, y, e) with $y^2 = 1$. In the dihedral case x = c, y = cd suffices, while if $H \cong A_4$, either $c^2 = 1$ and we can interchange c and d or |c| = |d| = 3 and cd or c^2d is an involution. If $H \cong S_4$ and c and d are both not involutions, the orders of c and d are 3 or 4. If |c| = |d| = 4, then |cd| = 2 or 3, so we may assume |c| = 3, |d| = 4. Either |cd| = 2 or $|c^2d| = 2$. Finally in the case $H \cong A_5$, we appeal to [11, § 10] which says that for some automorphism $x_i \to w_i(x_1, x_2)$ of F_2 , $w_2(c, d)$ will be an involution. As we may extend this automorphism to F_3 by $x_3 \to x_3$, we can move \mathbf{w} to (x, y, e) as desired. Applying the same argument to x and e, we have

(iv) $w \sim u = (x, y, z)$ with |x| = |y| = 2.

We let $\boldsymbol{u} = (x, y, z)$ stand for an arbitrary element of W whose first two entries have order 2. Suppose $[x, y] \neq 1$ so that $\langle x, y \rangle$ is dihedral of order at least 6 and f = xy has order at least 3. As

$$\boldsymbol{u} \sim (x, f, z) \in W$$

(i)-(iii) imply that $K = \langle f, z \rangle$ is dihedral or isomorphic to A_4 , S_4 or A_5 . With the exception of $K \cong A_4$, f is inverted by some $g \in K$. Since g is equal to a word in f and z,

$$(x, f, z) \sim (xg, f, z)$$

ROBERT GILMAN

But x also inverts f so that $\langle xg, f \rangle$ is abelian. By (ii) $\langle xg, f \rangle$ must be elementary abelian of order 4 contrary to $|f| \ge 3$. We conclude that

(v) $\langle xy, z \rangle \cong A_4$ or [x, y] = 1.

Since G is simple, the $\langle x, z \rangle$ -conjugates of y generate G, and likewise x does not commute with some $\langle x, z \rangle$ -conjugate, y_1 , of y. Thus

 $\boldsymbol{u} \sim \boldsymbol{u}_1 = (x, y_1, z)$

with $|x| = |y_1| = 2$ and $[x, y_1] \neq 1$. Consequently $|xy_1| \ge 3$ and by (v) $\langle xy_1, z \rangle \cong A_4$. We must have $|xy_1| = 3$ and $|(xy_1)^j z| = 2$ for some *j*. Hence

$$\boldsymbol{u}_1 \sim \boldsymbol{u}_2 = (x, y_1, z_1)$$

with $|z_1| = 2$. By (v) G is a quotient of

$$G_1 = \langle x, y_1, z_1 | x^2, y_1^2, z_1^2, (xy_1)^3, (xz_1)^m, (y_1z_1)^n \rangle$$

with *m* and *n* each equal to 2 or 3. If m = 2 or n = 2, then G_1 has order 12 or 24 by [3, § 4.3]. But $|G| \ge 60$, so we must have $|xz_1| = |y_1z_1| = 3$ (in which case G_1 has infinite order). Now

 $\boldsymbol{u}_2 \sim (x, y_1, y_1 z_1) \in W$

so (v) implies $\langle xy_1, y_1z_1 \rangle \cong A_4$. Further $|y_1z_1| = 3$ and $|xy_1y_1z_1| = |xz_1| = 3$. But then $|xy_1(y_1z_1)^{-1}| = 2$; and as $|y_1| = |z_1| = 2$, $(y_1z_1)^{-1} = z_1y_1$. We have $|xy_1z_1y_1| = 2$. In other words x commutes with

 $z_2 = y_1 z_1 y_1 = y_1 z_1 y_1^{-1}.$

But

 $\boldsymbol{u}_2 \sim (x, y_1, z_2) \in W$

with $|x| = |y_1| = |z_2| = |xz_2| = 2$, $|xy_1| = 3$, $|y_1z_2| = |z_1y_1| = 3$ gives a contradiction as above.

