Effects of 1α-hydroxylated metabolites of cholecalciferol on intestinal radiocalcium absorption in goats

BY KNUT HOVE
Department of Animal Nutrition, Agricultural University of Norway, 1432 Ås-NLH, Norway

(Received 9 February 1983—Accepted 19 July 1983)

1. Intestinal absorption of 45Ca was measured by a double-isotope technique in goats treated with 1, 5 or 25 µg of 1,25-dihydroxycholecalciferol (1,25(OH)2D3). The effects of giving 1,25(OH)2D3 by intravenous (iv) infusion for 30–36 h were compared at each dose level with the effects obtained by oral administration of 1,25(OH)2D3, either in ethanol or protected against rumen degradation in fatty acid pellets.

2. Dose-dependent increments in absorption followed the treatments, with a doubling of absorption at the 1 µg dose and three- to fivefold increases with the 5 and 25 µg doses. 45Ca absorption was equally stimulated 2 and 6 d after treatment but had returned to pretreatment levels 12–14 d after treatment.

3. Intravenous and protected oral administration of 1,25(OH)2D3 stimulated 45Ca absorption to the same extent, in spite of two- to fivefold higher plasma concentrations of 1,25(OH)2D3 after iv treatment. Somewhat lower increments in 45Ca absorption were seen using ethanol as the vehicle for oral administration.

4. The naturally occurring metabolites 1,24(R),25-trihydroxycholecalciferol and 1,25(S),26-trihydroxycholecalciferol had only one-tenth to one-fifteenth the potency of 1,25(OH)2D3 in stimulating 45Ca absorption, while synthetic 1α-hydroxycholecalciferol appeared to be twice as effective as 1,25(OH)2D3 when tested at a high (10 µg) dose.

Adaptation of intestinal calcium absorption has long since been recognized as an integral part of Ca homeostasis (Nicolaysen et al. 1953). Such adaptations are vitamin D dependent and mediated by changes in the renal production of 1,25-dihydroxycholecalciferol (1,25(OH)2D3). 1,25(OH)2D3 is thought to be the most active metabolite of cholecalciferol and acts as a regulating endocrine signal for intestinal Ca transport (Holick et al. 1971; Norman et al. 1971; Omdahl et al. 1971).

In most mammals studied, changes in Ca absorption can be detected shortly after exogenous administration of 1,25(OH)2D3. Information from ruminants on the effects of this steroid hormone on Ca absorption seems to be lacking. Abdel-Hafeez et al. (1982) reported increased absorption of Ca in a sheep 24–48 h after perfusion of an isolated segment of intestine with 1α-hydroxycholecalciferol (1(OH)D3). Hove (1984) found the double-isotope technique for measurement of intestinal radiocalcium absorption useful for studies of rapid changes in Ca absorption in goats. In the present study, this technique was used to compare the effects of various doses and methods of administration of 1,25(OH)2D3. The activities of 1(OH)D3 and two naturally occurring trihydroxylated metabolites of cholecalciferol in promoting Ca absorption were also measured.

Cholecalciferol appears to be sensitive to rumen degradation when incubated with rumen liquid in an unprotected form (Sommerfeldt et al. 1980). The extent to which this also applies to metabolites of cholecalciferol is unknown. Consequently, the benefits obtained by protecting 1,25(OH)2D3 against rumen degradation during experiments on oral milk fever prophylaxis (Hove & Kristiansen, 1982) could be questioned. A comparison of the effects of oral administration of 1,25(OH)2D3 incorporated in fatty acid pellets (protected) or given in ethanol (unprotected) was therefore included in the present study.
Six female goats aged 2–5 years were used for the studies, which lasted for approximately 1 year. Abomasal cannulas were inserted by standard surgical procedures 1 month before measurements were started. The goats were kept in metabolism cages except for a grazing period of about 3 months. A basal low-Ca diet consisting of (g/d): barley 300, hay 200, extracted soya-bean meal 25, Ca 0·7 and phosphorus 1·6 was given and supplied sufficient protein and energy for maintenance. Sodium chloride and a micromineral–vitamin mixture, providing approximately 1 μg cholecalciferol, were given daily. In preparation for measurements of radiocalcium absorption, animals were given extra Ca (4 g/d) as calcium acetate in the drinking-water or as an abomasal infusion. The supplementation usually lasted for 10 d before Ca absorption studies were carried out in order to obtain a low initial rate of Ca absorption before administration of the metabolites of cholecalciferol. Abomasal infusions were given for the last 48 h of this 10 d period and discontinued 4 h before the oral tracer was given. Ca supplements were not given until 2 weeks after treatment which resulted in highly active absorption of Ca, in order to reduce the risk of serious hypercalcaemia. Details of the procedures for the measurements of radiocalcium absorption and calculation of the results were given earlier (Hove, 1984).

