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Neural-network-based mixed subgrid-scale model
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An artificial neural-network-based subgrid-scale (SGS) model, which is capable of
predicting turbulent flows at untrained Reynolds numbers and on untrained grid resolution
is developed. Providing the grid-scale strain-rate tensor alone as an input leads the model
to predict a SGS stress tensor that aligns with the strain-rate tensor, and the model performs
similarly to the dynamic Smagorinsky model. On the other hand, providing the resolved
stress tensor as an input in addition to the strain-rate tensor is found to significantly
improve the prediction of the SGS stress and dissipation, and thereby the accuracy and
stability of the solution. In an attempt to apply the neural-network-based model trained
for turbulent flows with a limited range of the Reynolds number and grid resolution to
turbulent flows at untrained conditions on untrained grid resolution, special attention is
given to the normalisation of the input and output tensors. It is found that the successful
generalization of the model to turbulence for various untrained conditions and resolution
is possible if distributions of the normalised inputs and outputs of the neural network
remain unchanged as the Reynolds number and grid resolution vary. In a posteriori tests
of the forced and the decaying homogeneous isotropic turbulence and turbulent channel
flows, the developed neural-network model is found to predict turbulence statistics more
accurately, maintain the numerical stability without ad hoc stabilisation such as clipping
of the excessive backscatter, and to be computationally more efficient than the algebraic
dynamic SGS models.

Key words: turbulence modelling, turbulence simulation

1. Introduction

Large-eddy simulation (LES) is a technique in which large-scale turbulent motions are
directly resolved on the computational grid while the effect of filtered subgrid-scale (SGS)
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turbulent motions are modelled using an SGS model. In order to model the dissipative
nature of the SGS stress tensor, which is known to be the essential component of the SGS
modelling (Liu, Meneveau & Katz 1994), eddy-viscosity SGS models are often utilised
(Smagorinsky 1963; Lilly 1967; Germano et al. 1991; Vreman 2004; Silvis, Remmerswaal
& Verstappen 2017). In eddy-viscosity SGS models the deviatoric part of the SGS stress
tensor τij is modelled as an algebraic function of the resolved strain-rate tensor S̄ij such that
τij − 1

3τkkδij = −2νtS̄ij, where ( · ) denotes the spatial filter operation, Sij is the strain-rate
tensor, δij is the Kronecker delta and νt denotes the eddy viscosity (Silvis et al. 2017).
While νt is modelled as CΠg, where C and Πg are the model coefficient and the SGS
kernel at the grid-filter level, respectively, the dynamic procedure developed by Germano
et al. (1991) enabled dynamic determination of C.

However, eddy-viscosity SGS models have the shortcoming that they correlate poorly
with the true SGS stress tensor since eddy-viscosity models are aligned with S̄ij (Bardina,
Ferziger & Reynolds 1983; Anderson & Meneveau 1999; da Silva & Métais 2002)
and are not able to predict backscatter to the resolved scales (Zang, Street & Koseff
1993). To alleviate the problems, various mixed SGS models that combine eddy-viscosity
models with the modified Leonard term (Zang et al. 1993; Bardina et al. 1983; Germano
1986), the resolved stress Lij(= ̂̄uiūj − ˆ̄ui ˆ̄uj) (Anderson & Meneveau 1999; Liu et al.
1994) and the Clark model (Anderson & Meneveau 1999) were proposed. The dynamic
procedure (Germano et al. 1991) was also applied to one-parameter (Zang et al. 1993)
and two-parameter (Liu et al. 1994; Salvetti & Banerjee 1995; Anderson & Meneveau
1999) mixed models, where the parameter refers to the model coefficients. Although
dynamic mixed models are reported to exhibit smaller fluctuations in model coefficients,
dynamic eddy-viscosity models and dynamic mixed models require ad hoc procedures
such as averaging of model coefficients in statistically homogeneous directions and
clipping of negative model coefficients (Zang et al. 1993; Salvetti & Banerjee 1995) to
avoid numerical instability. Despite this issue, dynamic eddy-viscosity and dynamic mixed
models have been successfully applied to various turbulent flows (Germano et al. 1991;
Zang et al. 1993; Salvetti & Banerjee 1995; Anderson & Meneveau 1999; Vreman 2004;
Silvis et al. 2017).

Recently, there have been studies to develop SGS models using an artificial neural
network (ANN) (Wang et al. 2018; Xie & Wang 2019; Xie et al. 2019; Xie, Wang &
Weinan 2020a; Xie, Yuan & Wang 2020b; Yuan, Xie & Wang 2020). An ANN constructs
a nonlinear mapping between a set of resolved flow variables and unresolved SGS stress
using a series of matrix multiplications and nonlinear activation functions, while the
conventional models represent the SGS stress in an algebraic function of resolved flow
variables. As a result, ANN-based models are often expected to provide a more accurate
flow description than algebraic dynamic SGS models (Xie & Wang 2019; Xie et al.
2019, 2020a). For instance, Xie et al. (2020a) showed from an a posteriori test of forced
homogeneous isotropic turbulence that their ANN-based model predicted the energy
spectrum and probability density functions (p.d.f.s) of the vorticity and velocity increment
more accurately than the dynamic Smagorinsky model (DSM) and the dynamic mixed
model. The ANN-based SGS models (hereafter ANN-SGS models) are also often known
to be free from ad hoc procedures such as averaging and clipping of model coefficients
for a certain set of input variables, which will be discussed later (Wang et al. 2018; Xie
& Wang 2019; Xie et al. 2019, 2020a,b; Yuan et al. 2020). Therefore, ANN-SGS models
have the potential to be not only free from the requirement of a statistically homogeneous
direction but also provide improved prediction of the SGS stress.
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Despite such potentially favourable features, ANN-SGS models raise three issues.
The first issue is that although the performance of ANN-based models is known to be
sensitive to the types of variables and the number of data points used for inputs, there is
still no general consensus on which input variables and how many data points for each
input variable are appropriate (Wang et al. 2018; Xie & Wang 2019; Xie et al. 2019,
2020a; Park & Choi 2021). Wang et al. (2018) performed an a priori study of decaying
homogeneous isotropic turbulence to test the utility of single-point input variables such as
the filtered velocity vector ūi, the velocity gradient tensor ∂ ūi/∂xj and the second-order
velocity derivative ∂2ūi/(∂xj∂xk). They found that ∂ ūi/∂xj and ūi were the most and
least important, respectively, for predictive accuracy. Xie et al. (2020a) found that the
multi-point input ∂ ūi/∂xj led to higher correlation coefficients between the true and
predicted SGS stresses than the single-point input ∂ ūi/∂xj from an a priori study of forced
homogeneous isotropic turbulence.

Park & Choi (2021), on the other hand, tested both single-point and multi-point resolved
strain-rate tensors S̄ij and ∂ ūi/∂xj as inputs for ANN-based LES of a turbulent channel flow
and found from an a posteriori test that the use of multi-point inputs required backscatter
clipping due to numerical instabilities, while the use of single point S̄ij resulted in the
best performance. These are interesting results because, firstly, the use of a single-point
input was essential for numerical stability, at least in the case of near-wall turbulence;
secondly, the elaborate selection of input variables such as S̄ij led to a better performance
of ANN-SGS models than the use of general input variables such as ūi or ∂ ūi/∂xj.

Based on the knowledge from the algebraic SGS modelling in the framework of mixed
modelling and from the recent reports on the selection of input variables and the number
of input points, it is expected that an improved ANN-SGS model can be designed. For
example, the drawback associated with misalignment of the SGS stress tensor can be
overcome in a numerically stable manner by forming an ANN-based mixed model that
utilises both the resolved strain-rate tensor and the resolved stress Lij(= ̂̄uiūj − ˆ̄ui ˆ̄uj) (Liu
et al. 1994; Anderson & Meneveau 1999) as inputs at a single point.

The second issue for ANN-based models is the generalization to untrained flow
conditions, untrained grid resolution, and untrained types of flow. A few studies have
reported application of an ANN-based model that was trained for a certain flow at low
Reynolds numbers to the same flow at untrained higher Reynolds numbers (Maulik et al.
2018, 2019; Park & Choi 2021). However, generalization to flow on an untrained grid
resolution has not been successful. Park & Choi (2021) reported that an ANN-based model
trained at a certain grid resolution did not accurately predict the turbulent statistics on
untrained coarser or finer resolution, while it was possible to predict flow on an untrained
grid resolution when the network was trained on coarser and finer resolution than the
target resolution. Similarly, Zhou et al. (2019) reported that predicting turbulent flow on
a different grid resolution was difficult using an ANN-based model trained on other than
the target grid resolution.

Most studies on ANN-based models addressed application of an ANN trained for a
particular type of flow to the same type of flow. Although Xie et al. (2020a,b) briefly
discussed application of ANN-based models trained with forced homogeneous isotropic
turbulence to weakly compressible homogeneous shear flow, both flows are statistically
stationary at the same Reynolds number and on the same grid resolution. Therefore, it
is important to identify conditions of inputs and outputs of an ANN to achieve better
generalization to flow on a different grid resolution and eventually to a different type of
flow from trained flows.
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The last issue is that the computational cost of ANN-based models has been reported
to be higher than that of the algebraic dynamic eddy-viscosity and the dynamic mixed
models. Park & Choi (2021), Wang et al. (2018), Yuan et al. (2020), Xie & Wang (2019)
and Xie et al. (2020a) reported 1.3, 1.8, 2.4, 15 and 256 times higher computational cost
than that of the DSM for simulations of turbulent channel flow (Park & Choi 2021) and
homogeneous isotropic turbulence (Wang et al. 2018; Xie & Wang 2019; Xie et al. 2020a;
Yuan et al. 2020), respectively. Yuan et al. (2020), Xie & Wang (2019) and Xie et al.
(2020a) also reported that the computational cost of their ANN-based models is higher
than that of the dynamic mixed model (Anderson & Meneveau 1999). To make ANN-SGS
models be practical, both accuracy and computational efficiency that are superior to those
of the conventional algebraic SGS models should be achieved.

The primary objective of the present study is to develop a new ANN-based mixed SGS
model that predicts the SGS stress tensor more accurately and stably. Analogously to
the philosophy of the algebraic mixed SGS models, the present model is designed to
consider both the resolved stress and strain-rate tensors as inputs and thereby produce
the SGS stress associated with both the inputs as an output. The new model is also
designed to be applicable to turbulent flow at untrained Reynolds numbers and on an
untrained grid resolution, and, at the same time, to be computationally more efficient than
the conventional algebraic SGS models. As noted by Park & Choi (2021), the numerical
stability is sought by conducting the input–output data sampling on a single grid point.
The single-point data sampling is also beneficial in minimizing the computational cost.
To achieve the goal, extensive analyses for finding optimal input–output scalings are
conducted through a priori and a posteriori tests of homogeneous isotropic turbulence.
The predictive capability, accuracy and stability of the ANN-based mixed SGS model for
LES of homogeneous isotropic turbulence at untrained Reynolds numbers as well as on
an untrained grid resolution are evaluated in detail. The applicability to other types of
turbulent flow, especially the wall-bounded turbulent flow is investigated by performing
LES of a turbulent channel flow.

This paper is organised as follows. Numerical methods for direct numerical simulation
(DNS), LES and ANN are presented in § 2. In § 3 the performance and the characteristics
of ANN-SGS models with different input sets are discussed based on results of a priori
and a posteriori tests of forced isotropic turbulence. Application of the present ANN-based
mixed SGS model to decaying isotropic turbulence at untrained Reynolds numbers and on
an untrained grid resolution and untrained turbulent channel flow are presented in § 3.
Comparison of the predictive capability as well as the computational cost of the developed
ANN-based mixed SGS model with those of algebraic dynamic mixed models are also
discussed in § 3, followed by concluding remarks in § 4.

