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THE FIXED POINT PROPERTY IN c0

ENRIQUE LLORENS-FUSTER AND BRAILEY SIMS

ABSTRACT. A closed convex subset of c0 has the fixed point property (fpp) if every
nonexpansive self mapping of it has a fixed point. All nonempty weak compact convex
subsets of c0 are known to have the fpp. We show that closed convex subsets with
a nonempty interior and nonempty convex subsets which are compact in a topology
slightly coarser than the weak topology may fail to have the fpp.

1. Introduction. We say a closed convex subset of the Banach space (X, k Ð k) has
the fixed point property (fpp) if every nonexpansive mapping T: C ! C has a fixed
point. Here, T nonexpansive means kTx�Tyk � kx� yk, for all x, y 2 C. We ask which
nonempty closed bounded convex subsets of c0 enjoy the fpp?

It is now well known that all nonempty weak compact convex subsets of c0 have the
fpp [Maurey, 1980]. On the other hand, closed bounded convex subsets with a nonempty
interior always fail to have the fpp, Proposition 1 below. That sets without interior may
also fail to have the fpp is demonstrated by B+

c0
:≥ f(xn) : 0 � xn � 1, all ng on which

T: (xn) 7! (1, x1, x2, . . .) is a fixed point free isometry.
We refine this last example by showing that closed bounded convex subsets of c0

which are compact in a locally convex topology only ‘slightly’ coarser than the weak
topology may fail to have the fpp. This lends support to the following.

CONJECTURE. In c0 the only closed bounded convex subsets with the fpp are weak
compact.

PROPOSITION 1. Let C be a closed bounded convex subset of c0. If the set C has an
interior point then C fails the fpp.

PROOF. Without loss of generality we may suppose that 0 2 int (C), so there exists
¢ Ù 0 such that B[0, ¢] ² C.

We define R: C ! B[0, ¢]+ by

R
��

x(n)
��

≥
��
jx(n)j ^ ¢

��

where jx(n)j^¢ :≥ minfjx(n)j, ¢g, and B[0, ¢]+ ≥
n�

x(n)
�
2 B[0, ¢] : x(n) ½ 0

o
. In order

to prove that R is nonexpansive, we apply the well known James-Birkhoff inequality:

ja ^ ¢ � b ^ ¢j � ja� bj, for every a, b, ¢ 2 R.
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414 E. LLORENS-FUSTER AND B. SIMS

Therefore we have:

kR(x) � R(y)k ≥ sup
nþþþ jx(n)j ^ ¢ � jy(n)j ^ ¢

þþþ : n ≥ 1, 2, . . .
o

� sup
nþþþ jx(n)j � jy(n)j

þþþ : n ≥ 1, 2, . . .
o
� kx � yk.

Now we define the mappings S: B[0, ¢]+ ! B[0, ¢]+ by

S
��

x(n)
��

≥
�
¢, x(1), x(2), . . .

�
,

and T: C ! B[0, ¢]+ by T :≥ S Ž R.
This map T is a nonexpansive selfmapping of C. If there exists x 2 C with T(x) ≥ x,

then x 2 B[0, ¢]+, R(x) ≥ x, and T(x) ≥ S(x) ≥ x, a contradiction.

2. The E-topology on c0. Let d :≥ (1, 1, 1, . . . , 1, . . .) 2 ‡
1
≥ cŁŁ0 , and let E be the

closed subspace of ‡1 given by E :≥ ker(d). That is, E ≥
n�

y(n)
�
2 ‡1 :

P
y(n) ≥ 0

o
. By

[Guerre-Delabrière, 1992, Lemma 1.1.11] E is a norming subspace for c0. Alternatively
it is easily verified by direct calculation (see, for example, Lemma 2.8 below) that in this
case

1
2
kxk

1
� supfhx, yi : y 2 E, kyk1 � 1g � kxk

1
,

where hx, yi ≥
P

x(k)y(k), as usual. Consequently E separates points of c0 and so, by
[Jameson, 1974, 27.3], the set E is dense in cŁ0 ≥ ‡1 with respect to the weakŁ topology.
We consider c0 equipped with the topology E :≥ õ(c0, E). That is, E is the smallest
locally convex linear topology on c0 making continuous all the elements of E (as linear
functionals on c0).

