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We report experiments in a long tank showing that transverse Benjamin—Feir instability
of Stokes waves can lead to a significant energy transfer into oscillations across the tank.
We observe frequency downshift in the long-term evolution of Stokes waves essentially
when significant energy is transferred to narrow-banded transverse modes. Experiments
with Stokes waves are often carried out with wavelengths that are not long compared with
the width of the tank, permitting transverse instabilities to be excited. With insufficient
resolution of measurements across the tank, transfer of energy to transverse modes can
be misinterpreted as dissipation. Our experiments suggest that the frequency downshift
depends as much on energy-preserving transverse modulations of type I as it does on
damping or wave breaking. Broad-banded unstable modulations of type II do not imply
downshift.
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1. Introduction

Uniform long-crested water surface waves of permanent form on deep water, commonly
known as Stokes waves (Stokes 1847), are unstable to sideband perturbations. The instabil-
ity was first discovered for narrow-band collinear perturbations (Lighthill 1965; Benjamin
1967; Benjamin & Feir 1967) and is commonly known as the Benjamin—Feir instability.
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The collinear narrow-band instability vanishes for finite depth k& < 1.363 (Benjamin
1967; Hasimoto & Ono 1972). Here, k = 27 /A is the wavenumber, A is the wavelength and
h is the depth. The instability also extends to transverse perturbations which are unstable
for both greater and smaller depths (Benney & Roskes 1969).

In the course of long-term evolution, following the initial instability, and after a stage
of heavy modulations, there may be recurrence back to a uniform wave train. There is
laboratory evidence that the recurrence can either be back to the original Stokes wave
frequency or it can be accompanied by a downshift to a lower frequency (Lake et al.
1977). The downshift has been observed together with wave breaking and with the growth
of a continuous background spectrum (Melville 1982; Tulin & Waseda 1999).

Simple model equations predict that the Fermi—Pasta—Ulam-Tsingou recurrence, in
which the initial uniform wave train recurs (Fermi, Pasta & Ulam 1955; Dauxois 2008),
also can happen for water waves (Yuen & Ferguson 1978b; Janssen 1981). Although
a temporal downshift is predicted by the non-dissipative Dysthe equation for long-
crested waves (Dysthe 1979; Janssen 1983; Lo & Mei 1985), a permanent recurrence
with downshift was previously thought to depend on dissipative effects. A permanent
downshift has been captured by long-crested model equations equipped with various types
of dissipation, including ad hoc models for wave breaking (Trulsen & Dysthe 1990),
models for viscous damping without breaking (Uchiyama & Kawahara 1994; Kato &
Oikawa 1995; Skandrani, Kharif & Poitevin 1996; Segur et al. 2005; Islas & Schober
2011a,b), combinations of wind forcing and damping (Hara & Mei 1991; Trulsen & Dysthe
1992; Schober & Strawn 2015) and models for energy and momentum loss due to breaking
(Tulin 1996; Tulin & Waseda 1999). A review of long-crested downshift with various
dissipation mechanisms was given by Carter, Henderson & Butterfield (2019). Recently,
Ratliff, Trichtchenko & Bridges (2025) suggested that the permanent downshift in the
recurrence cycle of long-crested Stokes waves can be achieved without dissipation.

On the other hand, downshifting has also been observed in the undamped evolution
of a finite-width spectrum (Onorato et al. 2002; Dysthe et al. 2003; Onorato et al. 2009;
Chalikov 2012), however, we consider that to be an essentially different phenomenon partly
due to the lack of recurrence to a uniform wave and partly due to the fact that a finite-width
spectrum does not support the initial modulational instability (Alber 1978).