2. Numerical methods

2.1. Direct numerical simulation of forced homogeneous isotropic turbulence
The incompressible Navier–Stokes equations for DNS are

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂uiuj

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
, (2.2)
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Reλ N ν εp kf η ηkmax NS

106 192 1/263 1.0 2.0 1.5 × 10−2 1.4 37
164 256 1/150 62.9 3.0 8.4 × 10−3 1.0 50
286 512 1/2225 0.12 1.5 5.3 × 10−3 1.3 50

Table 1. Parameters for DNS of forced homogeneous isotropic turbulence. Here Reλ is the Taylor-scale
Reynolds number, N is the number of grid points in each direction, ν is the viscosity, εp is the prescribed
dissipation rate, kf is the upper bound of the forcing wavenumber, η is the Kolmogorov length scale and kmax
is the maximum resolved wavenumber.

where xi (= x, y, z) are the Cartesian coordinates, ui (= u, v, w) are the corresponding
velocity components, t is time, p is pressure, ρ is density and ν is kinematic viscosity.

Forced homogeneous isotropic turbulence at Reλ = 106, 164 and 286, which were
simulated by Mohan, Fitzsimmons & Moser (2017), Langford & Moser (1999) and
Chumakov (2008), respectively, are simulated in this study with the computational
parameters shown in table 1. A pseudospectral code HIT3D (Chumakov 2007, 2008) is
used to solve the incompressible Navier–Stokes equations in a periodic cubic box with the
length of 2π with N grid points in each direction. Simulation results are quoted in arbitrary
units (Yang & Lei 1998; Langford & Moser 1999; Meneguz & Reeks 2011) of each case
(Langford & Moser 1999; Chumakov 2008; Mohan et al. 2017) in which the domain size is
2π. A combination of spherical truncation and phase shifting (Canuto et al. 1988) is used
for dealiasing. The second-order Adams–Bashforth scheme is used for time integration
(Kang & You 2021).

The initial flow field of the Gaussian distribution and random phases is fully developed,
and then instantaneous fields are sampled at every eddy turnover time. The number of
samples NS for each case is summarized in table 1. Validation of the present DNS is
discussed in the following section.

2.2. Validation of DNS results
Mohan et al. (2017) and Langford & Moser (1999) used a negative viscosity forcing
(Jiménez et al. 1993; Mohan et al. 2017) for forced homogeneous isotropic turbulence
at Reλ = 106 and 164, respectively, and Chumakov (2008) used a deterministic forcing
(Machiels 1997) for forced homogeneous isotropic turbulence at Reλ = 286. The negative
viscosity forcing is given as

f̂ V
i (k, t) =

{
εpûi|k|2(k, t)/

[
2EV

f (t)
]
, 0 < k � kf ,

0, kf < k,
(2.3)

where εp denotes the prescribed mean dissipation rate, k is the spherical wavenumber
defined as k = |k|, kf is the upper bound of the forcing wavenumber and EV

f (t) =∫ kf
0 |k|2E(k, t) dk, where E(k, t) is the energy spectrum at time t. The combined forcing and

viscous term in the Fourier space becomes −(ν − α)|k|2ûi(k), where α = εp/[2EV
f (t)].
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Figure 1. Energy spectra from DNS of forced homogeneous isotropic turbulence at (a) Reλ = 106,
(b) Reλ = 164 and (c) Reλ = 286. The open circles, ◦, represent DNS by (b) Langford & Moser (1999) and
(c) Chumakov (2008); – - – (yellow orange dashed-dot line) represents the present DNS with the negative
viscosity forcing; – – - (dark blue dashed line) represents the present DNS with the deterministic forcing
of Machiels; —— (black line) represents the k−5/3 line; vertical dashed lines indicate the grid-filter cutoff
wavenumbers in the inertial subrange in which a priori tests are performed.

The deterministic forcing of Machiels (1997) is given as

f̂ M
i (k, t) =

{
εpûi(k, t)/

[
2EM

f (t)
]
, 0 < k � kf ,

0, kf < k,
(2.4)

where EM
f (t) = ∫ kf

0 E(k, t) dk.
Three-dimensional energy spectra of forced homogeneous isotropic turbulence are

compared with the reference DNS results in figure 1, except for the case at Reλ = 106
for which a reference energy spectrum is not available. The case at Reλ = 164 is firstly
simulated using the negative viscosity forcing following Langford & Moser (1999). The
resulting energy spectrum shown in figure 1(b) exhibits an undershoot in the forcing
wavenumber range. Another simulation at Reλ = 164 with the deterministic forcing of
Machiels, on the other hand, shows improved agreement with the reference DNS data in
the forcing range. While the differences caused by the use of different forcing schemes
are further discussed in Appendix A, DNS data obtained using the deterministic forcing
of Machiels is used for analyses in the present study, as it better reproduces DNS results
of Langford & Moser (1999). For the case of Reλ = 286, a slight underprediction of the
energy spectrum is observed and it is discussed in Appendix B to conclude that the present
DNS is statistically well converged.

2.3. Large-eddy simulation and filter operations

By applying the spatial filter operation ( · ) to (2.1) and (2.2), the filtered Navier–Stokes
equations for LES are obtained as

∂ ūi

∂xi
= 0, (2.5)

∂ ūi

∂t
+ ∂ ūiūj

∂xj
= − 1

ρ

∂ p̄
∂xi

+ ν
∂2ūi

∂xj∂xj
− ∂τij

∂xj
, (2.6)

where xi (= x, y, z) are the Cartesian coordinates, ūi (= ū, v̄, w̄) are the corresponding
filtered velocity components, t is time, p̄ is filtered pressure, ρ is density, ν is kinematic
viscosity and τij = uiuj − ūiūj is the SGS stress.
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Low-pass spatial filter operations are defined at the grid- and test-filter levels. A
grid-filter operation on a scalar variable φ̄ is defined as

φ̄ (x) =
∫

Ω

G (x, ξ) φ (ξ) dξ , (2.7)

where x and ξ are the spatial coordinate vectors in the flow domain of Ω . The filter kernel
G satisfies the normalisation condition and depends on the filter width defined as Δ̄ for the
grid filter. The filter width in three-dimensional space is calculated using the expression
given by Deardorff (1970),

Δ = 3
√

Δ1Δ2Δ3, (2.8)

where Δi denotes the filter width in the i direction. In line with the definition of the grid

filter in (2.7), a test-filter operator (̂ · ) is similarly defined but with the test-filter width Δ̂

instead of Δ̄.
The filter-to-grid ratio is defined as Δ̂/Δ̄, where Δ̂ is the filter width associated with the

filtering operator (̂ · ). Since the Gaussian filter is adopted for both grid and test filters, the
filter-to-grid ratio is set to

√
5 (Pope 2001). Moreover, because the implicit numerical grid

filter for a pseudospectral method is known to be the Fourier cutoff filter, the grid-filter
width is chosen to be twice the grid spacing in order to approximate the Gaussian filter
(Kang, Chester & Meneveau 2003).

The Gaussian filter is chosen to be the representative of the graded filter of which
the filter shape is similar to the implicit numerical filter shape of finite-difference
and finite-volume methods that are more commonly used for simulations than the
pseudospectral method. The reason for using the pseudospectral method in the present
study is to minimize the effect of numerical errors. The top-hat filter also has been tested,
but there are no considerable differences in the results.

2.4. Artificial neural network for SGS modelling
A fully connected neural network, also known as a multi-layer perceptron, is adopted in
the present study. Six components of the SGS stress tensor τij are predicted by an ANN
from a set of filtered input variables. The ANN is trained using input and output data
from the filtered DNS (fDNS) fields, which are obtained by applying a spatial filter to
the instantaneous fields from DNS of forced homogeneous isotropic turbulence in § 2.1.
The filter width of the fDNS dataset is the same as the grid size of LES with N3 = 483

cells at Reλ = 106, and N3 = 1283 cells at Reλ = 286. Through sufficient training, the
ANN constructs a nonlinear mapping between a set of inputs and a target SGS stress
tensor using a series of linear matrix multiplications and nonlinear activation functions.
The mathematical operation from the (n − 1)th layer to the nth layer takes the form of

Xn
i = σ

⎛⎝∑
j

Wn
ijX

n−1
j + bn

i

⎞⎠ , (2.9)

where σ(·) is the activation function, and Wn
ij and bn

i are weights and biases, respectively.

The output layer is linearly activated as XN
i = ∑

j WN
ij XN−1

j + bN
i , where XN

i is the output
of the ANN.

The present ANN, which is shown in figure 2, consists of an input layer, 2 hidden layers
with 12 neurons per hidden layer, and an output layer. Since the number of trainable
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Input layer Output layer

τ11

τ22

τ33

τ12

τ13

τ23

Hidden layers

Figure 2. Schematic diagram of the ANN to predict the SGS stress (two hidden layers and 12 neurons per
hidden layer).

parameters of an ANN directly affects its computational cost, a parameter study on the
number of neurons per hidden layer is conducted in § 3.4. Based on the results in § 3.4,
it is found that 12 neurons and 2 hidden layers are sufficient, and additional neurons or
hidden layers do not improve the performance of the ANN. A Leaky–ReLu activation
function (σ(x) = max[−0.02x, x]) is applied at each hidden layer. Leaky–ReLu is known
to perform better than ReLu (Xu et al. 2015), as it is capable of resolving the gradient
vanishing problem of the ReLu. During the training process, weights Wn

ij and biases bn
i

are optimised to minimise the mean-squared error loss function for six components of τij
defined as

L = 1
Nbatch

1
6

Nbatch∑
n=1

3∑
j=1

j∑
i=1

(
τ

fDNS
ij,n − τij,n

)2
, (2.10)

where τ
fDNS
ij and τij are the true SGS stress obtained from fDNS and the predicted SGS

stress, respectively. Mini-batch training is utilised in the present study and the iteration in
figure 3 represents the mini-batch iteration. In each mini-batch iteration a subset of the
training dataset (i.e. mini batch) is utilised to update the weights and biases of the ANN.
Here Nbatch represents the size of the mini batch and is set to 128 (Park & Choi 2021).

The sets of input and output variables and Reynolds numbers of the training datasets
for ANN-SGS models are listed in table 2. Each ANN-SGS model is named such that
the character and the number represent the input variables and the Reynolds number at
which the ANN is trained, respectively. The character H at the end of the model names
denotes homogeneous isotropic turbulence. For example, S-106H uses six components of
S̄ij as inputs, whereas the other models use 12 components, six from S̄ij and six from Lij,
as inputs. Effects of input variables on the characteristics and the accuracy of ANN-SGS
models are discussed in § 3.1. In addition, the use of the resolved stress Lij among various
scale-similarity terms is discussed in Appendix C. The ANN-SGS models are trained with
fDNS datasets of forced homogeneous isotropic turbulence at the given Reynolds number.

The Adam optimiser with a learning rate of 10−4 is utilised to optimise the trainable
parameters. The ANN-SGS models listed in table 2 are trained for 5 × 105 iterations using
the Python library PyTorch (Paszke et al. 2017). A total of 2 × 108 data points sampled
from 30 snapshots of fDNS results are used for the training, whereas the rest are used
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Figure 3. Learning curves of ANN-SGS models. Training and testing losses of (a) SL-106H, (b) SL-286H,
(c) SL-106 + 286H and (d) S-106H. Coloured lines correspond to the training loss of each model, and black
dashed-dot lines correspond to the testing loss of each model. The iteration in the horizontal axes represents
the mini-batch iteration.