The topology E may be seen as ‘slightly’ coarser than the weak topology on c0, being
induced by a norming codimension one subspace of cŁ0. It displays some unusual, though
not too pathological, properties. For example, the following five propositions can be
proved by more or less standard methods of locally convex space theory.

PROPOSITION 2.1. The topology E consist of ;, c0, all finite intersections of the sets²�
x(n)

�
2 c0 : a Ú

X
x(n)y(n) Ú b,

X
y(n) ≥ 0

¦

and all arbitrary unions of these finite intersections.

PROPOSITION 2.2. E is Hausdorff.

PROPOSITION 2.3. A sequence (xn) in c0 is E convergent to x 2 c0 if and only if for
every y 2 E,

hxn, yi ! hx, yi.

PROPOSITION 2.4. Every E-convergent sequence is bounded.

PROPOSITION 2.5. Let M be a bounded subset of c0 and let x 2 E-cl M. Then there

exists a sequence (xn) in M such that xn
E
! x.

On the other hand, we have some results which are specific for the topology E.
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REMARK 2.6. The sequence (dn) in co given by

dn :≥ (1, . . . , 1| {z }
n

, 0, 0, . . .)

E-converges to 0, but (dn) does not have weakly null subsequences. Indeed, for y ≥�
y(n)

�
2 E,

hdn, yi ≥
nX

j≥1
y(j) ! 0, as n !1.

Note that (dn) is the standard summing basis for c0.

REMARK 2.7. Let (xn) be a sequence in c0 which is E-convergent to x 2 c0. Since,
the vector y :≥ (1, . . . , 1| {z }

k

,�k, 0, . . .) belongs to E, we have

xn(1) + Ð Ð Ð + xn(k) � kxn(k + 1) ! x(1) + Ð Ð Ð + x(k) � kx(k + 1)

and so
xn(1) + Ð Ð Ð + xn(k)

k
� xn(k + 1) !

x(1) + Ð Ð Ð + x(k)
k

� x(k + 1).

Necessary conditions such as this help provide a better understanding of E-convergence.

LEMMA 2.8. For every element x ≥
�
x(n)

�
2 c0 there exists a sequence (yn) in E

such that kynk1 ≥ 2 and
jhx, ynij ! kxk.

PROOF. Take x(l) 2 fx(n) : n 2 Ng such that jx(l)j ≥ kxk and define

yn :≥ (0, . . . , 0| {z }
l

, 1, 0, . . . , 0| {z }
n

,�1, 0, . . .)

Clearly kynk1 ≥ 2 and

jhx, ynij ≥ jx(l) � x(n + l)j ! jx(l)j ≥ kxk, as n !1.

PROPOSITION 2.9. If a sequence (xn) in co is E-convergent to x 2 c0 then kxk �
2 lim infn kxnk.

PROOF. Take y 2 E. We have

jhx, yij ≥ lim jhxn, yij � kyk1 lim inf kxnk

We now apply the above lemma, to obtain a sequence (yn) in E with kynk1 ≥ 2 such
that

jhx, ynij ! kxk, as n !1
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and therefore the last inequality gives, for n ≥ 1, 2, . . .

jhx, ynij � kynk1 lim inf
m

kxmk.

Taking limits we obtain the conclusion:

kxk ≥ lim
n!1

jhx, ynij � 2 lim inf
m

kxmk

REMARK 2.10. The bound 2 in the last inequality cannot be improved. For example,
if we consider the sequence (dn) ² c0 defined above in Remark 2.6, then for e1 :≥

(1, 0, . . . . ) we have dn � 2e1
E
! �2e1, but

k � 2e1k ≥ 2 ≥ 2 lim inf kdn � 2e1k.