Treatments with metabolites of cholecalciferol

Synthetic 1,25(OH)₂D₃ (lot no. 7975-119), 1,24(R),25-trihydroxycholecalciferol (1,24-(R),25(OH)₂D₃, lot no. 7978-102) and 1,25(S),26-trihydroxycholecalciferol (1,25-(S),26(OH)₂D₃, lot no. 8625-128) were obtained from Hoffman la Roche Inc, Nutley New Jersey, and 1α-hydroxycholecalciferol was obtained from Leo Pharmaceuticals, Copenhagen, Denmark. Three methods of administration of 1,25(OH)₂D₃ were compared. Intravenous (iv) administration was given as a 30–36 h continuous infusion (1·2 ml/h) of a solution of the metabolite in ethanol (500 ml/l). The metabolite for oral administration was either given unprotected against rumen degradation (dissolved in 10 ml ethanol) or protected (incorporated in fatty acid pellets designed for rumen bypass; Rumen Kjemi, A/S, Oslo). The fatty acid pellets contained 10 μg 1,25(OH)₂D₃/g and the average pellet size was 40 mg. The matrix consisted of (g/kg): 540 C₁₆–C₂₀ fatty acids, 370 glucose, 60 calcium carbonate, 30 adjuvants (emulgator, antioxidant). The actual extent of protection against rumen degradation obtained for 1,25(OH)₂D₃ was not tested, but fatty acid pellets give a 70–80% bypass of amino acids and probably an even higher extent of bypass of fat-soluble vitamins. The effects of 1,25(OH)₂D₃ were studied at dose levels of 1, 5 and 25 μg. At least four experiments were performed with each dose level and each method of administration, except for the 1 μg dose where the protected metabolite was not given.

Measurements of radiocalcium absorption were done immediately before administration of metabolite and 2, 6 and, in several experiments, 12–14 d later. Additional studies of the effects of daily repeated doses of 5 μg protected 1,25(OH)₂D₃ were carried out in three animals. Measurements were undertaken after a daily dose of 5 μg for 2 d (10 μg total) and after a daily dose of 5 μg for 5 d (25 μg total). The effects of 10 μg 1(OH)D₃ were studied 2 d after iv and oral (unprotected) administration (three goats per treatment). The effects of 50 μg of each of the two trihydroxylated metabolites were studied 2 d after iv administration (two goats per treatment).

Measurements of 1,25(OH)₂D₃ in plasma

1,25(OH)₂D₃ was extracted from plasma by diethyl ether. The extracts were purified by open column silica chromatography and by high-pressure liquid chromatography (Aksnes, 1980).
on a silica column (Chrompack Partisil, 5 \(\mu \) particles; Chrompack, Middelburg, The Netherlands). The metabolite was quantified by a radioimmunoassay (Clemens et al. 1979) using standard 1,25(OH)\(_2\)D\(_3\), sheep anti-1,25(OH)\(_2\)D\(_3\) antibody (Sheep 02282) and [\(^3\)H]1,25(OH)\(_2\)D\(_3\) (about 90 Ci/mmol).

RESULTS

Treatments with 1,25(OH)\(_2\)D\(_3\)

The mean radiocalcium absorption for all goats measured just before 1,25(OH)\(_2\)D\(_3\) treatment (day 0) was 15 (SD 7)% of the administered dose. Absolute values for day 0, and for days 2, 6 and 12–14 after treatment are given in Figs. 1 and 2. All treatments resulted in increased radiocalcium absorption on day 2 and about the same level of absorption was found 4 d later irrespective of dose or type of administration (Figs. 1 and 2). The stimulation of radiocalcium absorption by 1,25(OH)\(_2\)D\(_3\) resulted in doubling of the initial values with the 1 \(\mu \)g dose and up to two- to fourfold the initial values at the highest dose given (Figs. 1 and 2).

Radiocalcium absorptions 12–14 d after treatment were close to the values obtained at day 0 for both the 1 and 5 \(\mu \)g doses (Fig. 1).