Stokes waves are unstable to infinitesimal perturbations due to both four-wave and
five-wave nonlinear resonance. In McLean er al. (1981) these are denoted instabilities of
types I and II, respectively. The Benjamin—Feir instability is of narrow-band type 1. These
instabilities are nicely summarised in figure 1 of McLean et al. (1981) from which it is
observed that type I is nearly collinear and mostly narrow band while type II is mainly
transverse and only wide band. Type I transverse instability of Stokes waves has been
reported in experiments (Toffoli et al. 2013; Pinho & Babanin 2015). Type II instability of
Stokes waves gives rise to characteristic horseshoe patterns of transverse length equal to
the longitudinal wavelength (Su 1982; Su et al. 1982). Transverse modulations of narrow-
band type I and broad-band type II are easily distinguished by visual inspection of the
wave field, as can be appreciated in photos from our experiments in figure 1. Pictures from
all the experiments are shown in Appendix B.

The emphasis of this paper is on the weakly nonlinear and narrow-banded transverse
instability of type I. For sufficiently narrow wave tanks there is numerical evidence that
non-dissipative transverse modulations can lead to recurrence without downshift (Yuen &
Ferguson 1978a; Lo & Mei 1987). For slightly wider wave tanks there is numerical
evidence of a permanent non-dissipative downshift to transverse modes (Trulsen & Dysthe
1997). Trulsen, Stansberg & Velarde (1999) provided experimental evidence that the
downshift can be accompanied by substantial transfer of energy from long-crested modes
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Figure 1. Upper left: Transverse modulation (TM) of type I in run 8008. Upper right: TM of type I in run
8015. Lower left and right: Horseshoe patterns typical of TM of type II in run 8012.

to transverse modes, which can easily be misinterpreted as dissipation in the case of
insufficient measurements in the transverse direction. Accurate numerical simulations
of short-crested waves by Fuhrman, Madsen & Bingham (2006) further support the
conclusions of Trulsen & Dysthe (1997).

Trulsen & Dysthe (1997) and Trulsen et al. (1999) anticipated that the evolution
with transverse modes depends on a width parameter u =k, /k., where k is
a permissible transverse wavenumber vector component, while k. =2m/1 is the
characteristic wavenumber and A is the characteristic wavelength of the original Stokes
wave. In a wave tank of width b the permissible transverse wavenumber components will
be discretised in multiples of Ak = /b and the width parameter will be discretised in
multiples of Ay = Ak /k. = A/(2b). On deep water this evaluates to

Ak, A gT?
A,[,Lz = =,
k. 2b  4mb

where T is the characteristic wave period and g is the acceleration due to gravity.
Transverse type I instability can be excited in experiments when A is small enough to be
inside the unstable domain. In the figures of McLean et al. (1981) their g along the second
axis is identical to our w, and our A is the discretisation along that axis. Visual inspection
of figure 1 in McLean er al. (1981) suggests that the transverse instability of type I is
contained within u < 0.36. From the same figure we also see that unstable perturbations of
type II are essentially limited to ;¢ > 1 for the small steepnesses € = a.k. < 0.33 employed
in our experiments. Here, we define the characteristic amplitude to be a. = ~/20, where o
is the standard deviation of the surface elevation, thus for uniform waves a. is the
amplitude and H = 2a, is the wave height.

(1.1)
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The single experiment reported by Trulsen et al. (1999) had A = 0.074, with unseeded
Stokes waves generated by the wave maker, and with transverse measurements limited to
only one propagation distance along the tank, where only two probes were located
across the tank. The original experiments of Lake et al. (1977) had u =0.066 (see
Trulsen & Dysthe 1997) with only one probe across the tank. Toffoli er al. (2013)
reported experiments with Au between 0.011 and 0.031, with seeded Stokes waves with
transverse modulations generated by the wave maker, unfortunately without transverse
measurements. Pinho & Babanin (2015) reported experiments with Au between 0.0094
and 0.026, with unseeded Stokes waves generated by the wave maker, and with transverse
measurements limited to only one propagation distance along the tank where nine probes
were located across the tank. Numerical simulations with u =0.098 and with seeded
perturbations of Stokes waves reported by Fernandez er al. (2014) showed substantial
growth of oblique sidebands.

