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Abstract

Background. As an accelerated cognitive decline frequently heralds onset of severe neuro-
pathological disorders, understanding the source of individual differences in withstanding
the onslaught of cognitive ageing may highlight how best cognitive abilities may be retained
into advanced age.
Methods. Using a population representative sample of 5088 adults aged •50 years from the
English Longitudinal Study of Ageing, we investigated relationships of polygenic predisposition
to general cognition with a rate of change in cognition during a 10-year follow-up period.
Polygenic predisposition was measured with polygenic scores for general cognition
(GC-PGS). Cognition was measured employing tests for verbal memory and semantic fluency.
Results. The average baseline memory score was 11.1 (S.D. = 2.9) and executive function score
was 21.5 (S.D. = 5.8). An increase in GC-PGS by one standard deviation (1-S.D.) was associated
with a higher baseline verbal memory by an average 0.27 points (95% CI 0.19–0.34, p < 0.001).
Similarly, 1-S.D. increase in GC-PGS was associated with a higher semantic fluency score at
baseline in the entire sample (β = 0.45, 95% CI 0.27–0.64, p < 0.001). These associations
were significant for women and men, and all age groups. Nonetheless, 1-S.D. increase in
GC-PGS was not associated with decreases in verbal memory nor semantic fluency during
follow-up in the entire sample, as well stratified models by sex and age.
Conclusion. Although common genetic variants associated with general cognition additively
are associated with a stable surplus to cognition in adults, a polygenic predisposition to gen-
eral cognition is not associated with age-related cognitive decline during a 10-year follow-up.

Introduction

Cognitive decline, including verbal memory and executive function, is among the most feared
aspects of growing old, as it frequently heralds onset of dementia spectrum (Rajan, Wilson,
Weuve, Barnes, & Evans, 2015) and other adverse health-related outcomes including mortality
(Deary et al., 2009; Wilson, Beckett, Bienias, Evans, & Bennett, 2003). Although multiple fac-
tors may determine individual paths of cognitive decline, investigating the mechanisms under-
lying individual differences in withstanding the onslaught of cognitive ageing is likely to
highlight how best cognitive abilities may be retained into advanced age (Deary, 2013).

General cognitive function has a heritability of >50–70% from adolescence through adult-
hood to older ages (Plomin & Deary, 2015; Tucker-Drob, Briley, & Harden, 2013). More spe-
cifically, heritability of general cognitive ability has been shown to have a linear increase from
childhood (∼40%) to adolescence (∼50%) to adulthood (∼60%) (Haworth et al., 2010; Plomin &
Deary, 2015; Tucker-Drob et al., 2013). Genetic correlations among different cognitive domains
are estimated to be >0.6, indicating that the same genes may be responsible for the heritability of
these domains (Plomin & Kovas, 2005). More recent genomic studies of general cognition
revealed that its genetic architecture is characterised by multiple common genetic markers spread
across the entire genome where the identified genes additively explained 12–25% of variation in
the trait of cognition (Davies et al., 2018; Savage et al., 2018). Building on the results from these
genome-wide association studies (GWAS), the polygenic scores (PGS), which measure an individ-
ual genetic predisposition to a trait by combining the effects of many common genetic variants
associated with it (Dudbridge, 2013), further demonstrated that individual differences in cognitive
function are driven by thousands of common genetic markers scattered across the whole genome
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(Davies et al., 2018; Savage et al., 2018). Cumulatively, these studies
demonstrated that a higher load of common genetic markers for
general cognition are associated with better cognition.

Because genetic variants are determined randomly at conception
and segregated independently of environmental influences,
PGSs can be seen as unconfounded proxies for the life-time
predisposition to general cognition. Consequently, one of possible
ways to investigate the source of individual differences in
normal, non-pathological cognitive ageing is by ascertaining
whether a polygenetic propensity to general cognition is also
associated with the rate of cognitive change in adults using the
PGS approach. Although a decline in cognitive performance in
adults is part of the normative ageing process (Wilson et al.,
2002), having a higher load of common genetic markers associated
with general cognition would be expected to associate with a lower
rate of cognitive decline over time. However, this question has not
been investigated.