REMARK 2.11. There exist bounded, convex, norm-closed sets which are not E-
closed (That is, we do not have a Mazur’s theorem for the E-topology). To see this, let
K be the norm closed convex hull of the set D ≥ fdn : n ≥ 1, . . .g. Obviously every
convex combination y of vectors dn must verify y(1) ≥ 1 , and so kyk ≥ 1. Therefore

0 ≥ E � lim dn Û2 K,

and K is not E-closed.

REMARK 2.12. The right shift S: c0 ! c0 is not E-continuous. Indeed, the sequence
(dn) is E-convergent to 0 but for y 2 E with y(1) Â≥ 0 we have

hS(dn), yi ≥
nX

j≥2
y(j) ≥

� nX
j≥1

y(j)
�
� y(1) ! �y(1), as n !1

and so
�
S(dn)

�
does not converges to S(0).

PROPOSITION 2.13. A sequence (xn) in c0 is weakly convergent to x 2 c0 if and only
if
�
S(xn)

�
is E-convergent to S(x).

PROOF. Since the right shift S is weak continuous we have that if xn
w
™ x then

S(xn)
w
™ S(x), and so S(xn)

E
! S(x). Conversely, for every y ≥ (y(1), y(2), . . .) 2 ‡1 we

have that

ỹ :≥
�
�
X

y(j), y(1), y(2), . . .
�
2 E

If S(xn)
E
! S(x) then hS(xn), ỹi ! hS(x), ỹi. But it is easy to see that hS(xn), ỹi ≥ hxn, yi

and hS(x), ỹi ≥ hx, yi, which yields the conclusion.

E-convergence can also be related to weakŁ convergence in cŁŁ0 ≥ ‡
1

.
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PROPOSITION 2.14. For a bounded sequence (xn) in c0 we have for the following
conditions that (i) ) (ii) ) (iii).

(i) For some ï1 we have x̂n
wŁ

! ï1d.

(ii) xn
E
! 0.

(iii) There exists a subsequence (xnk ) with x̂nk

wŁ

! ï2d, for some ï2 2 R.

PROOF. If x̂n
wŁ

! ï1d, then for f 2 ker d we have f (xn) ≥ x̂n(f ) ! ï1d(f ) ≥ 0, so
(i) ) (ii).

Suppose xn
E
! 0 and let f0 :≥ (1Û2, 1Û4, 1Û8, . . . , 1Û2n, . . .) 2 ‡1, so d(f0) ≥ 1.

Choose a subsequence xnk such that limk f0(xnk ) exists, and equals ï2 say. Then for f 2
cŁ0 ≥ ‡1 we have f ≥ d(f )f0 + g, where g ≥ f � d(f )f0 2 E ≥ ker(d), and so x̂nk (f ) ≥
f (xnk ) ! d(f )ï2 ≥ ï2d(f ). Thus (ii) ) (iii).

3. c0 fails the E-fpp. Let d0 :≥ 0 and for n ≥ 1, 2, 3, . . . define dn as above;

dn :≥ (1, . . . , 1| {z }
n

, 0, 0, . . .)

To demonstrate the failure of the E-fpp in c0, we show that

K :≥ cofdng
1

n≥0

consisting of vectors of the form

1X
n≥0

ïndn ≥
�
1� ï0, 1� (ï0 + ï1), 1� (ï0 + ï1 + ï2), . . .

�
,

where ïn ½ 0 and
P
1

n≥0 ïn ≥ 1, is a E-compact convex set which admits a fixed point
free affine isometry. Indeed T defined by

T
�
1� ï0, 1� (ï0 + ï1), . . .) :≥ (1, 1 � ï0, 1� (ï0 + ï1), . . .

�

is such a map. The proof of these claims occupies the remainder of this section and is
contained in the following lemmas.

LEMMA 3.1. For the mapping T defined above we have
(i) T maps K into K,

(ii) T is an isometry,
(iii) T is fixed point free in K.