There is a lack of experiments resolving the evolution of several transverse modes of
Stokes waves propagating along a tank of finite width. We here report such experiments,
with Ap between 0.05 and 0.15, with unseeded Stokes waves generated by the wave maker,
and with transverse measurements using five probes across the tank at four distances along
the tank. This gives adequate resolution for the unstable mode dynamics within the domain
of the type I instability, while it does not resolve the dynamics of the type II instability.
The presence of both type I and II modulations were, however, observed visually. These
tests were run in a 260 m long and 10.5 m wide tank, which is long enough to study the
problem at a reasonable scale.

This paper deals with the evolution of uniform waves in a long tank for the limiting
regime that the tank is just wide enough for unstable transverse modulations to modify the
long range evolution compared with a narrow tank. We discover that the limiting width
corresponds to Au & 0.1, thus the tank should accommodate crest lengths of at least 10
wavelengths. In this paper we do not consider the opposite limit of wide basins with Ay <
0.1, or irregular waves for which the modulational instability is suppressed (Alber 1978)
such as Onorato et al. (2009), Toffoli et al. (2010) and Cherneva & Guedes Soares (2011)
who employed irregular waves with small Ay = 0.016.

It is a curious coincidence, not necessarily related, that Gramstad & Trulsen (2007)
concluded the Benjamin—Feir index is a good indicator of increased freak wave activity
only when the wave field is long crested with characteristic crest length at least 10
characteristic wavelengths.

2. Experimental set-up

The experiments were carried out during the summer of 1998 in the towing tank at
MARINTEK (later renamed SINTEF Ocean). The tank is 260 m long and » = 10.5 m
wide. The depth of the tank is # = 10 m for the first 80 m closest to the wave maker, and
h =5 m elsewhere, with a step-type bathymetric connection. The experimental set-up,
using 20 probes arranged with five across the tank at four distances from the wave maker,
is shown in figure 2. The x-axis runs along the tank measuring the distance from the wave
maker. The y-axis is across with y = 0 at one side. The probes are at transverse positions
y=Ilb/6forl=1,2,3,4,5, between the lateral tank walls at y =0 and y = b. The wave
tank is sufficiently long that waves reflected from the damping beach do not reach back
within the time window used for analysis.

The experiments consisted of generating long series of un-seeded uniform long-crested
waves, with crests aligned in the y-direction, with given period 7' and wave height H.
Unstable perturbations grew naturally and the resulting modulations were recorded by
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Figure 2. Experimental set-up with array of 20 probes. For runs 80008017 probes were located at x; = 10,
x2 =40, x3 =80 and x4 =120 m. For runs 8018-8026 the probes and probe numbers at x =40, 80 and
120 m were moved to 80, 120 and 160 m, respectively.

the 20 probes along and across the tank. A total of 27 experimental runs were carried
out, of which four were repeated runs. Linear harmonic signals were used as input to the
wave maker, i.e. the paddle oscillated like a single harmonic. As a result, free ‘parasitic’
overharmonic components will also propagate in the wave field at their own (much lower)
speed, and be present after an additional time depending on the location. However, for the
present study of modulations and downshift we do not consider that these effects disturb
our findings, especially because time windows are chosen mostly before they arrive.

