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Abstract. Let G be a connected finite-dimensional Lie group and M a compact
surface. We investigate whether, for a given G and M, every continuous action of
G on M must have a fixed (stationary) point. It is shown that when G is nilpotent
and M has non-zero Euler characteristic that every action of G on M must have
a fixed point. On the other hand, it is shown that the non-abelian 2-dimensional
Lie group (affine group of the line) acts without fixed points on every compact
surface. These results make it possible to complete this investigation for Lie groups
of dimension at most 3.

0. Introduction
A classical result of Poincare [14] states that a vector field on a compact surface
with non-zero Euler characteristic must be zero at some point. Another way to
phrase this conclusion is to say that the flow tangent to the vector field must have
a stationary point. This result was generalized to manifolds of arbitrary dimension
by Hopf [6]. A flow is simply an action by the real line, so it is natural to consider
the more general situation of Lie groups acting on manifolds.

Let M be a smooth manifold and let G be a connected finite dimensional Lie
group. If O : G x M - » M i s a (left) action of G on M then for each xe M the set
G(x) = {<I>(g, x)e M\ge G} is called the orbit of x and the subgroup Gx =
{g e M|<J>(g, x) = x} is called the stabilizer of x Gx is a closed subgroup of G and
the map G/Gx^*G(x) defined by gGx -» <£(g, x) is continuous and bijective. Further-
more, the restriction of 3> to G(x) is equivalent to the action of G on G/Gx by left
translation. If Gx = G then G(x) = {x} and x is called a stationary point or fixed
point of the action. If every point is stationary then G acts trivially. At the other
extreme, if G(x) = M for any (hence, all) x e M then the action is said to be
transitive. The action is called effective if only the identity element of G fixes every
point of M. Given an arbitrary action by G on M, the subgroup H of G which acts
trivially is a closed normal subgroup and there is induced an effective action of the
quotient Lie group G/ H on M.

Given a Lie group G and a manifold M we will say that the pair (G, M) has the
fixed point property if every continuous action of G on M has a fixed point. The
result of Poincare & Hopf says that (R, M) has the fixed point property whenever
M is a compact manifold with non-zero Euler characteristic. In the present paper
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we will deal with the case in which M is 2-dimensional, that is, we assume M is a
compact surface (possibly having a boundary). In our situation the orbits of the
action must have dimension 0, 1, or 2. The orbits of dimension zero are precisely
the fixed points of the action. The 1-dimensional orbits are continuous images in
M of either the line or the circle. Even though G(x) is not in general a smooth
submanifold of M it is the continuous image of the homogeneous space G/Gx

which has the structure of a real analytic manifold [11]. If every orbit has dimension
one then the orbits are the leaves of a continuous foliation of M [15], in which
case M has zero Euler characteristic [4], [9].

When an action of G on M is smooth then it is determined by the infinitesimal
action on M of the Lie algebra g of G [12]. If we deal with left actions then #
consists of all right invariant vector fields on G. In most cases it is easier to write
down the infinitesimal action, that is, a Lie algebra homomorphism g^> 3c(M) where
•X(M) is the Lie algebra of smooth vector fields on M

§ 1 contains some background results concerning the structure of actions on the
one dimensional orbits which will be used frequently. In § 2 it is shown that the
classical result of Poincare holds when R is replaced by a nilpotent Lie group. This
generalizes the result by Lima [10] for the abelian case. § 3 gives constructions of
actions without fixed points by the non-abelian 2-dimensional Lie group on every
compact surface which illustrates how different the nilpotent and solvable cases are.
§ 4 discusses the problem when G is 3-dimensional.

1. Orbits of dimension one
If G(x) is a one dimensional orbit of an action by a Lie group G then the quotient
space Gf Gx is diffeomorphic to the line or the circle. Since the action restricted to
G(x) is transitive we have an infinitesimal action ^->3£(G/GX) with the property
that for each point p of G/ Gx there is a vector field X in the image of # such that
X(p) 5̂  0. It is a classical result, due to Lie in infinitesimal version [2], [3], that the
only finite dimensional Lie groups which can act effectively and transitively on R
are R (by translation), the affine group of the line (affinely), and SL(2, R) (the lifting
to R of the linearly induced action on the circle of directions in R2). On S1 only
actions by S1 (by rotations) and SL(2, R) (linearly induced allowing finite coverings)
are possible. The infinitesimal form of these actions may be described as follows
where d/dx denotes the unit vector field on R: the image of the Lie algebra of G = R,
Aff (R), SL(2, R) is generated by {d/dx}, {d/dx, x d/dx}, {(1 + cos x) a/ax, (sin x) <9/3x,
(1 -cos x) d/dx}, respectively.