Increments in radiocalcium absorption were calculated in order to compare doses and types of administration of 1,25(OH)\(_2\)D\(_3\), since significant differences in the rate of absorption between individual goats were detected at day 0. The increments were linearly

![Graph](https://www.cambridge.org/core/core/journals/bristol-journal-of-nursing-and-therapy)

Fig. 1. Absorption of \(^{41}\)Ca (% of dose) measured in goats before and 2, 6 and 12 d after treatment with (a) 5 \(\mu \)g 1,25-dihydroxycalciferol (1,25(OH)\(_2\)D\(_3\)) and (b) 1 \(\mu \)g 1,25(OH)\(_2\)D\(_3\). Mean values, with their standard errors represented by vertical bars, for three to five animals per treatment. 1,25(OH)\(_2\)D\(_3\) given intravenously (\(\Delta \)), or orally, dissolved in ethanol (\(\bigcirc \)) or in pellets of fatty acids (\(\bullet \)).
Fig. 2. Absorption of 40Ca (% of dose) measured in goats before and 2 and 6 d after treatment with 25 μg 1,25-dihydroxycholecalciferol (1,25(OH)$_2$D$_3$). Mean values, with their standard errors represented by vertical bars, for four animals per treatment. 1,25(OH)$_2$D$_3$ given intravenously (\triangle), or orally, dissolved in ethanol (○) or in pellets of fatty acids (●).

related to the logarithm of the administered dose (Fig. 3). Linear regression equations were calculated for increments in radiocalcium absorption (y) v. \log_e 1,25(OH)$_2$D$_3$ dose (x):

- iv administration, $y = 0.10 + 0.11 x$,
- protected oral administration, $y = 0.05 + 0.1 x$,
- unprotected oral administration, $y = 0.16 + 0.05 x$.

The corresponding regression coefficients were all different from zero ($P < 0.001$, $P < 0.01$ and $P < 0.02$ respectively, t test). Significant differences between coefficients were obtained for the iv and oral unprotected treatments with 1,25(OH)$_2$D$_3$ ($P < 0.02$, t test), while the difference between protected and unprotected oral treatments approached significance ($0.1 > P > 0.05$). Differences between the three methods of administration were not significant when the 1 and 5 μg dose levels were judged separately (Fig. 3). The difference in increments between iv and unprotected oral treatments was, however, significant at the 25 μg dose level ($P < 0.01$, t test).

A daily dose of 5 μg protected 1,25(OH)$_2$D$_3$ for 5 d resulted in an increase in Ca absorption from 15.6 to 69.2% (average of three goats). This increment of 53.6% units corresponded to an increment of 42.0% units when the full dose (25 μg) was given at once (Fig. 3). An increment of 38.6% units was seen when 5 μg was given for two consecutive days. This increment corresponded to a dose of about 20 μg protected 1,25(OH)$_2$D$_3$ (Fig. 3). Changes in plasma 1,25(OH)$_2$D$_3$ concentrations after treatments with 1, 5 and 25 μg 1,25(OH)$_2$D$_3$ were clearly related to the dose given both for the iv and oral treatments (Table 1). Plasma 1,25(OH)$_2$D$_3$ concentrations were generally two to six times
Fig. 3. Increments in 47Ca absorption (mean values with their standard errors) in goats after treatments with 1, 5 or 25 μg of 1,25-dihydroxycholecalciferol ($1,25(\text{OH})_2\text{D}_3$). Administration of the cholecalciferol metabolite by intravenous infusion for 30–36 h (▲), or orally, dissolved in ethanol (○) or in pellets of fatty acids (●).

higher after iv administration than after oral administration. No clearcut differences between concentrations after treatments with oral protected and unprotected metabolites could be detected (Table 1).

Table 1. Plasma concentrations of 1,25-dihydroxyvitamin D (pg/ml) before and 2 d after the start of treatment with intravenous (iv), oral protected (op) and oral, unprotected (oup) doses of 1, 5 and 25 μg 1,25-dihydroxycholecalciferol

(Mean values with their standard errors for three to four goats per treatment)

<table>
<thead>
<tr>
<th>Dose (μg)</th>
<th>Method of administration</th>
<th>Plasma 1,25-dihydroxyvitamin D (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>25</td>
<td>iv</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>op</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>oup</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>iv</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>op</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>oup</td>
<td>64</td>
</tr>
<tr>
<td>1</td>
<td>iv</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>oup</td>
<td>44</td>
</tr>
</tbody>
</table>
Table 2. Effects of \(1(OH)D_3\), 1,24(R),25(OH)_3D_3 and 1,25(S),26(OH)_3D_3 on radiocalcium absorption in goats. The metabolites of vitamin D_3 were either given by an intravenous (iv) infusion of 30 h duration or orally dissolved in 10 ml ethanol (500 ml/l). Radiocalcium absorption (% of dose absorbed in 180 min; mean values and ranges) was measured just before and 2 d after the start of treatment.