Due to their vital functionality, verbal memory and semantic
fluency cognitive domains are important predictors of clinically sig-
nificant cognitive decline in healthy older adults (Masur, Sliwinski,
Lipton, Blau, & Crystal, 1994). Indeed, verbal memory is necessary
for storing and processing internally held information for use in
guiding behaviours (Kofler et al., 2011). Whereas semantic fluency
is arguably the most complex aspect of one’s cognitive capacities.
This is because semantic fluency is necessary for everyday
living, such as attention, initiation, mental flexibility, organisation,
abstract thinking, planning and problem-solving, all of which are
required to implement behavioural responses appropriate to a
constantly changing world (Kofler et al., 2011). Because these
cognitive domains have varying functionalities, it is feasible that
a polygenic predisposition to general cognition may be associated
with a slower decline in these cognitive domains to varying degree.
There is further evidence suggesting that age and gender differences
exist in the cognitive ageing processes (Deary et al., 2009; Weber,
Skirbekk, Freund, & Herlitz, 2014). For example, earlier twin
studies highlighted that boys had a higher heritability for a verbal
measure of cognitive ability compared to girls (Galsworthy,
Dionne, Dale, & Plomin, 2000). More recent research in turn
highlighted that this genetic propensity to a higher verbal
measure of cognitive ability in men extends to a later part of
life (Kępińska et al., 2020). However, the questions of the
polygenic influence underlying these cognitive domains, and if
their impact differs across genders and age groups, have not been
investigated.

Despite some uncertainty about their ultimate clinical utility
(Wray et al., 2013), PGSs can advance our knowledge of the genetic
nature underlying rate of change in verbal memory and semantic
fluency cognitive domains in adults. Therefore, we investigated
whether a higher load of common genetic markers for general cog-
nition associated with higher cognitive domains at baseline and
with a deaccelerating decline in cognitive domains over the
10-year follow-up in the general population of adults. Assuming
a variation in cognitive domains is a function of the degree of gen-
etic liability to general cognition, we hypothesised that a PGS for
general cognition would be significantly associated with a higher
score in verbal memory and semantic fluency at baseline, and a
lesser rate of decline in these cognitive domains during follow-up
in health adults. Given age and gender differences in cognitive
functions and cognitive ageing (Kępińska et al., 2020; Weber
et al., 2014), we also investigated whether the potential relationships
of a PGS for general cognition with cognition at baseline and dur-
ing follow-up in healthy adults differed by age and gender.

Methods

Sample

We analysed data from the English Longitudinal Study of Ageing
(ELSA), which is an ongoing large, multidisciplinary study of a
nationally representative sample of the English adults aged ⩾50
years old (Steptoe, Breeze, Banks, & Nazroo, 2013). The ELSA
study started in 2002–2003 (wave 1) with participants recruited
from the Health Survey for England (HSE), who were then
followed-up every 2 years. The sample is periodically refreshed
with younger participants to ensure that the full age spectrum
is maintained. Comparisons of the ELSA sample with the national
census showed that the baseline sample was representative of the
non-institutionalised general population aged ⩾50 living in the
UK (Steptoe et al., 2013). For the present study, the baseline
data were obtained from either wave 2 (2004–2005) for the core
members who started at wave 1, or wave 4 (2008–2009) for the
participants joining the study through refreshment samples; the
included participants took part in the blood draws during home
visits by a nurse. Follow-up data were ascertained from waves 4
(2008–2009) to wave 8 (2016–2017). We excluded participants
with pathological causes of cognitive decline, such as clinical
stroke (including self-reported stroke) or dementia at baseline
and throughout the follow-up waves of data collection; we have
further moved responders who died during the follow-up period.
Our final analytic sample comprised 5088 responders. The full pro-
cess of sample selection is depicted in online Supplementary
Fig. S1. Compared to those who were excluded, the ELSA partici-
pants who were included in the study tended to be younger, had
higher educational attainment and higher accumulated wealth;
the latter group also included a lower proportion of people with
long-standing health conditions, severe depressive symptoms and
smokers compared to the respondents who were excluded from
this study (online Supplementary Table S1). Ethical approval for
each of the ELSA waves was granted by the National Research
Ethics Service (London Multicentre Research Ethics Committee).
All participants gave informed consent.