Our results so far guarantee that Aut (F_n) acts as the alternating or symmetric group on $\overline{V}(G, n)$. By [11, Sec. 3.5] $\langle \sigma(1) \rangle$ covers the commutator quotient of Aut (F_n) . By Dirichlet's theorem on primes, Theorem 3 will be proved once we show that the sign (as a permutation) of $\sigma = \sigma(1)$ is odd if $p \equiv 1 \pmod{80}$ and even if $p \equiv 17 \pmod{80}$. We will count the number of points of $\overline{V}(G, n)$ moved by σ and divide by 2. The Aut (G)-orbit of $\boldsymbol{w} = (c_1, \ldots, c_n)$ is fixed by σ exactly when there is an automorphism α of G with $\alpha(c_1) = c_1^{-1}, \alpha(c_i) = c_i \ 2 \leq i \leq n$. Since $\langle c_1, \ldots, c_n \rangle = G$, \boldsymbol{w} determines α .

First we count the number $\psi(G)$ of generating *G*-vectors \boldsymbol{w} which are not fixed by σ ; i.e., the number of \boldsymbol{w} 's with $|c_1| > 2$. The number of *H*-vectors of this type for a group H is $f(H)|H|^{n-1}$ where f(H) is the number of elements of *H* of order at least 3. To calculate $\psi(G)$ we use the Möbius inversion of P. Hall [9] and obtain a sum over the subgroups of *G*.

$$\psi(G) = \Sigma \mu(H) f(H) |H|^{n-1}$$

548

where μ is given in [10, § 3.9]. Combining terms corresponding to conjugate subgroups, we obtain

(3)
$$\psi(G) = \Sigma' a_H f(H) |H|^{n-1}$$

where the sum is carried out over conjugacy classes of subgroups as in [10, Theorem 3.9]. As it will suffice to determine $\psi(G)$ modulo 8g, we may ignore terms in (3) which are divisible by 8g. If we note that a_H is always divisible by |G:H| (as it must be by [7, Corollary 2]), and $n \ge 3$, we may ignore any H for which 8 divides f(H)|H|. By inverting elements of H we see that f(H) is even whence we may ignore terms corresponding to H's of even order.

We obtain

(4) $\begin{aligned} \psi(G) &\equiv 4g \pmod{8g} & \text{if } p \equiv 1 \pmod{80} \\ \psi(G) &\equiv 0 \pmod{8g} & \text{if } p \equiv 17 \pmod{80}. \end{aligned}$

Among the $\psi(G)$ vectors not fixed by σ will be some which are in an Aut (G)orbit fixed by σ . Let $\theta(G)$ be the number of these vectors; $\theta(G)$ is the number of generating G-vectors

$$\boldsymbol{w} = (c_1, c_2, \ldots, c_n)$$

for which $|c_1| > 2$ and there is an automorphism $\alpha \in \text{Aut } (G)$ inverting c_1 and centralizing c_i , $2 \leq i \leq n$. The Aut (G)-orbit of \boldsymbol{w} has size 2g = |Aug (G)|, and all its vectors are moved by σ . Thus σ is a product of $(\psi(G) - \theta(G))/4g$ disjoint transpositions. We will show $\theta(G) \equiv 0 \pmod{8g}$ when $n \geq 4$. For n = 3, similar but harder computation gives the same result. We identify Aut (G) with PGL (2,p) and think of G as a subgroup of Aut(G).

As we have noted, \boldsymbol{w} determines α uniquely and $\langle \alpha, c_1 \rangle = D$ is a dihedral subgroup of Aut (G). For each choice of α and c_1 we obtain a group vector \boldsymbol{w} by choosing $c_i \in C_G(\alpha)$, $2 \leq i \leq n$. If \boldsymbol{w} is not a generating G-vector, then $\langle c_i | 1 \leq i \leq n \rangle$ lies in a maximal subgroup of G and $\langle \alpha, c_i | 1 \leq i \leq n \rangle$ lies in a maximal subgroup of Aut (G). To count the number of generating group vectors corresponding to the pair (α, c_1) we count the number of sequences c_2, \ldots, c_n in $C_G(\alpha)$ such that $\langle c_i | 2 \leq i \leq n \rangle$ is not contained in $C_{H \cap G}(\alpha)$ for any maximal subgroup H of Aut (G) containing D. We divide the enumeration into cases according to the value of $m = |c_1|$. Define q = (p - 1)/2 and r = (p + 1)/2 so that g = 2pqr.