<table>
<thead>
<tr>
<th>Vitamin D_3 metabolite</th>
<th>Dose (µg)</th>
<th>Method of administration</th>
<th>No. of animals</th>
<th>Mean</th>
<th>Range</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1(OH)D_3)</td>
<td>10</td>
<td>iv</td>
<td>3</td>
<td>29</td>
<td>(26-35)</td>
<td>75</td>
<td>(70-80)</td>
</tr>
<tr>
<td>(1(OH)D_3)</td>
<td>10</td>
<td>oral</td>
<td>3</td>
<td>16</td>
<td>(13-18)</td>
<td>52</td>
<td>(45-58)</td>
</tr>
<tr>
<td>1,24(R),25(OH)_3D_3</td>
<td>50</td>
<td>iv</td>
<td>2</td>
<td>14</td>
<td>(12-15)</td>
<td>37</td>
<td>(36-39)</td>
</tr>
<tr>
<td>1,25(S),26(OH)_3D_3</td>
<td>50</td>
<td>iv</td>
<td>2</td>
<td>20</td>
<td>(16-23)</td>
<td>43</td>
<td>(41-46)</td>
</tr>
</tbody>
</table>

\(1(OH)D_3\) = 1α-hydroxycholecalciferol; 1,24(R),25(OH)_3D_3 = 1,24(R),25-trihydroxycholecalciferol; 1,25(S),26(OH)_3D_3 = 1,25(S),26-trihydroxycholecalciferol.

DISCUSSION

Dose-dependent increases in radiocalcium absorption were detected after treatment with \(1,25(OH)_2D_3\). Giving a high-Ca diet to adult non-lactating goats with low Ca requirements prior to the measurements resulted in a low initial rate of Ca absorption. This allowed observations of increments in absorption also at the lowest dose of \(1,25(OH)_2D_3\) used in the present study (1 µg equivalent to 20–25 ng/kg body-weight). The fact that an increased rate of radiocalcium absorption was observed in the present study both 2 and 6 d after a single treatment with the 1 µg dose of \(1,25(OH)_2D_3\) showed that this low dose was well above the threshold for stimulation of Ca absorption. Most trials in humans with exogenous \(1,25(OH)_2D_3\) have utilized doses of the metabolite comparable to the 1 µg dose level in the present study. This dose is close to the estimated rate of \(1,25(OH)_2D_3\) production in normal man (140–680 ng/d; Mawer et al. 1976; Norman, 1979) and, on a body-weight basis, considered to be near physiological levels in the rat (Rizzoli et al. 1977; Bonjour et al. 1978; Lee et al. 1981). The sensitivity of intestinal Ca absorption in the goat to exogenous \(1,25(OH)_2D_3\) thus seems to be similar to the sensitivity found in both rat and man.

Increasing the dose of \(1,25(OH)_2D_3\) above the 1 µg level resulted in gradually lower increments in Ca absorption, as emphasized by the logarithmic relationship between the dose of \(1,25(OH)_2D_3\) and the increments in Ca absorption (Fig. 3). An efficiency in Ca absorption of 40–50% is commonly thought to represent the maximum which can be
achieved by dietary means in mature ruminants. Absorptions in this range were seen 2 d after administration of 5 μg 1,25(OH)₂D₃, while the 25 μg dose resulted in even higher values. Individual absorption values well above 70% were observed. Single doses of 1,25(OH)₂D₃ in the range of 5–25 μg (100–500 ng/kg body-weight) thus appeared to induce a near maximal stimulation of the intestinal Ca-transport system. The time during which the intestinal mucosal cells were exposed to increased concentrations of 1,25(OH)₂D₃ clearly influenced the adaptation in Ca absorption, as evidenced by the cumulative effect of repeated daily doses of 5 μg 1,25(OH)₂D₃.