(1.1) THEOREM. Suppose 1£ is a finite dimensional Lie algebra of vector fields on R
such that for each peU there is an X e J£ such that X(p) # 0. Then SE is isomorphic
to one of the following Lie algebras:

(1) (X);
(2) (X,Y\[X,Y] = X);
(3) (X, Y, Z\[X, Y] = X,[ Y, Z] = Z, [X, Z] = 2 Y).
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Proof. If a vector field X in a neighbourhood of p has the form

where the • • • represents higher order terms and ak ¥• 0 then we say that X has order
k at p. Computation shows that if X and Y have orders i and j , respectively, at p
then [X, Y~\ has order >i+j-1 at p. When i ¥=j, [X, Y] has order precisely i+j-1
at />. Let ifp = {X e i?|X has order >fe at p}. The chain of subalgebras

must end with a last non-trivial subalgebra ifj,.

LEMMA, dim (gk/&k+1) = 1 (0< i t s /) and dim i?= / + 1 . In particular, I is indepen-
dent of p e R.

PVoo/ Choose X O G ^ , X , e i ^ . [Xo, X,] has order / - I at p, [Xo, [Xo, X,]] has
order 1-2 at p, etc. Let X ^ = [Xo, X,], i = /, / - I , X, has order i at p and it
is easily checked that the X,'s are linearly independent and span i£. This proves
the lemma. •

An immediate consequence of the lemma is that / < 2 since [X,_,, X,] has order
21-2 ax p, which implies 2 / - 2 < /. Therefore, <2" has dimension at most 3. When i?
has dimension 1 it is spanned by a single vector field which never vanishes. When
dim i? = 2 we choose Xo, Xj as above to span 5£. Since [Xo, Xx] has order 0 at p

[X0,X1] = aX0+feX1, (a 7*0).

Changing basis to Yo = Xo+ (b/a)Xu Yx = ( l /a)X, gives the relation [ Yo, Yt] = Yo.
When dim i? = 3, i? is spanned by Xo, X1; X2 with relations

[X1;X2] = X2;

[X0,X2] = 2X1 + cX2.

Changing basis to Yo = Xo+ aX, + (b/2)X2, Yl = X,, Y2 = X2 and using the Jacobi

identity we get the expected relations. This completes the proof of (1.1). •

(1.2) THEOREM. If a finite dimensional Lie group acts smoothly effectively and transi-
tively on U then its infinitesimal action is equivalent via a diffeomorphism to one of
the following subalgebras of £(U):

(1) 0/dx);
(2) (d/dx,xd/dx);
(3) <(l + cosx)d/dx, (sin x) d/dx, (\-cosx)d/dx).

Proof. We claim that in each of the cases of (1.1) there is a vector field in the Lie
algebra which never vanishes. This is immediate from the lemma in case (1). The
result in this case follows by taking flow-box coordinates which are defined for all
of U.

In case (2) we have the relation [X, Y] = X. We claim that X never vanishes.
Suppose X(qt) = 0 for some qeU. This means that X^iB\. If Z e i ? is such that

0 then [X, Z](qr)#O, but this contradicts the fact that [X, Z] must be a
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multiple of X. Since X never vanishes we take coordinates for R so that X = d/dx.
If Y=fd/dx then the relation [X, Y] = X becomes the differential equation/'= 1.
Adjusting by a constant gives the Lie algebra in (2).

In case (3) it is helpful to consider a change of basis for the Lie algebra. Let

U = \{X + Z); V=Y; W = \(X-Z).

The relations for the basis {U, V, W} are

[U,V]=W; [U,W] = -V; [V,W] = -U.