Suppose $p \neq m > 5$. *D* lies in a unique maximal subgroup *H* of Aut (*G*) and *H* is dihedral of order 4q if *m* divides *q* or dihedral of order 4r if *m* divides *r*. (The maximal subgroups of Aut (*G*) are the normalizers of the maximal subgroups of *G*, and their structure is determined by knowledge of the subgroups of *PSL* $(2,p^2)$ and the fact that *PSL* $(2,p^2)$ has a subgroup isomorphic to *PGL* (2,p).) Suppose |H| = 4q. *H* contains $\varphi(m)$ elements of order *m*, where φ is Euler's function. There are *pr* choices for *H* (of order 4q) and 2q involutions in H - Z(H). These divide into 2 *H*-conjugacy classes each of order *q*. From the involutions in a single *H*-conjugacy class we obtain $q\varphi(m)$ pairs (α, c_1) . For each pair we may choose c_2, \ldots, c_n in $|C_G(\alpha)|^{n-1} - |C_{H \cap G}(\alpha)|^{n-1}$ ways. As

ROBERT GILMAN

 $|H \cap G|$ is even and $n \ge 4$, the number of choices of c_2, \ldots, c_n is divisible by 4, and the number of generating group vectors we obtain is congruent to 0 modulo 16q. From the rp choices for H, then the total number of generating group vectors we obtain is congruent to zero modulo 16rpq = 8g. The same conclusion holds if m > 5 and m divides r.

Suppose $p \neq m = 5$. *D* lies in a unique dihedral group *H* of order 4q or 4r and if $D \subseteq G$, *D* also lies in two icosahedral groups K_1 and K_2 . The argument of the previous paragraph gives 0 (mod 8g) **w**'s once we show that for a fixed α and c_1 , the number of choices of c_2, \ldots, c_n is divisible by 8. If α is outer, the desired conclusion follows exactly as before. If α is inner, $\langle c_2, \ldots, c_n \rangle$ must not lie in $C_{H \cap G}(\alpha)$ or $C_{K_i}(\alpha)$, i = 1, 2. We can calculate the number of choices for c_2, \ldots, c_n by Möbius inversion on the lattice of subgroups consisting of $C_G(\alpha)$ and all intersections of $C_{H \cap G}(\alpha)$ and $C_{K_i}(\alpha)$, i = 1, 2. The answer will be a linear combination of the orders of the groups in the lattice raised to the power n - 1. As $\langle \alpha \rangle$ is the minimum element of this lattice and $n \ge 4$, our answer will be divisible by 8.

Next we suppose m = 4. D lies in a unique maximal dihedral subgroup H. If M is any maximal subgroup of Aut (G) containing $D, Z(D) \subseteq C_{M \cap G}(\alpha)$ implies $|C_{M \cap G}(\alpha)|$ is even and the argument of the previous paragraph with Z(D) in place of $\langle \alpha \rangle$ shows that the number of choices of c_2, \ldots, c_n is divisible by 4. We again obtain 0 (mod 4g) **w**'s.

Consider m = 3. D lies in a unique H dihedral of order 4q or 4r. If $D \nsubseteq G$ and $p \equiv \pm 3 \pmod{8}$, D lies in two octahedral groups. If $D \subseteq G$, D lies in two octahedral subgroups of G if $p \equiv \pm 1 \pmod{8}$. When $D \subseteq G$, (that is when α lies in the H-conjugacy class of involutions in $H \cap G - Z(H)$) we obtain as in the case $p \neq m = 5$, $0 \pmod{8g}$ generating group vectors. Suppose $D \nsubseteq G$ and |H| = 4q. From the rp choices for H and q choices for $\alpha \in$ H - G, we have $(rp)(q)\varphi(3) = g$ pairs (α, c_1) . If $p \equiv \pm 1 \pmod{8}$, H is the only maximal subgroup of Aut (G) containing D and we obtain 0 (mod 8g) generating vectors as before. However if $p \equiv \pm 3 \pmod{8}$, D lies in two octahedral subgroups J_1, J_2 of Aut (G). Let $E_i = C_{J_i \cap G}(\alpha), i = 1, 2$. $|E_i| = 2$ and $J_i = \langle D, E_i \rangle$. We have $E_1 \neq E_2$ else $J_1 = J_2$ and $E_i \nsubseteq C_H(\alpha)$ else $J_i \subseteq H$. By Möbius inversion the number of choices for c_2, \ldots, c_n is

$$|C_G(\alpha)|^{n-1} - |C_{H \cap M}(\alpha)|^{n-1} - 2.2^{n-1} + 2$$

which is congruent to 2 (mod 8). We obtain in this case $2g \pmod{8g}$ generating group vectors, and we obtain the same result if |H| = 4r.