Plasma concentrations of 1,25(OH)₂D₃ varied according to the dose and the method of administration. Greatly elevated levels were seen after the 25 μg dose, in accordance with the activated Ca absorption. Attention should be drawn to the fact that the concentrations of 1,25(OH)₂D₃ (200–500 pg/ml plasma) resulting from doses which gave rise to nearly maximal stimulation of Ca absorption, were in the same range as reported in cows with parturient hypocalcaemia (Horst et al. 1977). Plasma 1,25(OH)₂D₃ concentrations were only measured once in the present study. From experiments with cows (Hove et al. 1983) it may be inferred that plasma 1,25(OH)₂D₃ concentrations in the present experiments would have returned to pretreatment levels 3–4 d after treatment. The persistence of stimulated Ca absorption beyond the 6th day after treatment may indicate that the biological action of 1,25(OH)₂D₃ is related to the life span of the epithelial cells of the intestinal mucosa. In agreement with recent results in the cow (Hove et al. 1983), plasma concentrations were two to five times higher after iv than after oral treatment (Table 1). Oral administration was, nevertheless, as effective in promoting Ca absorption as iv administration, except when 25 μg was given unprotected. A logical explanation of these observations would be that the metabolite did expose the intestinal absorptive cells to high local concentrations at the time of absorption. This could in turn give rise to much higher rates of Ca absorption than those which would be expected from the ensuing plasma 1,25(OH)₂D₃ concentration. Some loss of 1,25(OH)₂D₃ was indicated especially at the 25 μg dose level when the steroid was given unprotected orally, since the mean increment in Ca absorption was lower than after protected oral administration. This was, however, mainly due to the effects of different starting points, since mean values for Ca absorption 2 d after treatment were nearly identical (Fig. 2). It may be concluded that protection of cholecalciferol metabolites against rumen degradation is of limited value when Ca absorption is to be enhanced by oral treatment in ruminants.

A 10 μg dose of 1(OH)D₃ had a pronounced effect on radiocalcium absorption in the goats irrespective of the method of administration (Table 2). The fact that a 10 μg dose of 1(OH)D₃ gave increments in absorption equivalent to about 20 μg of 1,25(OH)₂D₃ seems surprising since 1(OH)D₃ is generally thought to be about half as active as 1,25(OH)₂D₃. The explanation may, however, be that the elimination of a clearly supraphysiological dose of 1,25(OH)₂D₃ occurs much more rapidly than elimination of the 1,25(OH)₂D₃ formed gradually from injected 1(OH)D₃ as shown in the cow (Hove et al. 1983). Braithwaite (1978, 1980) observed maximal stimulation of Ca absorption in sheep already at a daily dose of 20 ng/kg, which would be equivalent to the 1 μg dose in the present study. The apparent discrepancy in sensitivity to 1(OH)D₃ in the sheep and the goat can probably be explained by the pronounced cumulative effect of repeated doses of 1α-hydroxylated cholecalciferol metabolites, since the sheep were treated for 10 d before measurements were completed.

The trihydroxylated metabolites used in the present study occur in very low concentrations relative to 1,25(OH)₂D₃ (Holick et al. 1973; Kleiner-Bossaler & DeLuca, 1974; Reinhardt et al. 1981). The potency of 1,24(R),25(OH)₂D₃ and 1,25(S),26(OH)₂D₃ was only about one-tenth to one-fifteenth of the potency of 1,25(OH)₂D₃ in stimulating Ca absorption in goats. In accordance with this finding, Hove et al. (1983) showed 1,25(OH)₂D₃ to be
approximately ten times as effective as the two trihydroxylated metabolites in promoting hypercalcaemia in cows. Binding of 1,25(OH)$_2$D$_3$ to a specific receptor is recognized as a necessary step in the mediation of the metabolic effects of this hormone. Interestingly, the affinity of the two trihydroxylated compounds for intestinal cytosol receptors was about one-tenth the affinity of 1,25(OH)$_2$D$_3$ itself (Kream et al. 1977; Reinhardt et al. 1981).

It seems likely, therefore, that the stimulation of Ca absorption induced in the goats by the trihydroxylated metabolites was effected through the intestinal 1,25(OH)$_2$D$_3$ receptor. It cannot be ruled out, however, that changes in 1,25(OH)$_2$D$_3$ metabolism and plasma concentrations resulting from exogenous 1,24(R),25(OH)$_2$D$_3$ and 1,25(S),26(OH)$_2$D$_3$ might influence calcium absorption (Horst et al. 1983). With the low activity of the two trihydroxylated metabolites any role in regulation of Ca absorption in the normal state can be ruled out.

Generous gifts of cholecalciferol metabolites from Hoffman la Roche and Leo Pharmaceuticals are acknowledged. The work was financed by a grant from the Norwegian Agricultural Research Council.

REFERENCES