We claim that U never vanishes. Suppose U(q) = 0 for some qeU. Since
dim (^l/^D = 1 there is a vector V* in the plane spanned by V and W such that
V*(q) = 0. This implies that [[/, V*](q) = 0. This is a contradiction since the set
{U, V*, [ U, V*]} is linearly independent which implies that one of these vector
fields is non-zero at q. Now taking coordinates so that U = d/dx, V=fd/dx, W =
gd/dx we obtain the system of equations/' = g, g' = -f, gf'—fg'=\ which, upon
integration and adjustment of phase constant, yield

V=(s inx)—, W = {cosx)—.
dX dX

This completes the proof of (1.2). •

Remark. These same arguments apply to the case of Lie groups acting on the circle.
In this situation, case (2) (transitive action by the afrine group of the line) is not
possible. If such an action occurred it could be lifted to an action on the line
equivalent to the standard affine action. However, the Y vector field in this case on
R has a unique zero which implies that it could not result from lifting a vector field
on the circle.

2. Actions by nilpotent groups
Let G be a simply connected nilpotent Lie group with Lie algebra g. If M is a
compact surface with Euler characteristic zero then G can act without fixed points
on M. To see this let X e g such that X represents a non-zero element of p/[p, $\
Select a vector space basis for g which includes X as well as a basis for [p, <f\
Define an infinitesimal action by sending X to a nowhere-vanishing vector field on
M and sending all other basis elements to the identically zero vector field. When
the Euler characteristic is non-zero it turns out that every action of G on M must
have a fixed point. This was proved by Lima [10] for abelian G and the proof of
the. nilpotent case follows similar lines.

(2.1) THEOREM. Every action by a connected nilpotent Lie group on a compact surface
with non-zero Euler characteristic has a fixed point.

The proof of (2.1) will require several preliminary results.

(2.2) LEMMA. Let ^ be a disjoint collection of 2-sided embedded circles in a compact
surface M. Then there exist finitely many circles Cu ..., Cn in %> such that every circle
in <€-{Cx,..., Cn} represents the trivial element ofHl(M-{J"=1 Q).
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Remark. By '2-sided' we mean that the circle has a product neighbourhood homeo-
morphic to S'xM where the circle itself corresponds to S1 x {0}. Each such circle
determines an element of Hl(M) by oriented transverse intersection number. The
geometric meaning of the conclusion of (2.2) is that every circle distinct from
C,, . . . , Cn separates (M-{J"=1 Q).

Proof of (2.2). The group Hl(M) is finitely generated and free abelian and, therefore,
so is the subgroup generated by the elements of <€. Let Cu..., Cn be elements of
<£ which generate this subgroup. If C £ {Cu ..., Cn} were to separate (M -U" = 1 Q)
then the class represented by C would not be in the subgroup generated by C6. This
proves (2.2). •

Now consider an arbitrary Lie group G acting on the compact orientable surface
M. By an exceptional minimal set of the action we will mean a nowhere dense
(compact) minimal set consisting of uncountably many one dimensional orbits.

(2.3) LEMMA. The number of exceptional minimal sets in a compact surface M is
bounded by rank H1(M). In particular, it is finite.

Proof. Without loss of generality, assume that M is connected. When the surface
M is orientable it follows from [13, (8.5)] that the number of exceptional minimal
sets is bounded by \ rank H\M). If M is not orientable then we may lift the action
to a 2-fold orientable connected covering space M of M. M contains at least as
many exceptional minimal sets as does M. Therefore, the number of exceptional
minimal sets in M is bounded by rank HX(M) when dM = 0 and by (rank H\M) -
5) when dM ^ 0 . This completes the proof of (2.3). •

(2.4) PROPOSITION. If a connected Lie group (not necessarily nilpotent) acts without
fixed points on a compact surface M then the union of all minimal sets of the action
is itself a compact set.