Study variables

Cognition
To measure verbal memory, immediate and delayed verbal mem-
ory were assessed using a word-learning task, which entailed
recalling as many out of 10 common words that were read out
to them as possible immediately and after a short delay during
which they completed other cognitive tests (Yin, Lassale,
Steptoe, & Cadar, 2019). Following the protocol of previous stud-
ies (Fancourt & Steptoe, 2019), the results for immediate and
delayed recall were then combined to give an overall verbal mem-
ory variable. Semantic fluency was measured with a verbal fluency
test, where participants were asked to think of as many animal
names as they could in one minute. The total number of animals
named by participants was used as a measure of semantic fluency.
Although this task primarily focused on semantic fluency, it com-
bined various aspects of broader executive function including cog-
nitive flexibility, processing speed, inhibitory control and verbal
fluency. As the semantic fluency test was not administered at
wave 6, there was an extended gap in the follow-up assessments
of this cognitive domain during the follow-up. The distribution
of these cognitive domains across all waves of data collection is
provided in online Supplementary Table S2.
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Covariates
Covariates include gender, year of birth and age; to capture the non-
linear effects of ageing, we further included age2 as a covariate.
Because theε4 alleleof the apolipoproteinEgene (APOE-ε4)has pre-
viously been associated with cognitive decline in normal ageing
(Zhang & Pierce, 2014), we adjusted our analyses for APOE-ε4.
Consistent with previous research (Zhang, Zhao, Xu, & Jiang,
2018), APOE-ε4 status was defined according to the absence or pres-
ence ofAPOE alleles (ε2/4,ε3/4 and ε4/4). Lastly, genetic ancestry [as
was measured with principal components (see below)) was included
among the covariates to account for any ancestry differences in gen-
etic structures that could bias our results (Price et al., 2006).

Genetic data

Quality control
The genome-wide genotyping was performed at University College
London Genomics in 2013–2014 using the Illumina HumanOmni2.5
BeadChips (HumanOmni2.5-4v1, HumanOmni2.5-8v1.3) which
measures ∼2.5 million markers that capture the genomic variation
down to 2.5% minor allele frequency. Using PLINK (Purcell et al.,
2007) and VCFtools (Danecek et al., 2011), SNPs were excluded if
they were non-autosomal, the minor allele frequency was <1%, if
more than 2% of genotype data were missing and if the Hardy–
Weinberg Equilibrium p value <10−4. Samples were removed
based on call rate (<0.99), suspected non-European ancestry, het-
erozygosity and relatedness; participants were further removed if
theier recorded sex phenotype was inconsistent with genetic sex.
The summary of full quality control employed in the ELSA
study is provided in online Supplementary Fig. S2 and
Table S3. We employed the principal components analysis
(Price et al., 2006) to identify those individuals who deviated
from European ancestry (i.e. ethnic outliers). This set of analyses
demonstrated the presence of ancestral admixture in the 65
individuals, who were subsequently removed; individuals who self-
reported to be of non-European ethnicity were also removed. Using
the updated sample, we calculated principal component, which
then was used to adjust for possible population stratification in
the association analyses (Price et al., 2006; Wang et al., 2009).

PGS analyses
PGS are calculated from the number of trait-associated alleles
weighted by corresponding genotype effect sizes as estimated in
a reference GWAS meta-analysis (Choi, Mak, & O’Reilly, 2020;
Purcell et al., 2009). Therefore, the predictive accuracy of PGS is
dependent on the strength of the GWAS summary statistics.
Currently, there are two GWASs that provided summary statistics
for general cognition (Davies et al., 2018; Savage et al., 2018). The
first was carried out by Davies et al. that combined individuals of
European ancestry from 56 population-based cohorts brought
together by the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE), the Cognitive Genomics
Consortium (COGENT) consortia and UK Biobank (UKB)
(Davies et al., 2018); the second was carried out by Savage et al.
that measured multiple dimensions of cognitive functioning
across 14 cohorts including UKB and the COGENT (Savage
et al., 2018). To ascertain which of these summary statistics to
employ, we calculated an expected predictive accuracy of
GC-PGS based on the results of each GWAS using Avengeme
package implemented in R (http://www.rstudio.com/).
Specifically, using information on sample sizes utilised in each
GWAS and in the present study (nELSA = 6831, nDavies et al.