In summary if $\theta_p(G)$ is the number of **w**'s with m = p and $\theta_p'(G)$ is the number with $m \neq p$, we have

(5)
$$\begin{array}{l} \theta_p'(G) \equiv 0 \pmod{8g} & \text{if } p \equiv \pm 1 \pmod{8} \text{ and } n \geq 4, \\ \theta_{p'}(G) \equiv 2g \pmod{8g} & \text{if } p \equiv \pm 3 \pmod{8} \text{ and } n \geq 4. \end{array}$$

It remains to calculate $\theta_p(G)$. We have m = p, and D lies in a unique maximal subgroup H of Aut (G). H is the normalizer of a Sylow p-subgroup

 $\langle c_1 \rangle$ of G and is a Frobenius group with $H/\langle c_1 \rangle$ cyclic of order 2q. H has one class of involutions, which has size p. From the 2r choices for H we have $2rp\varphi(p)$ choices of the pair (α, c_1) we may choose c_2, \ldots, c_n in $|C_G(\alpha)|^{n-1} - |C_{H \cap G}(\alpha)|^{n-1}$ ways we have

$$\theta_p(G) = 2rp(p-1)[(2q)^{n-1} - q^{n-1}]$$

whence

(6) $\theta_p(G) \equiv 0 \pmod{4g}$ if $p \equiv 1 \pmod{4}$.

By (4), (5), (6) the following table is correct for $p \equiv 1$ or 17 (mod 80) and $n \ge 4$.

Sign of σ as a permutation on $\overline{V}(PSL(2, p), n), n \ge 3$ Congruence of $p \pmod{8}$ 1 3 5 7

Congruence of $p \pmod{5}$	± 1	-1	1	$(-1)^{n-1}$	1
	± 2	1	-1	$(-1)^{n}$	-1

For p = 5 the sign of σ is $(-1)^n$.

References

- 1. H. Bochert, Ueber die Classe der transitiven Substitutionengruppen, Math. Ann. 49 (1897), 131-144.
- 2. F. Cappel, Diplomarbeit (Aachen, 1974).
- 3. H. S. M. Coxeter and W. O. J. Moser, *Generators and relations for discrete groups* (Springer Verlag, New York, 1965).
- 4. L. E. Dickson, *Linear groups with an exposition of the Galois field theory* (Dover Publications Inc., New York, 1958).
- 5. M. J. Dunwoody, On T-systems of groups, J. Australian Math. Soc. 3 (1963), 172-179.
- Mielsen transformations, in Computational Problems in Abstract Algebra, J. Leech ed. (Pergamon Press, Oxford and New York, 1969).
- R. Gilman, A combinatorial identity with applications to representation theory, Illinois J. Math. 17 (1972), 347-351.
- 8. D. Gorenstein ed., Reviews on finite groups (Amer. Math. Soc., Providence, R.I., 1974).
- 9. E. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2) 9 (1974), 160-164.
- 10. P. Hall, The Eulerian functions of a group, Quarterly J. Math. 7 (1936), 134-151.
- W. Magnus, A. Karrass, and D. Solitar, *Combinatorial group theory* (Interscience Publishers, New York, 1966).
- B. H. Neumann and H. Neumann, Zwei Klassen Charakterischer Untergruppen und ihre Faktorgruppen, Math. Nachr. 4 (1950), 106-125.
- 13. A. Peluso, A residual property of free groups, Comm. Pure Appl. Math. 19 (1966), 435-437.
- D. Stork, Structure and applications of Schreier coset graphs, Comm. Pure Appl. Math. 24 (1971), 797–805.
- **15.** The action of the automorphism group of F_2 upon the A_6 and PSL(2, 7)—defining subgroups of F_2 , Trans. Amer. Math. Soc. 172 (1972), 111–117.

Stevens Institute of Technology, Castle Point Station, Hoboken, New Jersey