Proof. Without loss of generality, assume that M is connected. Since the action has
no fixed points every orbit has dimension 1 or 2. If some minimal set contains an
open set then the minimal set is open and, therefore, all of M. Otherwise, all minimal
sets are nowhere dense and consist of 1-dimensional orbits. By (2.3) the union of
the exceptional minimal sets is compact. The only other type of nowhere dense
minimal set is an embedded circle. Let % be the collection of all embedded circle
orbits. The proof of (2.4) will be completed by showing that <6 is closed. Since the
circles in % may not be 2-sided in M we consider instead (if necessary) the action
lifted to a connected orientable 2-fold covering space of M. Assuming the elements
of % are 2-sided we apply (2.2) to obtain circles Cu...,Cn such that every other
element of "# separates (M-[J"=1 C,). Let pk^*q be a convergent sequence in
(M-(jr=i £-•) s u c n ^at each pk is contained in a different element of <<?. We claim
that q also lies on some circular orbit. Assume that the orbit of q is not a circle.
Since q is not stationary (by hypothesis) there is, according to the proof of theorem
(1.2), a one parameter subgroup of G which determines a flow (f>, on M such that
the </>,-orbit of q coincides with G(q). Note that for k sufficiently large pk is moved
by (/>,. Since the action has no fixed points, the positive </>, semi-orbit of q passes
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twice through the same </>, flow box. In particular, there exist points r and s on the
4>r orbit of q such that r and s are endpoints of an arc which is transverse to
</>,-orbits. On this arc there is a sequence of points qk such that each qk is on the
same $,-orbit as pk and the sequence pk converges either to r or s (depending on
orientation). The simple closed curve in (M - U"=i Q) obtained by taking the union
of this transverse arc together with the segment of the #,-orbit joining r and s meets
each of the circular orbits G(pk) = G(qk) with non-zero oriented intersection num-
ber, contradicting the fact that each G(pk) separates (M-U"=i £-••)• Therefore,
G{q) must be in <# and <£ must be a closed set. This proves (2.4). •

Denote by # the Lie algebra of the Lie group G. If G acts on a manifold M and
x e M, denote by px the Lie subalgebra of g corresponding to the closed subgroup
Gx of G. In general, Gx is not normal (equivalently gx is not an ideal) but for a
one dimensional orbit when G is nilpotent it is.

(2.5) LEMMA. IfG(x) is a I-dimensional orbit of an action by a connected nilpotent
Lie group G then Gx is normal in G. Furthermore, if the action has no stationary points
then py = px for every y in the closure of G(x).

Proof. Restricting the action to G(x) we are in the situation of a Lie group acting
on U or S1. Since G is nilpotent, <? cannot have as quotient either of the cases (2),
(3) of theorem (1.1). Therefore, G acts on G(x) in a manner equivalent to either
translations of R or rotations of S1. Since the stabilizers of two points in the same
orbit are conjugate Gx must be normal in G. This proves (2.5) since px varies
semicontinuously with x. •

Remarks. This argument also shows that for any finite dimensional nilpotent Lie
algebra a codimension one subspace is a subalgebra iff it is an ideal. The argument
in the proof of (2.5) also works for many groups which aren't nilpotent.

(2.6) LEMMA. /f if is a nilpotent Lie algebra of dimension >2 then the codimension
one ideals of !£ are parametrized by a manifold of positive dimension.

Proof. When if is abelian of dimension n then the ideals (subspaces) of codimension
one are parametrized by S"~\ When if is nilpotent of dimension >2 then we claim
dim (if/[if, if]) > 2. This in clearly true in dimension 2 since the only nilpotent Lie
algebra in that case is actually abelian [7]. Assume the claim is true for nilpotent
Lie algebras of dimension n - 1 (n>3). Take the quotient of an n-dimensional
nilpotent Lie algebra by a one dimensional central ideal $. Since if / / has an
abelian quotient of dimension >2 so does if, as claimed. It remains to observe that
the codimension one ideals in if are in one-to-one correspondence with the
codimension one subspaces of if/[if, if]. If V is a codimension one subspace of
if/[if, if] then the preimage of V in if under the quotient map is a codimension
one ideal in if. On the other hand, every codimension one ideal in if contains
[if, if] (since the only one dimensional Lie algebra is abelian) so its image has
codimension one in if/[if, if]. This proves (2.6). •

We are now ready to prove theorem (2.1). The proof will be by induction on the
dimension of the nilpotent Lie group G which we may assume to be simply
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connected. When dim G= 1, G = U and (2.1) is Poincare's theorem. Assume now
that (2.1) is true whenever dim G< m - 1 , m>2. Suppose that a nilpotent group G
of dimension m acts without fixed points on a compact surface M such that ^(M) ^0 .
The proof will be completed by showing that in such a case there would be a
codimension one subgroup G* of G and a 2-dimensional submanifold M* <= M
such that:

(a) X(M*) = X(M);
(b) M* is invariant under the action by G; and
(c) the restriction to G* of the action on M* has no fixed points.