PROOF. To establish (i) it suffices to note that for ïn ½ 0 and
P
1

n≥0 ïn ≥ 1, we have

T
�
1X

n≥0
ïndn

�
≥

�
1, 1� ï0, 1� (ï0 + ï1), . . .

�

≥
1X

n≥1
ïn�1dn 2 K.
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(ii) follows, since for x ≥
�
1�ï0, 1� (ï0 +ï1), . . .

�
and y ≥

�
1�ñ0, 1� (ñ0 +ñ1), . . .

�
we have that

kTx � Tyk ≥ k(0,ñ0 � ï0,ñ0 + ñ1 � ï0 � ï1, . . .)k

≥ k(ñ0 � ï0,ñ0 + ñ1 � ï0 � ï1, . . .)k

≥ kx � yk.

Finally, if x ≥
�
1 � ï0, 1 � (ï0 + ï1), . . .

�
were such that x ≥ Tx ≥

�
1, 1 � ï0,

1� (ï0 +ï1), . . .
�

then we would have ï0 ≥ 0, ï1 ≥ 0, . . . contradicting the requirement
that

P
1

n≥0 ïn ≥ 1. Indeed, T(0) ≥ (1, 0, 0, . . .) Â≥ 0, and so we have (iii).

LEMMA 3.2. K is E-closed.

PROOF. For n ≥ 1, 2, . . . let

xn ≥
1X

k≥0
ï(n)

k dk ≥ (1 � ï(n)
0 , 1� ï(n)

0 � ï(n)
1 , . . .),

where ï(n)
k ½ 0 and

P
1

k≥0 ï
(n)
k ≥ 1, be such that xn

E
! x ≥ (ñ1,ñ2, . . .).

Choosing f :≥ (1,�1, 0, 0, . . .) 2 E we have

f (xn � x) ≥ (1� ï(n)
0 � ñ1) � (1 � ï(n)

0 � ï(n)
1 � ñ2) ! 0.

That is,
ï(n)

1 ! ñ1 � ñ2.

Similarly, choosing f :≥ (0, 1,�1, 0, 0, . . .) we obtain

ï(n)
2 ! ñ2 � ñ3,

and in general
ï(n)

k ! ñk � ñk+1.

Thus, for k ≥ 1, 2, . . .
ïk :≥ ñk � ñk+1 ≥ lim

n
ï(n)

k ½ 0

and
x ≥ (ñ1,ñ1 � ï1,ñ1 � ï1 � ï2, . . .) 2 c0.

So we must have

ñ1 ≥
1X

k≥1
ïk ½ 0,

and then, provided ñ1 � 1,

x ≥
1X

k≥1
ïkdk 2 K

But, given è Ù 0 there exists N so that

ñ1 ≥
1X

k≥1
ïk Ú

NX
k≥1

ïk + èÛ2,
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and there exists n for which

jïk � ï(n)
k j � èÛ2N, for k ≥ 1, 2, . . . , N.

Thus,

ñ1 �
NX

k≥1
ï(n)

k + è � 1 + è, as
1X

k≥0
ï(n)

k ≥ 1,

and so ñ1 � 1, as required.

Since dn
E
! d0, we have that fdng1n≥0 is E-compact. The E-compactness of K then

follows from Lemma 3.2, the definition of E, and the following general result.

LEMMA 3.3. Let X be a separable Banach space and let M be a closed norming
subspace of XŁ. If D ² X is õ(X, M)-compact then co(D) is õ(X, M)-precompact.

PROOF. Since M is closed and norming, D is bounded and, equipped with the relative
õ(X, M) topology, is a compact Hausdorff space. Let C :≥ C

�
D,õ(X, M)

�
, the space of

continuous real valued functions on D with this topology. Then V defined by

V(f )(m) :≥ f (mjD), for f 2 C Ł and m 2 M

is a weakŁ to weakŁ; that is, õ(C Ł, C ) to õ(MŁ, M), continuous linear operator from C Ł

to MŁ. Since M is norming, X may be identified with a closed subspace of MŁ (the space
(X, k Ð k0) is complete, where kxk0 :≥ supfm(x) : m 2 M, kmk � 1g). It suffices to show
that V(C Ł) � X, as then V(BC Ł) is a õ(X, M)-compact convex subset of X containing D
(for d 2 D consider the action of V on d regarded as a point measure in BC Ł).