Table 1 gives a summary of the run numbers and the corresponding nominal period T
and nominal wave height H. The nominal wave height is defined to be the peak-to-trough
height of the generated uniform wave. We define the characteristic amplitude to be half
the nominal wave height a. = H /2, and we define the characteristic frequency to be given
by the nominal period w. =27/ T. We let the characteristic wavenumber be given by the
linear dispersion relation a)g = gk tanh k.h, where g = 9.81 m s~2 is the acceleration due
to gravity and £ is the depth. For all but runs 8004—8006 we can safely use the deep-water
dispersion relation a)g = gk,. For this analysis we do not employ nonlinear corrections
to the linear dispersion relation, leaving the nonlinear corrections to be taken care of by
nonlinear evolution equations (e.g. Trulsen & Dysthe 1997). In the table we show the
resulting values for the dimensionless depth k. and steepness € = a k. for the shallower
depth & =5 m. The transverse parameter Au from (1.1) is also shown. The largest fetch
€?k.x4 is an important parameter telling us how long the tank is in terms of nonlinear
modulational evolution. For ease of comparison we employ the same definition of fetch as
in Trulsen & Dysthe (1997) inspired by the effect of cubic nonlinearities in the nonlinear
Schrodinger equation. The last four columns of the table are explained in the next section.

The change of depth at 80 m from the wave maker does not have any impact on the
results because we are in a deep-water regime. The results in Appendix A show that the
interesting downshift happens after a longer propagation distance, which was the reason
why we moved most of the probes to greater fetch for runs 8018—8026.

Runs 4-6 are test cases with large transverse parameter Ay and small fetch €2k.x4,.
They are not interesting and therefore not included in the following discussion.
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Run T [s] HI[m] kch € Ap gzkc X4 ”’PEZ:XU “’pwz;z (x4) wrne;zxv()m) wmm;l),; (x4)
8000 1 0.05 20 0.1 0.074 49 1 1 1 1
8001 1 0.08 20 0.16 0.074 13 1 0.85 0.99 0.97
8002 1 0.1 20 0.2 0.074 20 0.81 0.81 0.92 0.91
8003 1 0.13 20 0.26 0.074 33 0.73 0.75 0.88 0.87
8004 2.5 0.1 32 0.032 046 0.08 0.98 0.98 0.98 0.98
8005 2 0.1 5 0.05 0.3 0.31 0.98 0.98 0.98 0.98
8006 3 0.1 22 0.022 0.67 0.027 1 1 1 1
8007 0.82 0.04 30 0.12 0.05 10 1 1 1 0.99
8008 0.82 0.06 30 0.18 0.05 23 0.82 0.83 0.92 0.92
8009 1.24 0.11 13 0.14 0.11 6.5 1 1 1 1
8010 1.24 0.15 13 0.2 0.11 12 1 1 1 1
8011 1.24 0.19 13 0.25 0.11 19 0.8 0.8 0.94 0.92
8012 1.24 0.24 13 0.31 0.11 31 1 1 0.95 0.91
8013 1 0.16 20 0.32  0.074 50 0.73 0.73 0.87 0.86
8014 0.82 0.03 30 0.09 0.05 5.8 1 1 1 1
8015 0.82 0.04 30 0.12 0.05 10 1 0.89 1 1
8016  0.82 0.05 30 0.15 0.05 16 0.85 0.85 0.97 0.95
8017 0.82 0.08 30 0.24 0.05 41 0.74 0.74 0.88 0.87
8018 1 0.03 20 0.06 0.074 2.3 1 1 1 1
8019 1 0.08 20 0.16 0.074 17 0.85 0.85 0.96 0.94
8020 1.43 0.15 98 0.15 0.15 6.9 1 1 1 1
8021 143 0.2 9.8 0.2 0.15 12 1 1 1 1
8022 143 0.25 98 0.25 0.15 19 1 1 0.96 0.94
8023 143 0.31 9.8 0.31 0.15 29 1 1 0.96 0.95
8024 143 0225 9.8 022 0.15 15 1 1 1 0.99
8025 143 0.31 9.8 0.31 0.15 29 1 1 0.96 0.96
8026 1 0.1 20 0.2 0.074 26 0.8 0.8 0.9 0.9

Table 1. First column run number. Next six columns nominal parameter values: period, wave height,
dimensionless depth (for the shallower depth 2~ =5 m), steepness, width parameter, largest fetch. Final four
columns downshift at largest fetch: peak across tank, peak at centreline, mean across tank, mean at centreline.