Model S-106H SL-106H SL-286H SL-106 + 286H

Inputs {S̄ij} {S̄ij, Lij} {S̄ij, Lij} {S̄ij, Lij}
Outputs τij τij τij τij
Reλ of training data 106 106 286 106, 286

Table 2. Input variables and Reynolds numbers of training datasets for different ANN-SGS models.

for testing (80 % of the snapshots for training and 20 % for testing). Figure 3 shows the
learning curve of the ANN-SGS models. The training loss and the testing loss show similar
values and converge to a stationary value, indicating that all ANN-SGS models are trained
without overfitting.

The performance of an ANN is highly affected by the normalisation of the input and
output variables (Sola & Sevilla 1997). In the present study, the input and the output
tensors are normalised as S̄∗

ij = S̄ij/〈|S̄|〉, L∗
ij = Lij/〈|L|〉 and τ ∗

ij = τij/〈|τ |〉, where 〈·〉 and
|·| denote a volume average and an L2 norm of the tensor, respectively. However, since the
denominator 〈|τ |〉 is unknown in actual LES, the normalisation factor for the SGS stress
should be estimated. A detailed discussion regarding the normalisation factor for the SGS
stress, particularly in the context of generalization to untrained conditions, is presented in
§ 3.2.
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3. Results and discussion

In § 3.1 the performance of S-106H is compared with that of DSM from a priori and a
posteriori tests of forced isotropic turbulence at Reλ = 106. Based on the above results,
S-106H is improved by providing an additional input Lij (SL-106H). Accordingly, S-106H
and SL-106H are compared in terms of the correlation coefficients, the p.d.f. of the SGS
dissipation, the p.d.f. of the SGS stress and the energy spectrum. In § 3.2 special attention
is given to the normalisation of the input and output tensors for the generalization of
ANN-SGS models. Consequently, the generalizability of ANN-SGS models to transient
flow is investigated in LES of decaying isotropic turbulence at various untrained conditions
(i.e. initial Reynolds numbers and grid resolution). In §§ 3.3 and 3.4, the performance and
the computational cost of the developed ANN-SGS models are compared with those of
conventional algebraic dynamic mixed models. Finally, the application of the developed
models to LES of turbulent channel flow is presented in §§ 3.5–3.7.

3.1. Effects of input variables: a priori and a posteriori tests
Before conducting an actual LES, the effects of input variables on ANN-SGS models are
investigated in an a priori test of forced homogeneous isotropic turbulence at Reλ = 106.
Although consistent predictive capability in the a priori and a posteriori tests is not always
guaranteed (Park, Lee & Choi 2005; Park & Choi 2021), a priori tests are still considered
to be a useful step for evaluating SGS models (Piomelli, Moin & Ferziger 1988; Salvetti
& Banerjee 1995). It is also worth noting that the performance of ANN-SGS models are
actually assessed in a posteriori tests in the present study. While the use of S̄ij is expected to
be preferable for homogeneous isotropic turbulence in terms of the accuracy and stability
(Park & Choi 2021), it is of interest to investigate how differently the predicted SGS stress
aligns with respect to S̄ij. To examine the alignment, the correlation coefficients between
S̄ij and the predicted SGS stress (τANN

ij ) are calculated and listed in table 3. The correlation
coefficient between the components of arbitrary second-order tensors αij and βij is defined
as

Corr(αij, βij) =
〈
αijβij

〉〈
α2

ij

〉1/2 〈
β2

ij

〉1/2 , (3.1)

where 〈·〉 denotes the ensemble averaging. As shown in table 3, S-106H has much higher
correlation coefficients between S̄ij and τANN

ij than fDNS with the value exceeding −0.8,
which indicates that the predicted SGS stress is aligned closer to the strain-rate tensor
rather than the true SGS stress.

Additionally, the p.d.f. of the SGS dissipation εSGS (= −τijS̄ij) predicted by S-106H
is shown in figure 4(a). Negative SGS dissipation corresponds to the backscatter, which
is the kinetic energy transfer from the subgrid scale to the resolved scale. Interestingly,
S-106H shows a similar characteristic to that of the eddy-viscosity models that are not
capable of predicting backscatter. It can be considered that an ANN-SGS model that uses
the resolved strain-rate tensor alone as the input only rescales the given input S̄ij to predict
the SGS stress while maintaining its alignment.

Based on this observation, the performance of S-106H in actual LES is compared
with that of DSM by conducting a posteriori tests of forced isotropic turbulence at
Reλ = 106. The energy spectrum and p.d.f.s of the SGS dissipation and the SGS stress
from S-106H are compared with those from DSM and fDNS. The SGS stress of DSM
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Figure 4. Results from an a priori test of forced homogeneous isotropic turbulence at Reλ = 106. (a) P.d.f. of
the SGS dissipation εSGS (= −τijS̄ij); (b) p.d.f. of τ23. Here —— (thick black solid line), fDNS; —— (thick
red solid line), SL-106H; – – - (thick green dashed line), S-106H.

(Germano et al. 1991; Lilly 1992) is given as

τij − 1
3δijτkk = −2CΔ̄2|S̄|S̄ij, (3.2)

where |S̄| =
√

2S̄ijS̄ij, S̄ij = 1
2 (∂ ūi/∂xj + ∂ ūj/∂xi), C = 〈LijMij〉/〈MijMij〉, Lij = ̂̄uiūj −

ˆ̄ui ˆ̄uj, Mij = −2Δ̂2| ˆ̄S| ˆ̄Sij + 2Δ̄2|̂̄S|S̄ij, Δ̄ and Δ̂(= √
5Δ̄) are the grid-filter and test-filter

scales, respectively. ( · ) denotes the grid-level filter at Δ̄ scale, (̂ · ) denotes the test filter
at Δ̂ scale and 〈·〉 denotes averaging over homogeneous directions (volume averaging
for homogeneous isotropic turbulence). The LES are performed using a pseudospectral
code HIT3D (Chumakov 2007, 2008) with the dealiasing method of the 2/3 rule. The
second-order Adams–Bashforth scheme is used for time integration and the time step
size is set so that the Courant–Friedrichs–Lewy number of LES is the same as that of
DNS (Wang et al. 2018). The present ANN-SGS models predict the SGS stress tensor
at each local grid point using resolved flow variables at the corresponding grid point as
inputs. Large-eddy simulations with ANN-SGS models are performed without any ad hoc
stabilisation procedures.

Figure 5 shows energy spectra from LES of forced isotropic turbulence at Reλ = 106
with a grid resolution of 483, which is the same as that of the training data. The DSM
is found to overestimate the energy spectrum in the range of k � 5. Interestingly, S-106H
shows nearly identical performance to that of DSM in predicting the energy spectrum. In
addition, from the p.d.f. of the SGS dissipation shown in figure 6(a), S-106H and DSM
have the same characteristic that they are not capable of predicting backscatter. Note that
the p.d.f. of the SGS stress (τ23) predicted by S-106H is almost identical to that of DSM
as both p.d.f.s are narrower than that of fDNS (figure 6b). This indicates that S-106H
produces the SGS stress similar to that of DSM.

From the above observation, it can be concluded that the ANN-SGS model with S̄ij as
an input predicts the SGS stress that is closely aligned with the given input tensor, and
performs similarly to DSM. Consequently, it is expected that S-106H can be improved
by the similar concept employed in dynamic mixed models (Liu et al. 1994; Anderson &
Meneveau 1999). It is reported that a linear combination of the eddy-viscosity model with
the resolved stress Lij(= ̂̄uiūj −̂̄ui ˆ̄uj) improves the accuracy of the predicted SGS stress
with better alignment to the true SGS stress.
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Figure 5. Energy spectra from fDNS and LES of forced homogeneous isotropic turbulence at Reλ = 106 with
grid resolution of 483. Here �, fDNS; —— (thick black solid line), DSM; – – – (thick black dashed line),
no-SGS; —— (thick red solid line), SL-106H; – – - (thick green dashed line), S-106H.
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Figure 6. Results from an a posteriori test of forced homogeneous isotropic turbulence at Reλ = 106 with grid
resolution of 483. (a) P.d.f. of the SGS dissipation εSGS (= −τijS̄ij); (b) p.d.f. of τ23. Here �, fDNS; —— (thick
black solid line), DSM; —— (thick red solid line), SL-106H; – – - (thick green dashed line), S-106H.

Similarly to the algebraic dynamic mixed models, it is expected that an ANN-SGS
model can achieve closer alignment to the true SGS stress and more accurate prediction
of the magnitude of the SGS stress if the resolved stress tensor Lij is considered as an
input in addition to the strain-rate tensor S̄ij (i.e. ANN-SGS mixed model). A total of 12
components, six from S̄ij and six from the resolved stress Lij, are simultaneously provided
as inputs for the ANN-SGS mixed model. To investigate the effect of the additional input
variable, results of S-106H and SL-106H are compared in a priori and a posteriori tests
of forced homogeneous isotropic turbulence at Reλ = 106. Results of SL-106H are also
compared with those of the algebraic dynamic mixed models in § 3.3.

The performance of SL-106H is compared with that of S-106H in an a priori test.
The correlation coefficients between the true and the predicted SGS stress tensors
are calculated following the definition of (3.1) and shown in table 4. The correlation
coefficients of SL-106H are significantly improved compared with those of S-106H,
which indicates that SL-106H reconstructs the instantaneous SGS stress closer to the true
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Corr(S̄12, τ12) Corr(S̄13, τ13) Corr(S̄23, τ23)

fDNS −0.2806 −0.2849 −0.2825
S-106H −0.8217 −0.8370 −0.8172
SL-106H −0.3992 −0.3993 −0.3806

Table 3. Correlation coefficients (Corr(S̄ij, τij)) between S̄ij and the predicted SGS stress by ANN-SGS
models from an a priori test of forced homogeneous isotropic turbulence at Reλ = 106.

τ11 τ22 τ33 τ12 τ13 τ23

S-106H 0.3581 0.3538 0.3509 0.3692 0.3663 0.3661
SL-106H 0.7102 0.7176 0.7162 0.7057 0.7040 0.7172

Table 4. Correlation coefficients (Corr(τ fDNS
ij , τANN

ij )) between the traceless parts of the true SGS stress

(τ fDNS
ij ) and the predicted SGS stress by ANN-SGS models (τANN

ij ) from an a priori test of forced homogeneous
isotropic turbulence at Reλ = 106.

SGS stress. In table 3 the correlation coefficients between S̄ij and the predicted SGS stress
τij (Corr(S̄ij, τij)) from SL-106H are found to be closer to those of fDNS than those
from S-106H, indicating that SL-106H is capable of aligning the principal axes of the
predicted SGS stress closer to the true SGS stress. In addition, SL-106H provides excellent
prediction of the p.d.f. of the SGS dissipation (figure 4a), which almost overlaps with that
of fDNS. At the same time, SL-106H predicts the p.d.f. of the SGS stress (τ23) closer to
that of fDNS, whereas S-106H predicts a narrower p.d.f. as shown in figure 4(b).