(2018) = 300 486, nSavage et al. (2018) = 269 867), total number of
independent markers in genotyping panel (mDavies et al. (2018) =
1 348 174 and mSavage et al. (2018) = 1 269 550), and lower and
upper p values used to select markers into GC-PGS ( p0, p1),
our estimates showed that GC-PGS based on GWAS from
Savage et al. (power = 0.504, p = 0.027) would have more power
for the subsequent analyses compared to the predictive power
of GC-PGS calculated based on summary statistics from Davies
et al. (power = 0.386, p = 0.052). Using summary statistics pro-
vided by Savage et al., we calculated PGS for general cognition
using PRSice based on genotyped data at different p value cut-offs
(Euesden, Lewis, & O’Reilly, 2015). As it was highlighted that
PGSs calculated based all available SNPs either explain the most
amount of variation in a trait or are not significantly different
than PGSs based on different p value thresholds, we utilised
PGS at p value threshold of 1 (Ware et al., 2017). To aid the inter-
pretability of the results, GC-PGS was standardised to a mean of 0
[standard deviation (S.D.) = 1].

Statistical analysis

To assess the relationships of PGSs with verbal memory and
semantic fluency and to estimate the mean change in each of
these cognitive domains over a period of 10 years, we employed
linear mixed-effect models (LMMs) with maximum likelihood
estimation (Kristjansson, Kircher, & Webb, 2007). LMMs are flex-
ible analytic tools for modelling correlated continuous data where
correlations among values on continuous dependent variables
arise from repeated measurements (West & Galecki, 2012).
LMM models further maximise the use of longitudinal data by
weighing estimates for missing data between waves and as such
increase statistical power and precision (Mallinckrodt, Clark, &
David, 2001). The maximum likelihood estimation aspect of
LMMs seeks to find parameter values that make the model’s
predicted values most similar to the observed values
(Martínez-Huertas, Olmos, & Ferrer, 2021). As LMMs have
been developed to capture individual differences, while at the
same time allowing generalisations across populations
(Martínez-Huertas et al., 2021), we further captured random or
stochastic variability in the data that comes from participants
by estimating variance. Having considered linear, quadratic and
cubic LMMs, Akaike Information Criterion and Bayesian
Information Criterion (George, Seals, & Aban, 2014; Royston &
Parmar, 2002) showed that the linear model was the most appro-
priate for our analyses. We first fitted a model adjusted for age,
sex, year of birth and genetic ancestry as measured with 10 prin-
cipal components (we referred to this model as Model 1). Next, to
test for incremental predictive validity over APOE-ε4, which is a
well-established risk factor for rapid cognitive decline, we fitted a
second model which included all covariates from Model 1 in add-
ition to APOE-ε4 (we referred to this model as Model 2).
Interaction between GC-PGS and year of birth in the analyses
of each cognitive domain was shown to be non-significant;
thus, these interactions were not included in the models. For
the age-stratified analyses, age groups were formed based on ter-
tile results (i.e. 50–57, 58–65 and ⩾66 years). All analyses were
weighted for non-response to requests for blood collections to
wave 2 for the core members, or wave 4 for the participants who
joined the study at wave 4 through the refreshment sample. Due
to multiple testing, Bonferroni correction was applied (Benjamini
& Hochberg, 1995), and significance was indicated within each

2854 Olesya Ajnakina et al.

https://doi.org/10.1017/S0033291721004827 Published online by Cambridge University Press

http://www.rstudio.com/
http://www.rstudio.com/
https://doi.org/10.1017/S0033291721004827


model if p < 0.004 (p = 0.05/12). All association analyses were con-
ducted in STATA release 14 (STATA Corp LP, USA).