3. Data analysis

The x-axis is along the tank, the y-axis is across and the z-axis is vertical pointing up.
The surface elevation is z = n with quiescent surface z = 0. The velocity field is v = V¢
according to an assumption of potential flow.

At the lateral vertical walls there is no flow through the walls vy, = 0. In the case of
gravity waves and potential flow, the normal derivative of the surface elevation vanishes at
the walls, d1/dy = 0. This can be established from the exact dynamic surface condition

¢ 1 2
—+gn+=(Vep)"=0 atz=n. 3.1
ot 2
Upon taking the y-derivative and evaluating at the lateral wall we get the desired result.
In the following we outline a Fourier analysis in the transverse (y) and time (¢) domains,
with no Fourier decomposition in the longitudinal (x) direction.
Having established that 9n/dy = 0 at the lateral walls, we can represent the transverse
behaviour of the surface elevation by an infinite cosine series

NG, y, )= Y fin(x, 1) cos (”bﬂ) (3.2)

n=0
1024 A14-6
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We proceed as in Trulsen et al. (1999), but now truncating (3.2) to the first five terms,
insisting on exact reproduction at the collocation points

4
n(x, yi, 1) = ZO 70 (X, 1) COS (”’;yl) for 1=1,2,3,4,5. (3.3)
n=

With y; /b =1/6 the coefficients are obtained by the transform

70 2 0 2 0 2 n(y1)
N f2v3 00 0 —2v3 n(y2)
o |=¢| 3 30 -3 3 n() |- (3.4)
13 V3 =30 3 -3 n(y4)
4 1 -3 4 -3 1 n(ys)

In the following, we use the truncated (3.3) as the basis for interpolation across the tank

4
n(x, y, 1) =’§)ﬁn(x, 1) cos (%) (3.5)

We take the temporal Fourier transform over a time interval t starting at an offset time
depending on the position 7(x)

M, 1) =Y () for To(x) <t <To(x) +T, (3.6)
J

where w; =2mj/t. The offset starting time 7o(x) serves two purposes. First, 7o(x) is
chosen large enough that all startup effects have disappeared. Second, drp/dx =cg in
order to recognise that energy is transported with the group velocity. Between two
positions x1 and x» we have x| — x2 = ¢g(to(x1) — T0(x2)), where ¢, is the group velocity
corresponding to the nominal wave period T'.

With the advantage of the orthogonality of the interpolating functions, we can now
compute the mean power in the combined time and transverse domain

1 ro(x)+r1 b 5 4 . )
1<x>=—f —/ e, y, 1)y dyde =Y " vl (0, (3.7)
T 0

T 0(x) b j n=0

where we have introduced the coefficient v, such that vo =1 and v, = 1/2 forn > 0.
Introducing the power of each mode

Jn(x, 0)) = vy |fin, j (X) 1%, (3.8)

the transversally integrated power

4
Fx )= Jalx, o)), (3.9)

n=0
and the temporally integrated power
Gu(¥) =) Jn(x, ), (3.10)

J
1024 A14-7
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we have that the total mean power is

4 4
[)=) Gu() =) Flx.o)=Y > Julx, . (3.11)
n=0 Jj j n=0

Sometimes experiments are carried out with only one probe across the tank for each
longitudinal position x; typically, such probes are located along the centreline of the tank.
In our case this corresponds to transverse position y3 =b/2 and we define ¢(x,t) =
n(x, y3, 1) = no(x, t) — 72(x, t) + 74(x, t), where we have employed the interpolation
formula (3.5). Again we take the temporal Fourier transform over a time interval t starting

at an offset time depending on position 7y(x)

(e =0y D= Ge " for () <t<t@)+T,  (312)
J

from which we identify the mean power in the time domain

1 To(x)+T .
Cx)=- / n,ys Ddi=Y" G0 =) Dx, @),  (313)
i j j

T Jrp(x)

where D(x, wj) = | (x)|%.