An a posteriori test of forced isotropic turbulence at Reλ = 106 is also conducted using
SL-106H. As shown in figure 5, SL-106H predicts the energy spectrum closer to that of
fDNS than S-106H and DSM in the range of k � 5. Furthermore, SL-106H noticeably
better predicts the p.d.f. of the SGS dissipation than S-106H (figure 6a). It is worth noting
that SL-106H is capable of accurately predicting the backscatter even in the a posteriori
test; consequently, LES becomes stable without any ad hoc procedures, which is a clear
advantage over the algebraic dynamic SGS models. Model SL-106H is found to predict
the p.d.f. of the SGS stress (τ23) more accurately, as shown in figure 6(b).

Figure 7 shows p.d.f.s of the resolved strain-rate tensor from fDNS and LES. Both
SL-106H and DSM accurately predict the p.d.f. of S̄11, while S-106H shows slight
overestimation from the right tail of the p.d.f. On the other hand, no significant differences
in the p.d.f.s of S̄23 from DSM, SL-106H and S-106H are observed.

Contours of the SGS dissipation (εSGS) from fDNS and LES are shown in figure 8 for
qualitative comparison. Snapshots are sampled after 21.5 large-eddy turnover times and
at the centre of the domain in the z direction. The SGS dissipation of SL-106H shows
a relatively closer spatial distribution to that of fDNS than those of DSM and S-106H,
since the backscatter (i.e. negative regions in the contours) is observed in the contours of
SL-106H and fDNS, while DSM and S-106H are not capable of predicting the backscatter.
This result is consistent with the p.d.f.s in figure 6(a).

The second-order longitudinal velocity structure functions from fDNS and LES of
forced homogeneous isotropic turbulence at Reλ = 106 with a grid resolution of 243, 483
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Figure 7. The p.d.f.s of the resolved strain-rate tensor (a) S̄11 and (b) S̄23 from an a posteriori test of forced
homogeneous isotropic turbulence at Reλ = 106 with grid resolution of 483. Here �, fDNS; —— (thick black
solid line), DSM; —— (thick red solid line), SL-106H; – – - (thick green dashed line), S-106H.
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Figure 8. Contours of the SGS dissipation εSGS (= −τijS̄ij) from an a posteriori test of forced homogeneous
isotropic turbulence at Reλ = 106 with grid resolution of 483. Results are shown for (a) fDNS, (b) DSM,
(c) SL-106H, (d) S-106H.

and 963 are compared in figure 9. Note that SL-106H and S-106H are trained only for
fDNS data with the filter size for 483 resolution. Generalization to untrained resolution
will be discussed in § 3.2. The second-order longitudinal velocity structure function SL

2(r)
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Figure 9. The second-order longitudinal velocity structure functions SL
2(r) from fDNS and LES of forced

homogeneous isotropic turbulence at Reλ = 106 with a grid resolution of (a) 243, (b) 483 and (c) 963. The
domain size 2π is denoted by L. Here �, fDNS; —— (thick black solid line), DSM; – – - (thick black dashed
line), no-SGS; —— (thick red solid line), SL-106H; – – - (thick green dashed line), S-106H.

is defined as

SL
2(r) ≡

〈
(�uL)2

〉
, �uL ≡ [

ū(x + r) − ū(x)
] · r̂, (3.3a,b)

where ū(x) is the filtered velocity vector at x, r̂ = r/|r| is a unit vector in the direction of
the separation r. No distinctive differences in the structure functions at small separations
are observed except for those of the no-SGS case that shows notable errors at small
separations, indicating an inaccurate prediction of small-scale fluctuations. For all tested
grid resolutions, SL-106H shows a more accurate prediction of the structure functions at
large separations than DSM and S-106H.

Results of a priori and a posteriori tests using SL-106H clearly indicate that considering
the resolved stress Lij as an input in addition to S̄ij improves the performance of the
ANN-SGS model. Unlike the SGS stress predicted by S-106H that is closely aligned with
the given input S̄ij, the SGS stress predicted by SL-106H is closely aligned with the true
SGS stress. Although the performance of S-106H is almost identical to that of DSM, both
S-106H and SL-106H have advantages over DSM as they are free from the requirement
of a stabilisation process such as averaging over statistically homogeneous directions or
clipping of the negative model coefficients.
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3.2. Generalization to untrained conditions: decaying homogeneous isotropic turbulence
In this section the application of ANN-SGS models trained with only forced homogeneous
isotropic turbulence data to untrained decaying isotropic turbulence is discussed. For
successful generalization to decaying isotropic turbulence, ANN-SGS models have to
provide an accurate prediction of the SGS stress for various Reynolds numbers and grid
resolution.

In this regard, normalisation of variables is important, as it plays a critical role
for the consistent performance of an ANN under various conditions. As explained in
§ 2.4, the input and output tensors are normalised as S̄∗

ij = S̄ij/〈|S̄|〉, L∗
ij = Lij/〈|L|〉 and

τ ∗
ij = τij/〈|τ |〉, where the denominator 〈|τ |〉 requires an approximation in actual LES.

The input variables (S̄ij and Lij) are properly normalised by the magnitudes of the
variables to have similar distributions for various conditions. However, normalising the
SGS stress tensor to have similar distributions for various conditions is a challenging
task because the approximation for 〈|τ |〉 is not accurate enough. In other words, an
inaccurate approximation of the normalisation factor of the output SGS stress results in a
significantly different distribution of the normalised output for different conditions. In this
situation, an ANN-based model could suffer from the prior probability shift issue, which
occurs when the output variable distributions are different at training and test conditions
(i.e. Ptrain( y) /= Ptest( y), where P( y) is a probability distribution of an output variable y)
(Quiñonero-Candela et al. 2009; Moreno-Torres et al. 2012). Dataset shift, including the
prior probability shift, is not desirable for ANNs as it can cause significant changes in their
performance during testing with untrained data (Gawlikowski et al. 2021). Consequently,
the performance of an ANN-SGS model trained at a specific Reynolds number and on a
certain grid resolution could be different from that at other flow conditions.

Therefore, it is suggested that a normalisation factor, which enables the distributions of
the normalised inputs and outputs to remain unchanged for various Reynolds numbers
and grid resolution, should be selected to avoid such performance inconsistency of
an ANN-SGS model during the generalization. The modified Leonard term Lm

ij (=
ūiūj − ūiūj), the resolved stress Lij (= ̂̄uiūj − ˆ̄ui ˆ̄uj) and the gradient model term τ

grad
ij

(= 1
12Δ̄2(∂ ūi/∂xk)(∂ ūj/∂xk)) are considered to approximate the normalisation factor for

the SGS stress. Among the three candidates, the term that has the most constant ratio
to the true SGS stress 〈|τ |〉 for various Reynolds numbers and grid resolution should be
selected. Figure 10 shows ratios of 〈|τ grad|〉, 〈|Lm|〉 and 〈|L|〉 to 〈|τ fDNS|〉, obtained at three
different Reynolds numbers on a fixed grid resolution and three different grid resolutions
at Reλ = 106. The gradient model term 〈|τ grad|〉 shows the most constant ratio to the
true SGS stress 〈|τ fDNS|〉 for various Reynolds numbers and grid resolution, compared
with the other two terms. Therefore, in the present study, the averaged L2 norm of the
gradient model term is selected to normalise and rescale the output SGS stress tensor as
τ ∗

ij = τij/〈|τ grad|〉.
Figure 11 shows the p.d.f. of the SGS stress from fDNS of forced isotropic turbulence

with and without normalisation. Distributions of the SGS stress without normalisation
vary significantly depending on the Reynolds number and grid resolution, while the
normalised SGS stress tensors show similar distributions for various Reynolds numbers
and grid resolution, which enables an ANN-SGS model trained at a single condition to be
successfully generalized to other conditions. In figure 12 effectiveness of the normalisation
is verified in LES of forced homogeneous isotropic turbulence at Reλ = 106 with a
grid resolution of 243 and 963, which are coarser and finer by a factor of 2 than that
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Figure 10. Ratios of
〈|τ grad|〉, 〈|Lm|〉 and 〈|L|〉 to

〈|τ fDNS|〉 at (a) Reλ = 106, 168 and 286 for Δ̄train/Δ̄ = 1,
and for (b) Δ̄train/Δ̄ = 1/2, 1, 2 at Reλ = 106. Here —— (thick red solid line),

〈|τ grad|〉 / 〈|τ fDNS|〉; —— (thick
blue solid line), 〈|Lm|〉 /

〈|τ fDNS|〉; —— (thick green solid line), 〈|L|〉 /
〈|τ fDNS|〉.
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Figure 11. The p.d.f.s of the SGS stress τ23 from fDNS of forced isotropic turbulence with various Reynolds
numbers and grid resolution. (a) The p.d.f.s of τ23 without normalisation; (b) the p.d.f.s of normalised τ23

with 〈|τ grad|〉. —— (thick black solid line), Reλ = 106, Δ̄train/Δ̄ = 1; —— (thick red solid line), Reλ = 106,
Δ̄train/Δ̄ = 1/2; —— (thick blue solid line), Reλ = 106, Δ̄train/Δ̄ = 2; —— (thick green solid line), Reλ =
286, Δ̄train/Δ̄ = 1.

of the training data, respectively. As shown in figure 12(a), SL-106H, SL-286H and
SL-106 + 286H predict the energy spectra more accurately than DSM and S-106H at
all wavenumbers on a coarser resolution (243). On a finer resolution of 963, SL-106H,
SL-286H and SL-106 + 286H predict the energy spectra more accurately than DSM
and S-106H in the range of k � 6 (figure 12b). This indicates that a proper choice of
the normalisation factor for the output SGS stress enables the present ANN-SGS mixed
models to perform accurately on an untrained coarser and finer grid resolution.

Using 〈|τ grad|〉 as the normalisation factor, ANN-SGS models trained with only forced
homogeneous isotropic turbulence data are applied to LES for decaying homogeneous
isotropic turbulence to assess the generalizability to untrained transient flow. Table 5 shows
the initial Reynolds numbers and grid resolution of test LES cases for decaying isotropic
turbulence. The numerical methods are the same as those used for LES of forced isotropic
turbulence. A fully converged instantaneous flow field of fDNS of forced homogeneous
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Figure 12. Energy spectra from fDNS and LES of forced homogeneous isotropic turbulence at Reλ = 106
with a grid resolution of (a) 243 and (b) 963 (two-times coarser and finer resolution than that of training data,
respectively). Here �, fDNS; —— (thick black solid line), DSM; – – - (thick black dashed line), no-SGS; ——
(thick red solid line), SL-106H; – – - (thick blue dashed line), SL-286H; – - – (thick yellow orange dashed-dot
line), SL-106 + 286H; – – – (thick green dashed line), S-106H.

LES case Initial Reλ N3 SGS model

SL-106H
SL-286H

DHIT106 106 483 SL-106 + 286H
S-106H
DSM

SL-106H
DHIT106c 106 243 SL-286H

S-106H
DSM

SL-106H
DHIT106f 106 963 SL-286H

S-106H
DSM

SL-106H
DHIT286 286 1283 SL-286H

S-106H
DSM

Table 5. Test LES cases for decaying homogeneous isotropic turbulence with ANN-SGS models and DSM.
Here N is the number of grid points in each direction. Effects of grid resolution and the initial Reynolds number
on the performance of ANN-SGS models are considered.

isotropic turbulence is selected as the initial field of decaying homogeneous isotropic
turbulence. The robustness of ANN-SGS models to a random-phase initial condition is
assessed in Appendix D.