Results

Sample characteristics

The baseline demographic and health characteristics of the total
sample are presented in Table 1. The analytic sample comprised
5088 individuals with an average age for the entire cohort of
61.7 years old (S.D. = 7.4, median = 60, IQR = 56–67); of these, n
= 1812 (35.6%) were aged 50–57 years old, n = 1745 (34.3%)
were aged 58–65 years old, and n = 1531 (30.1%) were ⩾66
years old. Of the entire analytic sample, 24.8% (n = 1260) were
APOE-ε4 carriers and 44.2% (n = 2250) were men. The average
baseline memory score was 11.1 (S.D. = 2.9) and executive function
score was 21.5 (S.D. = 5.8).

Change in cognition over the 10-year follow-up

A significant decline in verbal memory (β =−0.13, 95% CI −0.15
to −0.12, p < 0.001) and semantic fluency (β =−0.31, 95%
CI −0.36 to −0.25, p < 0.001) was observed during the follow-up
period of 10 years (Fig. 1, online Supplementary Table S2). As
further depicted in Fig. 1, a comparable decline in these cognitive
domains was observed in men and women. While the decline in
verbal memory and semantic fluency scores was comparable
between the adults who were aged 50–65 years of age, the most
striking decline was observed in adults who were aged ⩾66
years old.

PGS for general cognition and verbal memory

An increase in GC-PGS by one standard deviation (1-S.D.) was
associated with a higher baseline verbal memory by an average
0.27 points (Model 2: 95% CI 0.19–0.34, p < 0.001) (Table 2)
indicating that a higher GC-PGS the adults had higher they

scored on verbal memory test. This association was significant
for women (βmodel 2 = 0.23, 95% CI 0.14–0.33, p < 0.001) and
men (βmodel 2 = 0.32, 95% CI 0.21–0.42, p < 0.001). In the
age-stratified analyses, 1-S.D. increase in GC-PGS was associated
with the higher baseline verbal memory score by approximately
0.31 points in adults who were aged ⩾66 years old (Model 2:
95% CI 0.17–0.45, p = 0.001), 0.29 points in adults aged 50–57
years (Model 2: 95% CI 0.17–0.41, p < 0.001) and 0.19 points in
adults who were aged 50–57 years older (Model 2: 95% CI
0.07–0.31, p = 0.001). Nonetheless, 1-S.D. increase in GC-PGS
was not associated with decreases in verbal memory during
follow-up in the entire sample, as well stratified models by sex
and age.

PGS for general cognition and semantic fluency

A 1-S.D. increase in GC-PGS was associated with a higher seman-
tic fluency score at baseline in the entire sample (βmodel 2 = 0.45,
95% CI 0.27–0.64, p < 0.001) and separately in women (βmodel 2 =
0.40, 95% CI 0.17–0.63, p = 0.001) and men (βmodel 2 = 0.54, 95%
CI 0.24–0.83, p < 0.001) (Table 3). In the age-stratified analyses,
1-S.D. increase in GC-PGS was associated with a higher baseline
semantic fluency score in adults who were aged 50–57 years old
(βmodel 2 = 0.46, 95% CI 0.17–0.75, p = 0.002), and in adults
aged 58–65 years (βmodel 2 = 0.54, 95% CI 0.22–0.86, p = 0.001).
During the 10-year follow-up, 1-S.D. increase in GC-PGS was
not associated with decreases in semantic fluency score in the
entire sample and in stratified models.

Discussion

To our knowledge, this is the first study to have investigated the
relationships of a polygenic predisposition for general cognition,
as measured with the PGS approach, with individual differences
in verbal memory and semantic fluency cognition domain at
baseline and change in each of these cognitive domains over a
period of 10 years independently of APOE-ε4 status in a large
population-representative sample of adults.