We have computed three different kinds of peak frequencies of the power spectrum: The
peak frequency of each transverse mode wpear,n (x) is the frequency w; that maximises
Jn(x, wy) for each n € {0, 1, 2, 3, 4}. The peak frequency for the combined measurements
across the tank wpeqr(x) is the frequency wj; that maximises F'(x, ;). The peak frequency
at the centreline of the tank wpeak,c(x) is the frequency w; that maximises D (x, wj).

For all of the peak frequencies, we limit the search to a frequency range strictly within
the first harmonic domain § < wpear/w: <2 — &, where § is a small number.

Similarly, we have computed three different kinds of mean frequencies of the power
spectrum: the mean frequency of each transverse mode is

Omeann(X) =Y _ || Iy (x, )/ G (x). (3.14)
J

The mean frequency for the combined measurements across the tank is

Omean(¥) =Y laj | F (x, @) /1 (x). (3.15)
J
The mean frequency at the centreline of the tank is
Omean.c(X) =) _ |0j| D(x, )/ C(x). (3.16)

J

The evolution of these quantities along the tank is expected to be dominated by cubic
nonlinear interactions, e.g. described by the nonlinear Schrodinger equation, therefore we
have chosen to normalise the evolution x-axis by the square of the nominal steepness €
(Trulsen & Dysthe 1997).

4. Results

Here, we give detailed results for run 8019. Detailed results for all runs can be found in
Appendix A. Pictures from the runs can be found in Appendix B.
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Quantity Explanation

Ju(x, ) Power of each transverse mode n and frequency w;
F(x, wy) Transversally integrated power of each frequency w;
G,(x) Temporally integrated power of each transverse mode n
I(x) Temporally and transversally integrated power

D(x, wj) Power at centreline of each frequency w;

C(x) Temporally integrated power at centreline

Table 2. Summary of quantities presented.

In order to help the interpretation of the following figures we offer table 2 with a
summary of the quantities that are being presented.

Figure 3 shows the frequency power spectrum J,(x, ) for each transverse mode
number n at each station x, normalised such that the peak value is 1 at each station x.
Two different views are shown: to the left, spectral curves as a function of w for each value
of n; to the right, intensity plots in the (w, n)-plane. Notice that w increases to the right in
the left column while it increases downward in the right column. We observe significant
downshift of the peak frequency, and a certain amount of energy transfer to transverse
modes n > 0. The long-crested mode n =0 and the first transverse mode n =1 have
significantly downshifted peaks, while all modes have significant energy leakage to higher
frequencies. All figures are limited to the first harmonic frequency domain 0 < w < 2w,.

Figure 4 shows the mean power of each transverse mode G, (x), the total mean power
I (x) and the mean power along the centreline of the tank C(x). If we limit consideration
to only the centreline, or only the long-crested part of the wave n =0, then we may
overestimate the amount of dissipation. A significant portion of the energy is transferred
to transverse modes n > 0.

Both figures 3 and 4 imply that a significant amount of energy can be transferred to
transverse modes, and thus dissipation can be overestimated by just observing the long-
crested mode or just measuring at the centreline. These two figures also suggest that the
main contributions to the energy budget can be captured by just considering the long-
crested mode n = 0 and the first transverse mode n = 1.

Figure 5 shows the peak and mean frequencies. To the left we see the peak frequency
Wpeak,n(x) for each transverse mode J,(x, w), the peak frequency wpeq(x) for the
combined measurements across the tank F(x, w) and the peak frequency wpeqk,c(x) at the
centreline of the tank D (x, w). To the right we see the mean frequency w,ean,» (x) for each
transverse mode J, (x, ®), the mean frequency w,eqn(x) for the combined measurements
across the tank F(x, w) and the mean frequency wpeaqn,c(x) at the centreline of the
tank D(x, w). Several of the transverse modes n > 0 may actually experience significant
upshift, but they do not carry significant amount of energy, therefore there is a clear
tendency of downshift for the wave system as a whole and along the centreline.