Figure 13 shows energy spectra from LES of decaying homogeneous isotropic
turbulence at the initial Reynolds number Reλ of 106 with a grid resolution of 483.
Energy spectra are obtained at t/Te,0 = 1.1, 3.3 and 6.6, where time t is normalised by
the initial eddy turnover time Te,0. Energy spectra from S-106H and DSM are found to be
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Figure 13. Energy spectra from fDNS and LES of decaying homogeneous isotropic turbulence at the initial
Reynolds number Reλ of 106 with a grid resolution of 483 (DHIT106 case). Results are shown for (a) t/Te,0 =
1.1; (b) t/Te,0 = 3.3; (c) t/Te,0 = 6.6. Here �, fDNS; —— (thick black solid line), DSM; – – - (thick black
dashed line), no-SGS; —— (thick red solid line), SL-106H; – – - (thick blue dashed line), SL-286H; – - – (thick
yellow orange dashed-dot line), SL-106 + 286H; – – - (thick green dashed line), S-106H.

almost identical. This is consistent with the a posteriori test of forced isotropic turbulence
where S-106H performs similar to DSM. Both S-106H and DSM overestimate the energy
spectra in the range of k < 5, and errors increase as flow evolves. In contrast, energy
spectra from SL-106H, SL-286H and SL-106 + 286H show better agreement with those
of fDNS than DSM at all time steps.

Additionally, temporal evolution of the resolved kinetic energy and the mean SGS
dissipation are investigated from the same simulations and presented in figure 14. The
DSM and S-106H predict smaller SGS dissipation than that of fDNS, which leads to
a slower decaying rate of the resolved kinetic energy. Compared with DSM, SL-106H,
SL-286H and SL-106 + 286H significantly better predict temporal evolutions of the
resolved kinetic energy and the SGS dissipation, which are in good agreement with those
of fDNS.

Similarly to the results of forced isotropic turbulence, SL-106H, SL-286H and SL-106 +
286H perform significantly better than DSM for LES of decaying isotropic turbulence,
which clearly indicates that the additional input variable Lij is beneficial. In addition,
SL-106H, SL-286H and SL-106 + 286H provide stable solutions without any ad hoc
stabilisation procedures unlike DSM during the temporal evolution of the flow.
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Figure 14. Results from fDNS and LES of decaying isotropic turbulence at the initial Reynolds number Reλ
of 106 with a grid resolution of 483 (DHIT106 case). Temporal evolution of (a) the resolved kinetic energy and
(b) the mean SGS dissipation 〈εSGS〉 (= 〈−τijS̄ij〉) are shown. Here �, fDNS; —— (thick black solid line),
DSM; – – - (thick black dashed line), no-SGS; —— (thick red solid line), SL-106H; – – - (thick blue dashed
line), SL-286H; – - – (thick yellow orange dashed-dot line), SL-106 + 286H; – – - (thick green dashed line),
S-106H.

Note that SL-106H, SL-286H and SL-106 + 286H show almost identical performance,
although they are trained at different Reynolds numbers. This is because the present
normalisation of the input and output variables enables the mapping of an ANN between
the input resolved variables and the output SGS stress to remain unchanged for various
flow conditions. Therefore, in the present study, training an ANN-SGS model at a single
Reynolds number and on a single grid resolution is found to be sufficient for generalization
to untrained flow conditions.

The performance of ANN-SGS models is further investigated through LES of decaying
isotropic turbulence with different grid resolutions. Coarser (243) and finer (963) grid
resolutions by a factor of 2 than that of the training dataset (483) are considered. These
are challenging cases, as the magnitudes of the SGS stress and the resolved kinetic energy
differ from those of the training data as the turbulence decays. Nevertheless, SL-106H and
SL-286H perform consistently better than DSM.

The LES of decaying homogeneous isotropic turbulence at the initial Reynolds number
Reλ of 106 with a grid resolution of 243 is performed and results are shown in figure 15.
The DSM and S-106H show similar performance; they overestimate the energy spectra at
all wavenumbers, and the resolved kinetic energy decays slower than that of fDNS. On
the other hand, SL-106H and SL-286H provide more accurate prediction of the energy
spectra than that of DSM, especially with smaller errors at k � 2. Furthermore, SL-106H
and SL-286H predict the temporal evolution of the resolved kinetic energy more accurately
than DSM and S-106H.

Figure 16 shows results from LES of decaying homogeneous isotropic turbulence at the
initial Reynolds number Reλ of 106 with a grid resolution of 963. As the grid resolution
becomes finer, the energy spectra and the temporal evolution of the resolved kinetic energy
obtained by SL-106H and SL-286H become more accurate and almost overlap with those
of fDNS. However, DSM and S-106H overestimate energy spectra in the range of k � 6
and predict slower decaying rates of the resolved kinetic energy.
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Figure 15. Results from fDNS and LES of decaying isotropic turbulence at the initial Reynolds number Reλ of
106 with a grid resolution of 243 (DHIT106c case). (a) Energy spectra at t/Te,0 = 1.1, 3.3 and 6.6; (b) temporal
evolution of the resolved kinetic energy. Here �, fDNS; —— (thick black solid line), DSM; – – (thick black
dashed line), no-SGS; —— (thick red dashed line), SL-106H; – – - (thick blue dashed line), SL-286H; – – -
(thick green dashed line), S-106H.
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Figure 16. Results from fDNS and LES of decaying isotropic turbulence at the initial Reynolds number Reλ of
106 with a grid resolution of 963 (DHIT106f case). (a) Energy spectra at t/Te,0 = 1.1, 3.3 and 6.6; (b) temporal
evolution of the resolved kinetic energy. Here �, fDNS; —— (thick black solid line), DSM; – – - (thick black
dashed line), no-SGS; —— (thick red solid line), SL-106H; – – - (thick blue dashed line), SL-286H; – – - (thick
green dashed line), S-106H.

The performance of ANN-SGS models is tested through LES at a higher initial Reynolds
number Reλ of 286. Figure 17 shows results from LES of decaying homogeneous isotropic
turbulence with a grid resolution of 1283, in which the cutoff wavenumber is located in the
inertial range, same as in the training data. Notably, SL-106H is successfully generalized to
the higher Reynolds number, and it predicts the energy spectra and the temporal evolution
of the resolved kinetic energy more accurately than DSM. In figure 17(a), SL-106H
and SL-286H accurately predict the energy spectra, which are in good agreement with
those of fDNS. In contrast, DSM and S-106H slightly underestimate the energy at low
wavenumbers (k � 2), while they overestimated the energy at 4 � k � 10. In figure 17(b)
temporal evolutions of the resolved kinetic energy of SL-106H and SL-286H are well
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Figure 17. Results from fDNS and LES of decaying isotropic turbulence at the initial Reynolds number Reλ of
286 with a grid resolution of 1283 (DHIT286 case). (a) Energy spectra at t/Te,0 = 2.0, 4.9, 7.9; (b) temporal
evolution of the resolved kinetic energy. Here �, fDNS; —— (thick black solid line), DSM; – – - (thick black
dashed line), no-SGS; —— (thick red solid line), SL-106H; – – - (thick blue dashed line), SL-286H; – – - (thick
green dashed line), S-106H.

matched with those of fDNS at all time steps, whereas DSM and S-106H show slower
decaying rates of the resolved kinetic energy until t/Te,0 ≈ 5.

Despite the fact that the present ANN-SGS models are not trained for the transient
characteristics of decaying isotropic turbulence, they can be successfully utilised for LES
of transient decaying isotropic turbulence with various initial Reynolds numbers and grid
resolution. This is again possible due to the selection of proper normalisation factors for
the input and output variables such that the normalisation enables the mapping of an ANN
between the input resolved variables and the output SGS stress to remain unchanged during
the temporal decay of turbulence.

It is worth noting that, for wall-bounded turbulent flow, normalisation of the SGS stress
using the gradient model term may not be appropriate since it is known to have an incorrect
near-wall scaling (Liu et al. 1994). For turbulent channel flow and also for homogeneous
isotropic turbulence, the magnitude of the resolved stress tensor is found to be the best
alternative to the magnitude of the gradient model term. The advantage of using the
resolved stress tensor for normalisation of the SGS stress over other normalisation options
is discussed in Appendix E in detail.

3.3. Comparison with algebraic dynamic mixed models
In § 3.1 the predictive performance of SL-106H is found to meet the expectation that
the use of both S̄ij and Lij as inputs could perform better than DSM due to better
prediction of the SGS stress in terms of the magnitude and alignment to the true SGS
stress. Consequently, it is of interest to investigate how well the ANN-SGS mixed model
performs compared with the algebraic dynamic mixed models. Therefore, the performance
of the developed ANN-SGS mixed model is compared with one-parameter (Zang et al.
1993; Vreman, Geurts & Kuerten 1994) and two-parameter (Anderson & Meneveau 1999)
algebraic dynamic mixed models through LES of both forced and decaying isotropic
turbulence.

The one-parameter dynamic mixed model that combines the eddy-viscosity model
with the modified Leonard term (Lm

ij = ūiūj − ¯̄ui ¯̄uj), which was formulated by
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Zang et al. (1993) and later modified by Vreman et al. (1994), is denoted as DMM. The
model coefficient of DMM is dynamically determined to close the SGS stress as

τij − 1
3δijτkk = −2CΔ̄2|S̄|S̄ij + Lm

ij − 1
3δijLm

kk, (3.4)

where C = 〈
Mij(Lij − Hij)

〉
/
〈
MijMij

〉
, Mij = −2Δ̂2| ˆ̄S| ˆ̄Sij + 2Δ̄2|̂̄S|S̄ij, Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj,

Hij = ̂̄̂
ui ˆ̄uj − ˆ̄̂̄

iu
ˆ̄̂̄
ju − (̂̄uiūj − ̂̄̄ui ¯̄uj), Lm

ij = ūiūj − ¯̄ui ¯̄uj.
Anderson & Meneveau (1999) formulated the dynamic two-parameter mixed model

(DTMsim), which combines the eddy-viscosity model with the resolved stress and
calculates two model coefficients for eddy-viscosity and mixed terms using the dynamic
procedure as

τij = −2C1Δ̄
2|S̄|S̄ij + C2Lij, (3.5)

C1 =
〈
LijMij

〉 〈
NijNij

〉 − 〈
LijNij

〉 〈
MijNij

〉〈
MijMij

〉 〈
NijNij

〉 − 〈
NijMij

〉2 , (3.6)

C2 =
〈
LijNij

〉 〈
MijMij

〉 − 〈
LijMij

〉 〈
MijNij

〉〈
MijMij

〉 〈
NijNij

〉 − 〈
NijMij

〉2 , (3.7)

where Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj, Mij = −2Δ̂2| ˆ̄S| ˆ̄Sij + 2Δ̄2|̂̄S|S̄ij, Nij = (
˜̄̂ui ˆ̄uj − ˜̄̂ui

˜̄̂uj) − (̂̄̂uiūj −̂̄̂ui ˆ̄uj) and (̃ · ) denotes the filtering at the 5Δ̄ scale.
Anderson & Meneveau (1999) proposed another dynamic two-parameter mixed model

(DTMnl), which combines the eddy-viscosity model with the Clark model as

τij = −2C1Δ̄
2|S̄|S̄ij + C2Δ̄

2 ∂ ūi

∂xk

∂ ūj

∂xk
, (3.8)

where C1 and C2 are determined by (3.6) and (3.7), respectively, with Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj,

Mij = −2Δ̂2| ˆ̄S| ˆ̄Sij + 2Δ̄2|̂̄S|S̄ij, Nij = Δ̂2(∂ ˆ̄ui/∂xk)(∂ ˆ̄uj/∂xk) − �̄2
̂(∂ ūi/∂xk)(∂ ūj/∂xk).