Our results showed that a higher load of nominally associated
loci for general cognition was associated with better verbal mem-
ory and semantic fluency in adults at baseline. All effect sizes for
these significant effects ranged from modest (the standardised
βs = 0.19 for verbal memory) to moderate (the standardised
βs = 0.46 for semantic fluency). These results in turn highlight
that individual differences in these cognitive domains are influ-
enced by an individual load of common genetic markers asso-
ciated with general cognition. It was previously argued that men
aged 44–88 years old might differ from women of the similar
age in their cognitive capacity (Finkel, Reynolds, Berg, &
Pedersen, 2006), possibly due to differences in the prevalence of
neuronal efficiency (Payton, 2009). Our results, however, demon-
strated that these potential gender differences could not be
explained by a polygenic predisposition to general cognition. In
contrast to the results from cross-sectional samples that appeared
to lend support for the notion that the heritability of cognitive
functions decreases as adults age (Lee, Henry, Trollor, &
Sachdev, 2010), we showed that the additive contribution of com-
mon genetic markers for general cognition were significantly
associated with higher baseline verbal memory and semantic flu-
ency scores across all age groups.

Although a significant decline in verbal memory and semantic
fluency was observed over the follow-up time, in contrast to our

Table 1. Sample characteristics at baseline

Baseline sample characteristics

Total sample n = 5088

n (%)/mean (S.D.)

Age at baseline (years) 61.7 (7.4)

Median (IQR) 60 (56–67)

Age groups

50–57 years 1812 (35.6)

58–65 years 1745 (34.3)

⩾66 years 1531 (30.1)

Gender

Female 2838 (55.8)

Male 2250 (44.2)

APOE-ε4 present 1260 (24.8)

Cognition

Memory score 11.1 (2.9)

Executive function score 21.5 (5.8)

APOE-ε4, two ε4 alleles of the apolipoprotein E gene; S.D., standard deviation.
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hypothesis, common genetic variants associated with general cog-
nition additively were not associated with a greater rate of decline
in verbal memory and semantic fluency during the 10-year
follow-up in adults from the general population. Employing
PGS for educational attainment, neuroticism, Alzheimer’s disease,
major psychiatric disorders and physical health, Ritchie et al.
showed that there were no statistically significantly associations
between PGS and variation in cognitive change between ages 11
and 70–79 in the longitudinal Lothian Birth Cohort 1936 study
(Ritchie et al., 2019). Our results extend these findings by showing
that a PGS for general cognition also was not associated with cog-
nitive domains in adults aged 50 years old and older. Our results
are further aligned with other longitudinal studies which, having

investigated determinants of the rate of cognitive decline on vari-
ous cognitive domains over a 5-year (Reynolds, Finkel, Gatz, &
Pedersen, 2002), 8-year (McGue & Christensen, 2002) and even
a 16-year follow-up (Finkel, Reynolds, McArdle, Hamagami, &
Pedersen, 2009), concluded the rate of cognitive decline in the
general population is primarily driven by environmental factors.

The observed non-significant association between the genetic
influences and cognitive change may also reflect attrition effects,
which are unavoidable in longitudinal cohorts. Similarly, because
the results presented in the study are based on longitudinal study
with prospectively collected data, collider bias may have contributed
to this finding (Arnold et al., 2021), which might have arisen from
selection bias or attrition. Even though comparisons with the

Fig. 1. The average distribution of the verbal memory
and semantic fluency cognitive domains across all
waves of data collection over the 10-year follow up for
the entire sample, different age groups and genders.
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national census showed that the ELSA sample was representative of
the non-institutionalised general population aged ⩾50 residing in
the UK (Steptoe et al., 2013), to ensure we completely minimised
any issues related to the selection bias we used inverse probability
weighting in our models (Hernán, Hsu, & Brian, 2019). In terms
of attrition, the proportion of missingness in the present study
was comparable to many longitudinal cohorts (Ajnakina et al.,
2021; Power & Elliott, 2006; Sonnega et al., 2014); we further
imputed missing values using robust approaches (Ajnakina et al.,
2021; Oba et al., 2003; Stekhoven & Bühlmann, 2012). Therefore,
it is unlikely that attrition or selection bias influenced our results.
It is nevertheless possible that only a subset of the genetic factors
for general cognition may still have an impact on individual differ-
ences in non-pathological, age-associated change in semantic flu-
ency, which, due to the nature of the PGS approach, might not
have been captured in the present study. Therefore, further analyses,
such as pathway-specific PGS analyses, genomic structural equation
modelling and gene-set enrichment analyses, may be needed before
we can draw more precise conclusions of the role common genetic
loci may play in the rate of cognitive ageing.