5. Discussion

The results can be summarised in parametric (€, Au)-plots in order to distinguish which
parametric regimes that give downshift. Figure 6 shows results for the downshift of
the peak frequency wpeqk(x), while figure 7 shows results for the downshift of the
mean frequency wpeqn(x), in both cases for the combined measurements across the tank
F(x, w). Each run corresponds to a cross, X, or a cross in a circle, ®.
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Figure 3. Frequency power spectrum J, (x, ) for each transverse mode number 7 at each station x,

normalised such that the peak value is 1 at each station x.
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Figure 4. Mean power along the tank for each transverse mode G, (x), the total mean power I (x) and the mean
power along the centreline of the tank C(x). Linear and logarithmic power axes. Each set of four discrete points
is connected with straight lines (linear interpolation).
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Figure 5. Peak and mean frequencies along the tank, wpeak,n (X) and @mean,n(x) for each transverse mode
Ju(x, @), Wpear(x) and wypean(x) for the combined measurements across the tank F(x, w), @peak,c(x) and
Wmean,c(x) for the centreline of the tank D(x, w). Each set of four discrete points is connected with straight
lines (linear interpolation).

Colours indicate the amount of downshift at the last probe location x4. For the duplicate
runs with identical parameter values (¢, Au), only the highest run numbers with the largest
value of x4 were employed in order to compute the contour levels. Runs with the largest
amount of downshift are shown in blue. Runs with smaller amounts of downshift are
shown in red. Runs without downshift or with little downshift are shown in black. The
chosen contour levels are different for the peak frequency in figure 6 and for the mean
frequency in figure 7, and are given in the figure captions, because the peak frequency
downshift is larger than the mean frequency downshift.

In these plots the solid contours are obtained from the irregular grid of data points using
the ‘griddata’ command in Octave/Matlab with linear interpolation. We have attempted to
parameterise the experimental result by the formulas Ag = 0.2(¢ — 0.15)%23 shown in red
dots and A =0.1(e — 0.22)%! shown in blue dots.

Run numbers 2 and 26 both correspond to the single experiment reported in Trulsen
et al. (1999). We confirm that this choice of (¢, Au) indeed produces a downshift, as
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Parameter plot for peak frequency
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Figure 6. Parametric plot for peak frequency downshift. Runs without, X, and with, ®, clear visual observation
of type II horseshoe patterns. Run numbers reduced by 8000. Colours: black, no downshift Awpear/we > 0.9;
red, small downshift 0.9 > Awpear/we > 0.76; blue, clear downshift Awpeqk/we <0.76. Solid red contour at
value 0.9, solid blue contour at value 0.76. Dotted contours attempted parameterisation explained in text.

previously reported. The fact that run number 10, with equal steepness € and greater A,
does not produce a downshift suggests that transverse modulations are essential for this
downshift to occur.

Run 11 has downshift while run 10 does not. They have the same value of Au, but run
11 has greater steepness € than run 10. This is likely associated with the greater amount
of energy loss in the steeper run 11, possibly giving support to previous findings that
damping associated with heavy modulations can give downshift for long-crested waves
(e.g. Trulsen & Dysthe 1990)

Run 19 has downshift while run 1 does not, for the same values of (e, Au). This is due
to the probes being too close to the wave maker for run 1. The probes were moved farther
down the tank for runs 8018—-8026. We employed the result from run 8019 in order to draw
the solid contour curves.

Experimental runs with clear visual observation of type II horseshoe patterns are
indicated by circles with crosses ®, this happens for the largest values of steepness € > 0.3.
The results clearly show that the downshift does not depend on type II modulational
instability or the horseshoe modulation pattern. It is interesting to note that run 12 does
not have a clear downshift of the peak frequency, while run 11 does, suggesting that the
downshift depends on type I rather than type II modulational instability.