Table 6 shows correlation coefficients between the true and predicted SGS stresses by
ANN-SGS models and algebraic SGS models from an a priori test of forced homogeneous
isotropic turbulence at Reλ = 106. Model DTMnl shows the best correlation coefficients,
while DSM shows the worst correlation coefficients among tested models with similar
values to those reported by Xie et al. (2020b). Correlation coefficients from DTMsim are
better than those from DSM and worse than those from DMM (Salvetti & Banerjee 1995;
Xie et al. 2020b). Model S-106H shows poor correlation coefficients similar to DSM,
while SL-106H shows comparable correlation coefficients to those of DMM. The p.d.f.s
of the SGS stress τ23 in figure 18(b) show a similar trend. The DSM shows the most
inaccurate p.d.f. of τ23, while DTMsim and SL-106H show similarly improved prediction.
The DMM and DTMnl show more accurate p.d.f.s of the SGS stress compared with
SL-106H. However, it is found from the following a posteriori test that higher correlation
coefficients of the SGS stress in an a priori test do not guarantee more accurate LES results
as also reported by Park et al. (2005) and Park & Choi (2021).

Table 7 shows correlation coefficients between S̄ij and the predicted SGS stress τmodel
ij .

Model S-106H shows high absolute magnitudes of Corr(S̄ij, τij) similar to those of DSM,
as discussed in § 3.1. Both DMM and DTMnl show closer values of Corr(S̄ij, τij) to those
of fDNS compared with DSM. On the other hand, SL-106H predicts Corr(S̄ij, τij) most
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Figure 18. Results from an a priori test of forced homogeneous isotropic turbulence at Reλ = 106. (a) The
p.d.f. of the SGS dissipation εSGS (= −τijS̄ij); (b) p.d.f. of τ23. Here �, fDNS; —— (thick black solid line),
DSM; – - – (thick black dashed-dot line), DMM; – - – (thick blue dashed-dot line), DTMnl; – - – (thick green
dashed-dot line), DTMsim; —— (thick red solid line), SL-106H.

τ11 τ22 τ33 τ12 τ13 τ23

S-106H 0.3581 0.3538 0.3509 0.3692 0.3663 0.3661
SL-106H 0.7102 0.7176 0.7162 0.7057 0.7040 0.7172
DSM 0.2890 0.2849 0.2718 0.2940 0.2989 0.3006
DMM 0.7088 0.7057 0.7079 0.7066 0.7066 0.7170
DTMnl 0.9116 0.9109 0.9120 0.9111 0.9104 0.9135
DTMsim 0.5239 0.5233 0.5181 0.5233 0.5254 0.5353

Table 6. Correlation coefficients (Corr(τ fDNS
ij , τmodel

ij )) between the traceless parts of the true SGS stress

(τ fDNS
ij ) and the predicted SGS stress (τmodel

ij ) from an a priori test of forced homogeneous isotropic turbulence
at Reλ = 106.

Corr(S̄12, τ12) Corr(S̄13, τ13) Corr(S̄23, τ23)

fDNS −0.2806 −0.2849 −0.2825
S-106H −0.8217 −0.8370 −0.8172
SL-106H −0.3992 −0.3993 −0.3806
DSM −0.9482 −0.9494 −0.9486
DMM −0.5726 −0.5930 −0.5700
DTMnl −0.4291 −0.4365 −0.4301
DTMsim −0.7892 −0.8005 −0.7853

Table 7. Correlation coefficients (Corr(S̄ij, τij)) between S̄ij and the predicted SGS stress from an a priori test
of forced homogeneous isotropic turbulence at Reλ = 106.

closely to those of fDNS. In addition, SL-106H shows the most accurate prediction of the
p.d.f. of the SGS dissipation, while the dynamic mixed models overestimate the forward
scatter (figure 18a). The DSM is not capable of predicting the backscatter.

Figure 19 shows energy spectra from LES of forced isotropic turbulence at Reλ = 106
with a grid resolution of 483, including those from the algebraic dynamic mixed models.
Except for DSM, all models well predict the energy spectrum in the range of k < 5.
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Figure 19. Energy spectra from fDNS and LES of forced homogeneous isotropic turbulence at Reλ = 106 with
a grid resolution of 483. Here �, fDNS; —— (thick black solid line), DSM; – - – (thick black dashed-dot line),
DMM; – - – (thick blue dashed-dot line), DTMnl; – - – (thick green dashed-dot line), DTMsim; —— (thick red
solid line), SL-106H.
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Figure 20. The p.d.f. of the SGS dissipation εSGS from LES of forced homogeneous isotropic turbulence at
Reλ = 106 with a grid resolution of 483. (a) Without ad hoc stabilisation; (b) with ad hoc stabilisation including
averaging of the model coefficients in statistically homogeneous directions and clipping of the negative model
coefficients. Here �, fDNS; —— (thick black solid line), DSM; – - – (thick black dashed-dot line), DMM; – - –
(thick blue dashed-dot line), DTMnl; – - – (thick green dashed-dot line), DTMsim; —— (thick red solid line),
SL-106H.

However, energy spectra of DMM and DTMsim deviate from that of fDNS in the range
of k � 5, showing large errors near the cutoff wavenumber. Model DTMnl accurately
predicts the energy spectrum at all wavenumbers. Model SL-106H produces the energy
spectrum nearly identical to that of DTMnl. Both SL-106H and DTMsim accurately predict
the SGS dissipation, whereas DSM and DMM underestimate the backscatter and DTMnl
overestimates the forward scatter as shown in figure 20(b).

Note that the algebraic dynamic SGS models tested in the present study are stable only
after applying ad hoc procedures (i.e. averaging of the model coefficients in statistically
homogeneous directions and clipping of the negative model coefficients). A possible
reason for this problem can be found from the p.d.f. of the SGS dissipation without ad hoc
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procedures, as shown in figure 20(a). The dynamic Smagorinsky and algebraic dynamic
mixed models significantly overestimate both backscatter and forward scatter when the ad
hoc procedures are not applied. The excessive backscatter causes LES to diverge within
tens of time steps. In contrast, LES with SL-106H is stable without any ad hoc procedures,
since SL-106H accurately predicts the p.d.f. of the SGS dissipation, which is a notable
advantage of the present ANN-SGS mixed model.

Additionally, LES of decaying isotropic turbulence at the initial Reynolds number Reλ
of 106 with a grid resolution of 483 is performed, and the results are shown in figures 21
and 22. Similarly to the results from LES of forced isotropic turbulence, DMM accurately
predicts energy spectra at k < 5 but underpredicts the energy at k � 5. On the other hand,
energy spectra of DTMnl are accurate at k � 5 but the energy of large scale at k � 2 is
slightly overestimated at t/Te,0 = 3.3 and 6.6. Model DTMsim provides similar energy
spectra, resolved kinetic energy and SGS dissipation to those of DSM after t/Te,0 � 1.62
since the model coefficient C2 of (3.5) becomes negative and is clipped as zero after
that time. The same issue in decaying isotropic turbulence is reported by Anderson &
Meneveau (1999); the similarity coefficient of DTMsim becomes negative when the grid
resolution is too coarse so that the test-filter size exceeds the integral scale. Compared
with the algebraic dynamic mixed models, SL-106H predicts most accurately the energy
spectra at all time steps; especially, it shows the smallest error in the range of k < 5. In
addition, SL-106H most accurately predicts the temporal evolution of the resolved kinetic
energy and the mean SGS dissipation, as shown in figure 22. This indicates that the present
ANN-SGS mixed model with input tensors of S̄ij and Lij is able to predict the decay of
isotropic turbulence more accurately than the algebraic dynamic mixed models.

3.4. Computational cost of ANN-SGS models
Computational cost is an important factor of ANN-SGS models, as it is one of the main
obstacles to the practical application of the models. Previous studies (Wang et al. 2018;
Xie & Wang 2019; Xie et al. 2020a; Yuan et al. 2020; Park & Choi 2021) reported
that ANN-SGS models are computationally more expansive than DSM, which can be
considered a major disadvantage. Therefore, a parameter study of the present ANN-SGS
mixed model with the number of neurons per hidden layer is conducted to find an optimal
size of the ANN, as the computational time for forward propagation of an ANN depends
on the size of the ANN.

Five different ANNs with 12 to 48 neurons and 2 to 4 hidden layers are considered. The
ANN-SGS mixed models with the five different ANNs are trained with the fDNS dataset
of forced isotropic turbulence at Reλ = 106. Figure 23 shows results from LES of decaying
homogeneous isotropic turbulence with a grid resolution of 483 using ANN-SGS mixed
models with ANNs of five different sizes. It is found that 12 neurons and 2 hidden layers
are sufficient, and additional neurons or hidden layers do not improve the performance
of the ANN-SGS mixed model. However, the computational time to evaluate the SGS
stress increases with the number of neurons as ratios of DSM : 12n : 24n : 48n = 1 :
0.71 : 0.89 : 1.42, where n denotes the number of neurons per hidden layer. Therefore,
in the present study an ANN with 12 neurons at each of the two hidden layers is selected.

The computational cost of the developed ANN-SGS mixed model is compared with
those of the algebraic dynamic SGS models. For a fair comparison, the matrix operations
of the ANN are implemented on the LES solver. The weight matrices and the bias vectors
of the trained ANN are saved and transferred to the solver to perform a forward propagation
of the ANN. All simulations are conducted using 16 CPU cores of Intel(R) Xeon(R)
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Figure 21. Energy spectra from fDNS and LES of decaying isotropic turbulence at the initial Reynolds
number Reλ = 106 with a grid resolution of 483 (DHIT106 case). Results are shown for (a) t/Te,0 = 1.1;
(b) t/Te,0 = 3.3; (c) t/Te,0 = 6.6. Here �, fDNS; —— (thick black solid line), DSM; – - – (thick black
dashed-dot line), DMM; – - – (thick blue dashed-dot line), DTMnl; – - – (thick green dashed-dot line), DTMsim;
—— (thick red solid line), SL-106H.
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Figure 22. Results from fDNS and LES of decaying isotropic turbulence at the initial Reynolds number Reλ
of 106 with a grid resolution of 483 (DHIT106 case). Temporal evolution of (a) the resolved kinetic energy
and (b) the mean SGS dissipation 〈εSGS〉 (= 〈−τijS̄ij〉) are shown. Here �, fDNS; —— (thick black solid line),
DSM; – - – (thick black dashed-dot line), DMM; – - – (thick blue dashed-dot line), DTMnl; – - – (thick green
dashed-dot line), DTMsim; —— (thick red solid line), SL-106H.
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Figure 23. Results from fDNS and LES of decaying isotropic turbulence at the initial Reynolds number Reλ
of 106 with a grid resolution of 483. (a) Energy spectra at t/Te,0 = 1.1, 3.3 and 6.6; (b) temporal evolution
of the resolved kinetic energy. Here �, fDNS; ANN-SGS mixed model with —— (thick red solid line), 12
neurons and 2 hidden layers; – - – (thick yellow orange dashed-dot line), 24 neurons and 2 hidden layers; – - –
(thick blue dashed-dot line), 48 neurons and 2 hidden layers; – – - (thick green dashed line), 12 neurons and 3
hidden layers; – – - (thick magenta dashed line), 12 neurons and 4 hidden layers.
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Figure 24. Ratio of computational time of tested SGS models for evaluating the SGS stress. Computational
time is normalised to that of DSM.