To establish that V(C Ł) � X we first note that if f 2 C Ł then V(f ) is õ(M, X) boundedly
continuous. Indeed, since X is separable, bounded subsets of M are õ(M, X) metrizable.
So, if (mn) is a bounded sequence in M with mn ! m in the õ(M, X) topology then the
Lebesgue dominated convergence theorem gives that f (mnjD) ! f (mjD), as required.

Now, suppose there is an f 2 C Ł with g :≥ V(f ) Â2 X. Then there exists F 2 MŁŁ

with kFk ≥ 1, F(g) Â≥ 0, and FjX ≥ 0. BM is õ(MŁŁ, MŁ) dense in BMŁŁ , so there is a
net (mi) ² BM with m̂i(mŁ) ! F(mŁ), for all mŁ 2 MŁ. In particular m̂i(x) ! F(x) ≥ 0,
for all x 2 X � MŁŁ. That is, mi ! 0 in the õ(M, X) topology, and so since (mi) is
bounded g(mi) ! g(0) ≥ 0. But, g 2 MŁ so g(mi) ≥ m̂i(g) ! F(g) Â≥ 0, a contradiction
establishing the result.

4. Further results. In this section we note that the construction of the E-topology
can be generalized to obtain a family of similar topologies for some of which compact
convex sets C may fail to have the fpp even for contractive mappings; that is, mappings
T: C ! C satisfying kTx � Tyk Ú kx � yk, whenever x Â≥ y. Most of the proofs require
only minor modifications to those given in sections 2 and 3 for the E-topology, and so
will be omitted.

To effect the generalization let a ≥
�
a(n)

�
2 ‡

1
be any sequence of ‘weights’ satis-

fying ã � a(n) � å, for some 0 Ú ã � å Ú 1, and take

Ea :≥ õ
�
c0, ker(a)

�
,
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the coarsest (locally convex linear topology) on c0 making each functional in Ea contin-
uous, where Ea :≥ fy(n) 2 ‡

1
:
P

a(n)y(n) ≥ 0g.
Proposition 2.1 remains true with the obvious modifications, namely:

PROPOSITION 4.1. The topology Ea consists of ;, c0, all finite intersections of the
sets ²�

x(n)
�
2 c0 : a Ú

X
x(n)y(n) Ú b,

X
a(n)y(n) ≥ 0

¦

and all arbitrary unions of these finite intersections.

Again Ea is a norming subspace for c0, indeed

å

ã + å
kxk

1
� supfhx, yi : y 2 Ea, kyk1 � 1g � kxk

1
,

so Ea is Hausdorff.
Similarly one can verify Propositions 2.3, 2.4 and 2.5 with E replaced by Ea and E

replaced by Ea.
The sequence (dn) need not convege to 0 with respect to the Ea topology. Indeed, for

y ≥
�
y(n)

�
2 Ea

hdn, yi ≥
nX

j≥1
y(j)

and it is generally untrue that the above sum converges to 0 as n ! 1. On the other
hand, if we replace (dn) by the sequence (an) given by

an :≥
�
a(1), . . . , a(n), 0, 0, . . .

�

we have

PROPOSITION 4.2. The sequence an is Ea-convergent to 0 and does not have weakly
null subsequences. Indeed, for y ≥

�
y(n)

�
2 Ea,

han, yi ≥
nX

j≥1
a(j)y(j) ! 0, as n !1.

Variants of Lemma 2.8 and Proposition 2.9 also hold for Ea as do analogues of Re-
marks 2.10, 2.11 and 2.12.