The downshift clearly depends on the combination of the tank being sufficiently wide
and the wave being sufficiently steep. The thresholds are approximately A =~ 0.1 and
€ ~0.15. Downshift can happen in wide wave tanks Au < 0.1 for steepness € > 0.15.
For narrower wave tanks 0.1 < Au < 0.12, downshift can happen for larger steepness € ~
0.25, but it is not clear that an even greater steepness € > 0.3 will guarantee downshift
for these values of Au. For even narrower wave tanks Au > 0.12 it is not clear that a
downshift can happen regardless of the steepness.

Those runs with the largest steepness denoted by circle and cross, ®, correspond to clear
observations of type II broad-band horseshoe patterns along the wave crests. Not all of the
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Parameter plot for mean frequency
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Figure 7. Parametric plot for mean frequency downshift. Runs without, x, and with, ®, clear visual observation
of type II horseshoe patterns. Run numbers reduced by 8000. Colours: black, no downshift Awy,ean/we > 0.95;
red, small downshift 0.95 > Awean/wc > 0.89; blue, clear downshift Awyean/we < 0.89. Solid red contour at
value 0.95, solid blue contour at value 0.89. Dotted contours attempted parameterisation explained in text.

cases with horseshoe patterns did show downshift, only those with sufficiently small Au
showed downshift. We therefore do not expect that type II modulations play any role in the
frequency downshift.

The detailed results in Appendix A clearly show that if measurements were limited to
only the centreline along the tank, with only one probe across the tank, the conclusions
would have been different from those discussed above. This could have resulted in an
overestimation of the energy dissipation and an incorrect estimation of the frequency
downshift. This is because energy and frequency content can be ‘hidden’ in the transverse
modes. Our results suggest that it may be sufficient to include only the first transverse
mode n =1 in addition to the long-crested mode n = 0, this should be investigated with
appropriate models in the future.

Pictures from all the experiments are shown in Appendix B.

The most significant limitation of these experiments is the rather limited maximum
normalised evolution distance €2k.x4, possibly concealing downshift at greater distances
for some of the runs.

Comparing these results with previous literature, we should keep in mind that many
previous investigations on downshift were done with seeded waves, while our experiments
employ unseeded waves.

While the most accepted paradigms for downshifting argue that dissipation is required
for downshifting to occur. Our experiments contain both dissipation and transverse
modulation at the same time. The full explanation for downshifting likely depends on
both.

6. Conclusions
We have presented experimental evidence for the numerical prediction of Trulsen &
Dysthe (1997), confirming and extending the experimental observation of Trulsen
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et al. (1999), that transverse narrow-banded modulations can play an essential role in
the evolution of initially uniform long-crested waves, and can facilitate a frequency
downshift. Insufficient measurement resolution across the tank can result in overestimating
dissipation and incorrect estimation of the amount of downshifting, because energy and
frequency content can be ‘hidden’ in transverse modes. We observe clear downshift only
in cases that allow significant interactions with unstable narrow-banded transverse modes,
corresponding to transverse type I instability. We do not necessarily observe downshift
with modulations of unstable wide-banded transverse modes, corresponding to type II
instability. A criterion for downshift appears to be that the wave tank should accommodate
crest lengths of at least 10 wavelengths.
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Appendix A. Detailed analysis for each run

Figures 8-31 show detailed analysis of the various experimental runs. For explanation
please see the legends of figures 3-5.
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Figure 8. Run 8000.
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Figure 14. Run 8009.
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Figure 18. Run 8013.
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Figure 21. Run 8016.
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Figure 30. Run 8025.
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Figure 31. Run 8026.

Appendix B. Pictures from various runs

Figure 33. Pictures from run 8009.
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Figure 38. Pictures from run 8014.
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