Suppose the action of G on M consists of a single 2-dimensional orbit (transitive).
The restriction of the action to any codimension one subgroup of G (and not
changing M) satisfies (a), (b), (c). Assume now that the action has one-dimensional
orbits. Let # be the Lie algebra of G, and N the manifold of codimension one ideals
in if. Let M, c M be the subset consisting of one-dimensional orbits. According to
(2.5) the continuous map M, -»JV {x>->£x) is constant on orbit closures. Furthermore,
its image is the same as that of its restriction to the union Mo of minimal sets of
the action (since every orbit has a minimal set in its closure). A circular orbit of
the action is isolated if it has a neighbourhood in M which does not meet any other
circular orbits. The union of all circular orbits which are not isolated is a compact
set K. By standard arguments using Poincare maps every circular orbit contained
in K has a neighbourhood in Mo (open in Mo but not necessarily in M) which is
either a cylinder or Moebius band bounded by circular orbits. Since K is compact
it is covered by finitely many such neighbourhoods Au... ,Ak. Let M* be the
closure in M of ( M - U i = i ^;)- (a) is satisfied since x{Ai) = 0, i = 1 , . . . , k. (b) is
satisfied since each At is invariant under the action by G. Since M* contains only
isolated circular orbits it has only finitely many of them since M* is compact.
According to (2.3) there are finitely many exceptional minimal sets and, therefore,
M* contains finitely many minimal sets altogether. This means that the image of
(M, n M*) in N is a finite set. Since JV is a manifold of positive dimension by (2.6)
it follows that there is a codimension one ideal ^* c ^ which is not equal to #x for
x in any one-dimensional orbit in M*. Letting G* be the subgroup of G correspond-
ing to p* satisfies the requirement (c) above and the proof of theorem (2.1) is
complete. •

3. Actions by the 2-dimensional non-abelian group
There are two simply connected 2-dimensional Lie groups. In addition to the abelian
group there is the (solvable) affine group of the line consisting of diffeomorphisms
of the form x-> ax + b (a > 0). The Lie algebra of the affine group is isomorphic to
the algebra generated by X, Y with relation [X, Y] = X. If M is any compact
manifold with *(M) = 0 we can define an action without fixed points by the affine
group on M by sending X to the identically zero vector field and Y to a nowhere
vanishing vector field on M. So far this resembles the nilpotent case. In contrast to
the nilpotent case, we have the following:
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(3.1) THEOREM. The 2-dimensional non-abelian Lie group acts without fixed points
on every compact surface.

We begin our series of examples with a variation of an example given by Lima [10]
of an action without fixed points on the disk.

The vector fields X=d/dx, Y = x 8/dx + y d/dy define an action without fixed
points on the plane by the affine group. In order to construct an example on the
disk we embed the plane as the interior of the disk. Since the boundary of the disk
is to be a one-dimensional orbit it follows from the remark at the end of § 1 that
on the boundary we will need to require that X = 0 and Y ¥= 0 (at every boundary
point). This is accomplished by shrinking and twisting the plane increasingly as we
move away from the origin. Let A, ft: R -> R be C°° functions (A increasing, /x
decreasing) such that A(0 = 0 and n{t) = 1 for f < i 0<K(t) , n(t)< 1 f o r 5 < / < l ,
A(0 = l and /j.(t) = 0 for ( > 1 . If (r, d) denotes polar coordinates define the vector
field Y on the closed unit disk by

We define a C°° embedding h of the plane onto the open unit disk as follows.
Denote by <j>, and </», the Y and Y flows, respectively. For any point p in the plane
we may choose a / > 0 such that <p~,(p) lies in the disk of radius { centred at the
origin. Define h(p) = (/',((/>_,(/>))• This definition does not depend on the value of
t chosen and h is the identity map when r s j . Let X = h^{X) on the interior of the
unit disk. It is easily checked that X{p) approaches zero as p approaches the unit
circle so we extend X to the closed unit disk by letting it be identically zero on the
unit circle. This gives an action on the closed disk without fixed points, by the affine
group of the line.