Methodological considerations

We analysed a large population-based cohort of nationally repre-
sentative of older adults in England who were followed-up every

2 years. We further benefitted from the availability of repeated
measures of cognition across a 10-year span. Our study included
a relatively equal proportion of women and men from socio-
economically diverse backgrounds. Confidence in these findings
is strengthened using a LMM, which is an optimal way to describe
the change in continuous dependent variables over time all the
while taking the intra-individual and inter-individual variation
into account. Instead of using composite scores for broad cogni-
tive functions, we explored verbal memory and semantic fluency
separately (Szoke et al., 2008).

Nonetheless, several methodological limitations warrant further
reflection and discussion. Although PGSs have the potential to
improve health outcomes through their eventual routine implemen-
tation as clinical biomarkers, the low generalisability of genetic stud-
ies across populations is noteworthy (Martin et al., 2019). This is
because the construction of PGSs is mainly dependent on the avail-
ability of the summary statistics from GWASs, which are currently
predominately based on European participants (Martin et al.,
2019). It may be argued that the non-significant findings of the
present study might have arisen due to the cognitive measures
employed not being sufficiently sensitive to detect changes in
cognitive status over the follow-up period of 10 years. However,
having utilised the same sample, it was previously shown that
APOE-ε4 (Kępińska et al., 2020) and loneliness in older people con-
tributed to a decline in these cognitive domains over the 10-year

Table 2. Associations between polygenic score for general cognition (GC-PGS) and longitudinal measure of verbal memory in older adults over the 10-year follow-up

Polygenic score for general cognition

Model 1 Model 2

β 95% CI p Value β 95% CI p Value

Total sample

Baseline 0.27 0.19–0.34 <0.001 0.27 0.19–0.34 <0.001

Rate of change 0.01 −0.01 to 0.02 0.325 0.01 −0.01 to 0.02 0.277

Variancea 0.19 0.18–0.20 0.19 0.17–0.20

Women

Baseline 0.23 0.13–0.33 <0.001 0.23 0.14–0.33 <0.001

Rate of change 0.01 −0.01 to 0.02 0.468 0.01 −0.01 to 0.02 0.404

Men

Baseline 0.32 0.21–0.42 <0.001 0.32 0.21–0.42 <0.001

Rate of change 0.01 −0.01 to 0.02 0.548 0.01 −0.01 to 0.02 0.520

50–57 years

Baseline 0.29 0.17–0.41 <0.001 0.29 0.17–0.41 <0.001

Rate of change 0.01 −0.01 to 0.02 0.396 0.01 −0.01 to 0.03 0.396

58–65years

Baseline 0.19 0.07–0.31 0.001 0.29 0.11–0.35 0.002

Rate of change 0.02 −0.01 to 0.03 0.172 0.01 −0.01 to 0.03 0.190

⩾66 years

Baseline 0.31 0.17–0.45 0.001 0.32 0.18–0.46 0.001

Rate of change −0.004 −0.03 to 0.04 0.709 −0.003 −0.02 to 0.02 0.773

The presented β are standardised; CI, confidence intervals.
Model 1 is adjusted for baseline age, gender, year of birth and 10 principal components to account for any ancestry differences in genetic structures that could bias; Model 2 is adjusted for
baseline age, gender, year of birth, APOE-ε4 and 10 principal components to account for any ancestry differences in genetic structures that could bias.
aThe estimated variance captured random or stochastic variability in the data that comes from participants, here showing that there were significant individual differences in measure of
verbal memory over time.
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follow-up period (Yin et al., 2019). This in turn demonstrates that the
ELSA sample had the necessary sensitivity to detect changes in cog-
nition over time.

Conclusion

Drawing on a large, phenotypically well-defined sample of
population-representative adults, we demonstrated that common
genetic variants associated with general cognition additively are
associated with a stable surplus to cognition in adults. However,
our results showed that a polygenic predisposition to general
cognition is not associated with age-related cognitive decline
during a 10-year follow-up reiterating previous assertations that
the rate of cognitive decline in the general population may be
primarily driven by environmental factors.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721004827.
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