LEMMA 4.3. For every element x ≥
�
x(n)

�
2 c0 there exists (yn) in Ea such that

1 +
ã

å
� kynk1 � 1 +

å

ã

and
jhx, ynij ! kxk.

The proof is essentially the same as that for Lemma 2.8 if the �1 in the definition of
yn is replaced by �a(l)Ûa(n + l).

Using this lemma we can prove the following in a way similar to that for Proposi-
tion 2.9.
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PROPOSITION 4.4. If a sequence (xn) in c0 is Ea-convergent to x 2 c0 then

kxk �
�

1 +
å

ã

�
lim inf

n
kxnk.

To obtain instances where the Ea-fpp fails we put a0 :≥ 0 and take

Ka :≥ cofang
1

n≥0.

Then Ka consists of vectors of the form

1X
n≥0

ïnan ≥
�

a(1)(1 � ï0), a(2)
�
1� (ï0 + ï1)

�
, a(3)

�
1� (ï0 + ï1 + ï2)

�
, . . .

�
,

where ïn ½ 0 and
P
1

n≥0 ïn ≥ 1.
That Ka is Ea-closed follows by effectively the same argument as that used for

Lemma 3.2 with the functional f employed at the n-th step of the induction replaced
by f :≥

�
0, . . . , 1,�a(n)Ûa(n + 1), 0, . . .

�
, where the 1 occurs in the n-th position. This,

in combination with Proposition 4.2 and Lemma 3.3, establishes the following.

PROPOSITION 4.5. Ka is an Ea-compact convex set.

Now define Ta to be the affine map given by

Ta

�
a(1)(1�ï0), a(2)

�
1�(ï0 +ï1)

�
, . . .

�
:≥

�
a(1), a(2)(1�ï0), a(3)

�
1�(ï0+ï1)

�
, . . .

�
.

In other words,

Ta

�
1X

n≥0
ïnan

�
:≥

1X
n≥1

ïn�1an.

It is clear that Ta maps Ka into Ka. Moreover, if

x ≥
�

a(1)(1 � ï0), a(2)
�
1� (ï0 + ï1)

�
, . . .

�

were such that

x ≥ Ta(x) ≥
�

a(1), a(2)(1 � ï0), a(3)
�
1� (ï0 + ï1)

�
, . . .

�

then we would haveï0 ≥ 0,ï1 ≥ ï0, . . . contradicting the requirement that
P
1

n≥0 ïn ≥ 1,
so Ta is fixed point free in Ka.

Further, if
x ≥

�
a(1)(1 � ï0), a(2)

�
1� (ï0 + ï1)

�
, . . .

�

and
y ≥

�
a(1)(1 � ñ0), a(2)

�
1� (ñ0 + ñ1)

�
, . . .

�

are elements of Ka then

kx � yk ≥ maxfa(1)jñ0 � ï0j, a(2)jñ0 � ï0 + ñ1 � ï1j, . . .g.
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On the other hand

Tx ≥
�

a(1), a(2)(1 � ï0), a(3)
�
1� (ï0 + ï1)

�
, . . .

�
,

Ty ≥
�

a(1), a(2)(1 � ñ0), a(3)
�
1� (ñ0 + ñ1)

�
, . . .

�

and so,

kTx � Tyk ≥ maxfa(2)jñ0 � ï0j, a(3)jñ0 � ï0 + ñ1 � ï1j, . . .g.

We therefore arrive at the following conclusion.

PROPOSITION 4.6. Ta: Ka ! Ka is a fixed point free (contractive) nonexpansive
mapping of the nonempty Ea-compact convex set Ka whenever the sequence of weights
a ≥ (an) is (strictly) decreasing.

REMARK 4.7. Similar constructions and conclusions can be achieved in the James
space J and in various equivalent renormings of c0. This leads us to ask the following.

QUESTION. To what extent can the above construction and results be extended
(a) in c0, and
(b) into other Banach spaces?
We also reiterate our earlier conjecture.

QUESTION. Does the nonexpansive-fpp for a closed bounded convex set in c0 char-
acterize the set being weak compact?
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