It is worth noting that, in an example such as the foregoing, once the vector field
Y is chosen and the X field is specified on certain subsets, X is completely
determined.

(3.2) LEMMA. Let Y be the vector field in the plane given by x d/dx + y d/dy and let
X be a second vector field defined on an annulus x2 + y2s:C such that [X, Y] = X.
Then X is bounded and is determined uniquely by its values on any circle transverse
to Y. If X is defined on R2 then X is a constant vector field.

Proof. Let X =f d/dx + g d/dy. The relation [X, Y] = X is equivalent to the system
of equations

*fx+Xfy=0,

which is precisely the condition that the vector field X is constant along orbits of
the Y-flow (i.e. along radial lines). Since every orbit of the F-flow tends to the
origin as t -> -oo, X must be constant if it is denned at the origin. •
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(3.3) LEMMA. If [X, Y] = X, Y=-x d/dx - y d/dy, and X is defined on the interior
ofthe punctured disk 0<x2 + y2 < Cthen \\X(x, y)\\ < K(x2 + y2) for some constant K.

Proof. The diffeomorphism of R2 — {0,0} to itself given in polar coordinates by
(r, 6)^(1/r, 6) takes the vector field (-x d/dx-y d/dy) to (x d/dx + y d/dy). Apply-
ing lemma (3.2) we see that the vector field X must be sent to a vector field of the
form k(6)d/dr+l(0)d/dt where d/dr, d/dt ( = (\/r)d/dO) denote unit radial and
tangential vector fields. This gives

and (3.3) follows by taking K = supe [(k(0))2 + (l{6))2]1/2. •

(3.4) LEMMA. Suppose [X, Y] = X, Y = x d/dx - y d/dy, and X is defined on the open
half plane y>0. IfX(0,1) has non-zero x-component then X extends continuously to
the closed half plane y S: 0 so that the relation [X, Y] = X remains satisfied andX(x, 0)
is a non-zero constant multiple of d/dx.

Proof. Let X =fd/dx + g d/dy. The condition that [X, Y] = X is the system

The first equation says that / is constant along orbits of the Y-flow. Let pn be a
sequence of points in the open half plane which converges to a point p on the
x-axis. Since the phase portrait of Y is 'saddle-like' there is a sequence qn of points
in the open half plane which converges to a point on the positive y-axis and such
that, for each n, pn and qn are on the same orbit of the Y-flow. Therefore, the
x-component of X extends continuously to the closed half plane (indeed, it is
constant). It remains to show that the >>-component of X approaches zero as the
x-axis is approached. The relation [X, Y] = X says that the Y-flow takes one integral
curve of the X-flow to another when the vector fields X and Y are transverse, as
is the case at the point (0,1). The Y-flow is normally hyperbolic (contracting) to
the x-axis so the X-integral curves, thought of as graphs of functions of x, converge
to zero in the Cr-topology provided X is C"""1 [5]. This proves (3.4). •

We now describe constructions leading to the proof of theorem 3.1. Begin with a
smooth vector field Y on the 2-sphere with a single source at which Y is equivalent
to (xd/dx + y d/dy) in some local coordinates. Assume also that Y has 2 saddle
points such that Y is equivalent to (x d/dx-y d/dy) in a neighbourhood of each,
and 3 sinks such that Y is equivalent to (-x d/dx-y d/dy) in a neighbourhood of
each. We assume that all the zeros of Y lie on the equator which is assumed to be
invariant under the Y-flow. Also assume that Y is invariant under reflection through
the equator which we identify with the x-axis with the source as origin. A neighbour-
hood of the set consisting of the saddle points and sinks is shown in figure 1.
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Y

FIGURE 1

We wish to define a vector field X on the sphere so that [X, Y] = X and the zeros
of X coincide with the sinks of Y. (X will have index 1 at p and r and index 0 at
q). Removing the closed segment of the equator from p to r leaves an open set
diffeomorphic to the plane via a diffeomorphism which takes Y to the vector field
(xd/dx + y d/dy). Let X be defined on this same open set to be the vector field
corresponding to d/dx. Since d/dx has no finite zeros in the sphere it has index 2
at oo. We can arrange X on the boundary of a neighbourhood of segment [p, r] as
indicated so that X will be transverse to the stable manifolds of the saddle points.