E5-2650 v2, and the time consumption for evaluating the SGS stress tensors during the
same 100 time steps are compared. Figure 24 shows ratios of the computational time of
the tested SGS models for evaluating the SGS stress. The algebraic dynamic mixed models
require 1.6 to 2.2 times greater computational time than DSM to calculate the SGS stress.
It is noteworthy that the developed ANN-SGS mixed model is computationally cheaper
than the algebraic dynamic mixed models and even than DSM.

3.5. Training and testing for turbulent channel flow
In this section application of the developed ANN-SGS mixed model to a wall-bounded
flow is discussed. Turbulent channel flow at Reτ = 180 and 395 is considered. The
predictive capabilities of the ANN-SGS mixed model that uses both S̄ij and Lij as
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Reτ Lx Lz Nx × Ny × Nz Δx+ Δz+ Δy+
min Δy+

c

180 4πδ 4
3 πδ 192 × 192 × 192 11.8 3.9 0.1 4.6

395 2πδ πδ 192 × 192 × 192 13.0 6.5 0.2 10.0

Table 8. Parameters for DNS of turbulent channel flow. Here Lx and Lz are the streamwise and spanwise
domain sizes, respectively; δ is the channel half-width, and Nx, Ny and Nz are numbers of grid points in the
streamwise, wall-normal, and spanwise directions, respectively; �x+ and �z+ are the streamwise and the
spanwise grid sizes in wall units, respectively; �y+

min and �y+
c are the wall-normal grid sizes at the wall and

the centreline, respectively.

inputs and the ANN-SGS model with S̄ij as the only input are investigated through a
posteriori tests for a turbulent channel flow with various untrained Reynolds number
and grid resolution. Additionally, it is further investigated whether the ANN-SGS mixed
model trained with both channel flow and homogeneous isotropic turbulence at a certain
condition is capable of providing accurate solutions for both types of flow at untrained
conditions. Lastly, results from LES of turbulent channel flow with the ANN-SGS mixed
model that is trained only with homogeneous isotropic turbulence are discussed.

Direct numerical simulations are performed with parameters summarized in table 8 to
construct training datasets and reference solutions for LES. A fourth-order finite-difference
code by Bose, Moin & You (2010) is utilised to conduct DNS and LES. The convection
terms are discretized in a skew-symmetric form (Morinishi et al. 1998). A semi-implicit
method is used for time marching. The viscous diffusion terms in the wall-normal
direction are integrated implicitly with the Crank–Nicolson method, and the other terms
are explicitly advanced with the third-order Runge–Kutta method (Morinishi et al. 1998;
Bose et al. 2010; Kang & You 2021).

The fDNS dataset of a turbulent channel flow at Reτ = 180 is constructed by applying

the grid and test filters with Δ̄ = 4ΔDNS and ˆ̄Δ = 8ΔDNS to instantaneous DNS fields,
where ΔDNS is the grid spacing of DNS. The filter width Δ̄ of the fDNS dataset is the
same as the grid size of LES with Nx × Ny × Nz = 48 × 48 × 48 cells at Reτ = 180.
Fourth-order commutative discrete filters by Vasilyev, Lund & Moin (1998) are utilised to
construct the fDNS dataset and to conduct test filtering of LES. A total of 3.5 × 107 data
points are sampled from five instantaneous velocity fields of fDNS after flow becomes
fully developed, and 2.8 × 107 data points are used for training, whereas the rest are used
for testing. It has been found that training with more than 2.8 × 107 data points (four
instantaneous fDNS fields) does not show meaningful alteration of the ANN performance.

The ANN-SGS models are trained from scratch using the fDNS dataset of a turbulent
channel flow by the same method in § 2.4, except for normalisation of the SGS stress.
The normalisation factor of the SGS stress is estimated using the resolved stress tensor Lij
instead of the gradient model term since it is reported that the gradient model term has
incorrect near-wall scaling (Liu et al. 1994) in contrast to the resolved stress tensor.

Each ANN-SGS model is named following the same rules as in § 2.4. The characters
C and H at the end of the model names denote channel flow and homogeneous isotropic
turbulence, respectively, and represent flow with which each ANN-SGS model is trained.
For example, S-180C uses S̄ij as the input, whereas SL-180C uses S̄ij and Lij as inputs, and
both models are trained with turbulent channel flow at Reτ = 180. Model SL-106H180C
is trained with both channel flow at Reτ = 180 and homogeneous isotropic turbulence at
Reλ = 106; SL-106H is only trained with homogeneous isotropic turbulence at Reλ = 106.
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SL-180C S-180C SL-106H DSM DMM

Corr(τ fDNS
xy , τmodel

xy ) 0.6528 0.4860 0.4149 0.1855 0.8797
Corr(εfDNS

SGS , εmodel
SGS ) 0.7994 0.6997 0.4203 0.2689 0.9053

Table 9. Correlation coefficients (Corr(τ fDNS
xy , τmodel

xy ), Corr(εfDNS
SGS , εmodel

SGS )) from an a priori test of turbulent
channel flow at Reτ = 180.

For training of SL-106H180C, the same amount of fDNS data points (2.8 × 107) from
both homogeneous isotropic turbulence and turbulent channel flow are used to prevent the
model from being biased. In addition, the same number of training samples are provided
with the mini-batch size of 128 by extracting 64 fDNS data from homogeneous isotropic
turbulence and turbulent channel flow, respectively.

Trained ANN-SGS models are initially evaluated in an a priori test of a turbulent
channel flow at Reτ = 180 (table 9). The DSM shows poor correlation coefficients of
the SGS stress and the SGS dissipation as reported by Park & Choi (2021). The SGS
stress from DMM shows the best correlation coefficient of 0.88, a similar value reported
by Salvetti & Banerjee (1995). Model SL-106H shows higher correlation coefficients
than those of DSM even though the model is not trained with turbulent channel flow.
Model SL-180C is more accurate than S-180C in predicting the SGS stress and the SGS
dissipation, indicating that the use of Lij in addition to S̄ij as an input is also beneficial to
the prediction of the SGS stress for channel flow.

In order to investigate the generalizability of the ANN-SGS models, the models are
tested for LES of turbulent channel flow at various conditions listed in table 10. The
Reynolds number and the grid size of LES180 case are the same as those of the
training data (i.e. Reτ = 180, Nx × Ny × Nz = 48 × 48 × 48), and the remaining four
cases correspond to untrained Reynolds number and grid resolution conditions.

Figure 25 shows results of the LES180 case. The DSM overpredicts the mean
streamwise velocity and the streamwise velocity fluctuations ū′

rms, while underpredicts the
wall-normal velocity fluctuations v̄′

rms and the spanwise velocity fluctuations w̄′
rms. The

overprediction of the mean streamwise velocity by DSM is consistent with the results of
the previous studies (Horiuti 1997; Park & Choi 2021; Kim et al. 2022). In addition, it has
been reported that LES with DSM exhibits overprediction of ū′

rms and underpredictions
of v̄′

rms and w̄′
rms (Park & Mahesh 2009; You & Moin 2007, 2009). The larger errors of

LES with DSM than those of the no-SGS case in the prediction of velocity fluctuations
have also been reported by Morinishi & Vasilyev (2001) and Cabot (1994). The DSM also
shows slight underprediction of the mean Reynolds shear stress at y+ < 30. Large-eddy
simulation without an SGS model (no-SGS) underpredicts the mean streamwise velocity
and overpredicts the Reynolds shear stress. However, SL-180C more accurately predicts
the mean velocity, root-mean-squared (r.m.s.) velocity fluctuations, and the mean Reynolds
shear stress than DSM and no-SGS. Model S-180C performs similar to SL-180C in
terms of the velocity fluctuations and the Reynolds shear stress. However, S-180C shows
slight underprediction of the mean streamwise velocity, compared with SL-180C. Model
SL-106H180C shows almost identical performance to SL-180C, while showing slightly
better prediction of the mean Reynolds shear stress at y+ > 40. Interestingly, SL-106H is
stable and accurately predicts the velocity fluctuations, despite the fact that it was trained
only for homogeneous isotropic turbulence. The Reynolds shear stress of SL-106H shows
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LES case Reτ (Lx, Lz) (Nx, Ny, Nz) (�x+, �z+) (�y+
min, �y+

c ) Model

SL-180C
S-180C

LES180 180 (4πδ, 4
3 πδ) (48, 48, 48) (47.2, 15.7) (0.33, 18.2) SL-106H180C

SL-106H
DSM

no-SGS
SL-180C

LES180c 180 (4πδ, 4
3 πδ) (32, 48, 32) (70.8, 23.6) (0.33, 18.2) SL-106H180C

DSM
no-SGS
SL-180C

LES180f 180 (4πδ, 4
3 πδ) (64, 64, 64) (35.4, 11.8) (0.24, 13.7) SL-106H180C

DSM
no-SGS
SL-180C
S-180C

LES395 395 (2πδ,πδ) (48, 48, 48) (52.0, 26.0) (0.72, 40.0) SL-106H180C
DSM

no-SGS
SL-180C
S-180C

LES395f 395 (2πδ,πδ) (64, 64, 64) (39.0, 19.5) (0.53, 30.1) SL-106H180C
DSM

no-SGS

Table 10. Parameters for LES of turbulent channel flow with ANN-SGS models and DSM. The effects of grid
resolution and the Reynolds number on the performance of ANN-SGS models are considered. Here Lx and Lz
are the streamwise and spanwise domain sizes, respectively; δ is the channel half-width, and Nx, Ny and Nz are
numbers of grid points in the streamwise, wall-normal, and spanwise directions, respectively; �x+ and �z+
are the streamwise and spanwise grid sizes in wall units, respectively; �y+

min and �y+
c are the wall-normal grid

sizes at the wall and the centreline, respectively.

a similar error near y+ = 25 and smaller errors at y+ > 45, compared with that of DSM.
However, SL-106H underpredicts the mean streamwise velocity, which is similar to that
of no-SGS. Model SL-106H may inaccurately predict the SGS stress at wall-bounded
flow since the mean of the SGS shear stress (off-diagonal components) vanishes (Kang
et al. 2003) in homogeneous isotropic turbulence. Therefore, training an ANN-SGS model
for a turbulent channel flow dataset seems to be essential to accurately predict the mean
streamwise velocity.

Table 11 shows the averaged wall shear stress and the skin-friction coefficients
(Cf = 2〈τw〉/ρU2

b , where τw is the wall shear stress and the bulk mean velocity
Ub = 1/2δ

∫ +δ

−δ
〈ū〉dy) of fDNS and LES for the LES180 case. Models SL-180C, S-180C

and SL-106H180C predict the wall shear stress more accurately than DSM, while SL-106H
shows a slightly larger deviation from that of DSM. On the other hand, the no-SGS case
overestimates Cf , while LES with DSM underestimates Cf . The overestimation of Cf by
the no-SGS case is also reported by Vreman (2004), although the computed Reτ by the
no-SGS case is in good agreement with that of DNS. Model SL-180C shows the most
accurate prediction of Cf among tested models.