\

\
X

FIGURE 2

According to lemmas (3.3) and (3.4), X extends to a continuous vector field on the
sphere which vanishes only at the Y- sinks. Now restrict X and Y to the open subset
S2-{p, q, r}. For an open annulus around each of p, q, r the vector field Y is
equivalent via a diffeomorphism to x d/dx + y d/dy in an annulus x2+y2> C. Using
an obvious modification of Lima's construction (used earlier to get an action of the
affine group without fixed points on the disk) three times we obtain an action without
fixed points of the affine group on a sphere with 3 open disks removed. Furthermore,
X = 0 on each boundary component and Y never vanishes on the boundary. Since
there are actions without fixed points of the affine group on the cylinder and the
Moebius band (X = 0, Y never zero) we can obtain an action without fixed points
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on any compact surface by gluing together an appropriate number of disks, cylinders,
Moebius bands, and 2-holed disks. •

4. Actions by 3 -dimensional groups
The results of the previous two sections tell whether a pair (G, M) has the fixed
point property when both G and M are 2-dimensional. In this section we show
that the methods described earlier determine which simply connected 3-dimensional
Lie groups can act without fixed points on which compact surfaces.

We begin by recalling the list of 3-dimensional Lie algebras ([7], [1]).
Abelian: (X, Y, Z\[X, Y~\ = [X, Z] = [Y,Z] = 0)
Nilpotent: (X, Y, Z\[X, Y] = Z, [X, Z] = [Y,Z] = 0)
Solvable: (including nilpotent) (X, Y,Z\[X, Y] = 0,[X,Z] = aX + bY,[Y,Z] =

cX + dY)
Simple: (X, Y, Z\[X, Y] = Z,[ Y, Z] = X, [Z, X]=Y)

(X, Y, Z\[X, Y] = X,[ Y, Z] = Z, [X, Z] = 2 Y)
From § 2 we know that the simply connected nilpotent and abelian groups act
without fixed points on a compact surface M iff *(M-) = 0. The situation for solvable
groups which are not nilpotent hinges on whether the eigenvalues of ad (Z) acting
on the subspace spanned by X and Y are real. If ad (Z) is diagonalizable we may
select a new basis { U, V}, for the subspace spanned by X and Y so that

[U,Z] = aU, [V,Z] = /3V.

Suppose, without loss of generality, that a # 0 . Letting Z* = ( l / a )Z we have
[ U, Z*] = U so an action without fixed points on any compact surface can be defined
by taking U, Z* to be, respectively, the vector fields X, Y of § 3 and V= 0. If ad (Z)
has a real eigenvalue a (#0 assuming the algebra is not nilpotent) but is not
diagonalizable then U, V exist so that

[U,V] = 0, [U,Z] = aU+V, [V,Z] = aV.
Again let V^O, U, Z* = ( l /a )Z be as above to obtain an action without fixed
points on any compact surface.

Now assume ad (Z) has complex eigenvalues a±/3i. In this case U and V can
be chosen so that

[(/, V] = 0, [U,Z-\ = aU + pV, [V,Z] = -/3U + aV.

We claim that a simply connected Lie group with such a Lie algebra acts without
fixed points on a compact surface M iff ^(M)>0. Suppose M admits an action
without fixed points, that is, having only orbits of dimension 1 or 2. If the action
has a one dimensional orbit then Z must be non-zero everywhere on the orbit.
Suppose otherwise, namely that Z(p) = 0 = W(p) where W is in the plane spanned
by U and V. Since W, Z, [ W, Z] are linearly independent this would say that p was
fixed by the action, so we conclude that any zero of the vector field Z must occur in
a 2-dimensional orbit. Suppose Z(p) = 0 and that U(p) and V(p) are linearly
independent. In this case the above relations assert that the vector field Z has index
+ 1 at p. This says that the zeros of Z are isolated and their sum is a0 which implies

>0. On the other hand, such groups do act without fixed points on compact
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surfaces with x — 0- When # = 0, let Z be any nowhere vanishing vector field and
U = 0 = V. When M is the disk we can use a construction of the previous section.
Define vector fields on the plane by

U = 7~' V = f< Z = (ax-/3y)-^+(l3x + ay)^-.
dx dy dy dy

As in § 3 map the plane onto the open disk so that U and V approach zero at the
boundary and Z is non-vanishing and tangent to the boundary. Note that when
a =0 the Z-flow is periodic and the embedding h used in the construction of § 3
may be defined by h(r, 6) = (v(r), 6) where v is an increasing function such that
v{t) = t for t<\ and v(t) = t/(l + t) for f s 2 . This completes discussion of the
solvable 3-dimensional groups.

The first of the simple Lie algebras listed is well-known as the Lie algebra of a
compact simply connected group. This group is known to act transitively on S2 and
P2 as a covering group of SO(3). It does not act without fixed points on any surface
whose universal covering space is the plane. If it did there would be an action of
the compact group on the plane which would imply (since the orbits are compact)
that the plane has a 1-dimensional foliation with all leaves compact (which isn't
the case). This argument works for any simply connected compact group.

Finally, the second Lie algebra listed is the Lie algebra of SL (2, R). SL (2, R)
acts without fixed points on the disk by Moebius transformations and consequently
on S2 by gluing together two disks. The adjoint representation induces actions
without fixed points of SL(2,R) on S2 and P2. As observed in § 1, SL(2,R) acts
transitively on the circle and, therefore, acts without fixed points on the Moebius
band, cylinder, Klein bottle and torus. We claim that the universal cover SL (2, R)
cannot act without fixed points on any compact surface with \ < 0. As mentioned
in § 1 there is a basis {U, V, W} of the Lie algebra for which the relations are

[U,V]=W, [U,W] = -V, [V,W] = -U.

In the proof of theorem (1.2) it was shown that the vector field U never vanishes
on a 1-dimensional orbit. If there is an action of SL (2, R) without fixed points on
a compact surface M then every zero of U must occur in a 2-dimensional orbit.
So, if U(p)=0 then V(p) and W(p) are linearly independent and the first two
relations above imply that U has index +1 at p (rotation point). Since all zeros of
U have this property it follows that

5. Concluding remarks
The results in §§2, 3 show a sharp contrast between actions by nilpotent groups
and actions by solvable (non nilpotent) groups. One consequence of § 3 is that any
Lie group which has the affine group of the line as quotient acts without fixed points
on any compact surface. Such Lie groups have exponential growth. It is shown in
[8] that a Lie group G has exponential growth iff for some X in the Lie algebra of
G, ad (X) has an eigenvalue with non-zero real part, and polynomial growth
otherwise. In particular, G has exponential growth iff its Lie algebra has a subalgebra
isomorphic to one of the following:
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(i) (X,Y\[X,Y] = X);
(ii) (x, Y,Z\[X, Y] = o,[x,z] = x+pY,[y,z] = -Px+y(p#o)>.

The first of these is the Lie algebra of the affine group. In the previous section it
was shown that Lie groups having Lie algebras of type (ii) can act without fixed
points on compact surfaces with ̂ > 0 but cannot act without fixed points when x < 0.

The results of this paper suggest that the following questions might have positive
answers. In each case G is a simply connected finite-dimensional Lie group and x
is the Euler characteristic of a compact surface.

(1) If G has exponential growth does it act without fixed points on every compact
surface with ^>0? What if G is a solvable non nilpotent group?

(2) If G is solvable and ad (X) has a non-zero real eigenvalue for some X in
the Lie algebra of G then does G act without fixed points on every compact surface?

(3) If G has polynomial growth does every action of G on a compact surface
with x <0 have a fixed point?

The questions in (1) have been answered affirmatively when G has dimension <3.
A group having polynomial growth is a compact extension of a solvable group
having polynomial growth [8]. As pointed out in the last section compact groups
always have a fixed point when x — ®- Since a fixed point for the action by the
solvable subgroup would result in a compact orbit (with finite fundamental group)
of an action of G on the universal cover space of M, question (3) reduces to a
question about actions by solvable groups. Furthermore, the answer to (3) is
affirmative for nilpotent groups, which have polynomial growth.
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