Figure 26 shows results in LES180c and LES180f cases that test the performance
of ANN-SGS models on an untrained grid resolution. On a coarser grid resolution
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Figure 25. Results from fDNS and LES of turbulent channel flow at Reτ = 180 with a grid resolution of 48 ×
48 × 48 (LES180). (a) The mean streamwise velocity; (b) root-mean-squared (r.m.s.) velocity fluctuations;
(c) the mean Reynolds shear stress 〈ū′v̄′〉, where 〈·〉 denotes averaging over the x–z plane and time. The three
sets of curves in (b) represent ūrms/uτ , w̄rms/uτ and v̄rms/uτ from top to bottom, respectively. Here ©, fDNS;
+, DSM; ∇, no-SGS; —— (thick red solid line), SL-180C; – – - (thick green dashed line), S-180C; – - – (thick
blue dashed-dot line), SL-106H180C; – – (thick yellow orange dashed line), SL-106H; – – - (thick black dashed
line), the law of the wall 〈ū〉/uτ = 0.41−1 log y+ + 5.2.

fDNS DSM no-SGS SL-180C S-180C SL-106H180C SL-106H

〈τw〉 /ρ 1.0109 0.9817 1.0067 1.0023 1.0276 1.0277 1.0413
error (%) 0.0 −2.89 % −0.42 % −0.85 % 1.65 % 1.66 % 3.00 %
Cf 0.0085 0.0072 0.0103 0.0092 0.0098 0.0096 0.0109

Table 11. Averaged wall shear stress 〈τw〉/ρ and the skin-friction coefficient Cf from fDNS and LES of a
turbulent channel flow at Reτ = 180 with a grid resolution of 48 × 48 × 48 (LES180), where 〈·〉 denotes
averaging over the x–z plane and time. Here Cf = 2〈τw〉/ρU2

b , where τw is the wall shear stress and the bulk
mean velocity Ub = 1/2δ

∫ +δ

−δ
〈ū〉dy.

(LES180c), DSM shows large errors in the prediction of the mean velocity and velocity
fluctuations. Although DSM more accurately predicts the Reynolds shear stress than
SL-180C and SL-106H180C (figure 26e), the mean streamwise velocity and the velocity
fluctuations predicted by SL-180C and SL-106H180C are significantly better than those of
DSM (figure 26a,c).
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Figure 26. Results from fDNS and LES of turbulent channel flow at Reτ = 180 with a grid resolution of
32 × 48 × 32 (a,c,e; LES180c) and 64 × 64 × 64 (b,d,f ; LES180f). (a,b) The mean streamwise velocity;
(c,d) r.m.s. velocity fluctuations; (e,f ) the mean Reynolds shear stress 〈ū′v̄′〉, where 〈·〉 denotes averaging
over the x–z plane and time. The three sets of curves in (c,d) represent ūrms/uτ , w̄rms/uτ and v̄rms/uτ

from top to bottom, respectively. Here ©, fDNS; +, DSM; ∇, no-SGS; —— (thick red solid line),
SL-180C; – - – (thick blue dashed-dot line), SL-106H180C; – – - (thick black dashed line), the law of the wall
〈ū〉/uτ = 0.41−1 log y+ + 5.2.

On a finer grid resolution (LES180f), DSM slightly overpredicts the mean streamwise
velocity. The DSM is less accurate than SL-180C and SL-106H180C in the prediction of
the velocity fluctuations and the Reynolds shear stress. In contrast, all results of SL-180C
and SL-106H180C are in excellent agreement with those of fDNS (figure 26b,d,f ). Models
SL-180C and SL-106H180C are found to perform better than DSM regardless of grid
resolution.
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The developed ANN-SGS models are tested for LES at a higher Reynolds number Reτ

of 395, and results are shown in figure 27. The DSM overpredicts the mean streamwise
velocity in the LES395 and LES395f cases as shown in figures 27(a) and 27(b). Model
S-180C underpredicts the mean streamwise velocity in both LES395 and LES395f cases,
and the error becomes larger on a finer grid resolution (figure 27a,b). On the other hand,
the mean velocity profiles of SL-180C and SL-106H180C are found to be closer to those
of fDNS and less sensitive to grid resolution than DSM and S-180C.

In figures 27(c) and 27(d), DSM overpredicts ū′
rms while it underpredicts v̄′

rms and w̄′
rms.

In contrast, S-180C, SL-180C and SL-106H180C show similar predictions of ū′
rms, v̄′

rms
and w̄′

rms that are more accurate than those of DSM. In figures 27(e) and 27( f ), DSM and
S-180C similarly overpredict the Reynolds shear stress, while the Reynolds shear stress
of SL-180C shows good agreement with that of fDNS. As SL-180C more accurately
predicts the mean streamwise velocity and the Reynolds shear stress than S-180C, it
can be concluded that the use of Lij in addition to the S̄ij as an input improves the
performance of the ANN-SGS model for a turbulent channel flow, similarly to the case
of homogeneous isotropic turbulence. In LES of a turbulent channel flow (figures 25, 26
and 27), SL-106H180C performs similarly to SL-180C, especially in the prediction of the
mean velocity and the velocity fluctuations.

In figure 28 a qualitative comparison of vortical structures is shown by isosurfaces of Q
that is defined as the second invariant of the velocity gradient tensor from fDNS and LES
for the LES395f case. Similar scales and distributions of flow structures to those of fDNS
are observed by SL-180C, S-180C and DSM, while significantly more vortical structures
are found in the flow field of no-SGS due to the lack of SGS dissipation (Park & Choi
2021).

Additionally, it is tested whether SL-106H180C provides accurate solutions for LES of
decaying isotropic turbulence, and the results are shown in figure 29. Model SL-106H180C
shows almost identical performance to SL-106H in the prediction of energy spectra and
the resolved kinetic energy. Therefore, the present ANN-SGS mixed model that is trained
with isotropic turbulence and turbulent channel flow at a given Reynolds number and
grid resolution condition (SL-106H180C) is found to be capable of accurately and stably
predicting both turbulent channel flow and isotropic turbulence flow at untrained Reynolds
number and grid resolution conditions.

3.6. Normalisation of input and output variables for turbulent channel flow
In § 3.5 the input and output variables of ANN-SGS models are normalised with
volume-averaged quantities as done in homogeneous isotropic turbulence. However, as
flow variables are inhomogeneous in the wall-normal direction in the case of a turbulent
channel flow, normalisation with plane-averaged quantities can also be considered.
Thus, two different normalisations for ANN-SGS models using plane-averaged and
volume-averaged quantities (denoted as plane-wise normalisation and volume-wise
normalisation hereafter, respectively) are compared in this section. For plane-wise
normalisation, variables are normalised in every wall-parallel plane with plane-averaged
quantities. The additional character V or P is added at the end of the model names to
denote volume-wise normalisation or plane-wise normalisation, respectively.

Although, as shown in figures 30(d) and 30(e), SL-180C-P is found to be more accurate
in the prediction of the mean SGS shear stress, SL-180C-V provides a more accurate
prediction of the backscatter. However, as shown in figures 30(a), 30(b) and 30(c), no
significant differences in the mean streamwise velocity, r.m.s. velocity fluctuations and
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Figure 27. Results from fDNS and LES of a turbulent channel flow at Reτ = 395 with a grid resolution
of 48 × 48 × 48 (a,c,e; LES395) and 64 × 64 × 64 (b,d,f ; LES395f). (a,b) The mean streamwise velocity;
(c,d) r.m.s. velocity fluctuations; (e,f ) the mean Reynolds shear stress 〈ū′v̄′〉, where 〈·〉 denotes averaging over
the x–z plane and time. The three sets of curves in (c,d) represent ūrms/uτ , w̄rms/uτ and v̄rms/uτ from top to
bottom, respectively. Here ©, fDNS; +, DSM; ∇, no-SGS; —— (thick red solid line), SL-180C; – – - (thick
green dashed line), S-180C; – - – (thick blue dashed-dot line), SL-106H180C; – – - (thick black dashed line),
the law of the wall 〈ū〉/uτ = 0.41−1 log y+ + 5.2.

the Reynolds shear stress in SL-180C-P and SL-180C-V are found. The same trends are
observed in the comparison of results from S-180C-P and S-180C-V. The volume-wise
averaging is not taken on the output SGS stress itself but only on the normalisation
factor that is used for regularising the input and output data range. In addition, important
physical characteristics of SL-180C-V, such as the near-wall behaviour of the SGS stress
(figure 30d) and the backscatter (figure 30e), remain accurate even when volume-wise
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Figure 28. Isosurfaces of Q = 0.0025u4
τ /ν2 from fDNS and LES of a turbulent channel flow at Reτ = 395

with a grid resolution of 64 × 64 × 64 (LES395f). Results are shown for (a) fDNS, (b) DSM, (c) no-SGS,
(d) SL-180C, (e) S-180C.
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Figure 29. Results from fDNS and LES of decaying isotropic turbulence at the initial Reynolds number Reλ
of 106 with a grid resolution of 483. (a) Energy spectra at t/Te,0 = 1.1, 3.3 and 6.6; (b) temporal evolution of
the resolved kinetic energy. Here �, fDNS; —— (thick black solid line), DSM; – – - (thick black dashed line),
no-SGS; – - – (thick blue dashed-dot line), SL-106H180C; —— (thick red solid line), SL-106H.

normalisation is used. However, it is worth noting that an ANN-SGS model trained with
plane-wise normalisation is applicable only when statistically homogeneous directions
exist.

On the other hand, as shown in figure 30(a), it is found that the plane-wise
normalisation in SL-106H-P produces the mean streamwise velocity more accurately than
the volume-wise normalisation in SL-106H-V. The mean SGS shear stress by SL-106H-V
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Figure 30. Results from fDNS and LES of a turbulent channel flow at Reτ = 180 with a grid resolution of 48 ×
48 × 48 (LES180). (a) The mean streamwise velocity; (b) r.m.s. velocity fluctuations; (c) the mean Reynolds
shear stress 〈ū′v̄′〉; (d) the mean SGS shear stress 〈τxy〉; (e) the mean backscatter 〈ε−

SGS〉 = 1
2 〈εSGS − |εSGS|〉,

where 〈·〉 denotes averaging over the x–z plane and time. The three sets of curves in (b) represent ūrms/uτ ,
w̄rms/uτ and v̄rms/uτ from top to bottom, respectively. Here ©, fDNS; +, DSM; ∇, no-SGS; —— (thick
red solid line), SL-180C-V; – – - (thick green dashed line), S-180C-V; – – (thick yellow orange dashed line),
SL-106H-V; —— (thick magenta solid line), SL-180C-P; – - – (thick cyan dashed-dot line), S-180C-P; – – (thick
blue dashed line), SL-106H-P; – – - (thick black dashed line), the law of the wall 〈ū〉/uτ = 0.41−1 log y+ + 5.2.

does not vanish at the wall since SL-106H-V was not trained with the SGS stress
distribution near the wall (figure 30d). Compared with SL-180C-V that is trained with
channel flow, the mean SGS shear stress is overall overestimated by SL-106H-V, leading
to an underestimated Reynolds shear stress (figure 30c). Interestingly, the mean SGS
shear stress by SL-106H-P vanishes at the wall, which seems to improve the prediction
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of the mean streamwise velocity, regardless of the inaccurate prediction of the mean SGS
shear stress. Therefore, plane-wise normalisation is found to improve the applicability of
the ANN-based mixed SGS model that is trained only with the homogeneous isotropic
turbulence to an untrained turbulent channel flow.

Regardless of the normalisation method, providing Lij in addition to the S̄ij as an
input is beneficial to the prediction of the backscatter and the mean SGS shear stress
(figure 30d,e). Although the mean streamwise velocity and r.m.s.velocity fluctuations from
SL-180C-V and S-180C-V are similar to each other, S-180C-V significantly underestimates
the backscatter, which is consistent with the results from LES of homogeneous isotropic
turbulence. In addition, SL-180C-V more accurately predicts the mean SGS shear stress
than S-180C-V. The similar trend is observed in the comparison of SL-180C-P and
S-180C-P. Model SL-180C-P is found to more accurately predict the mean SGS shear
stress and the backscatter. Owing to the better prediction of the SGS shear stress and
backscatter, SL-180C is considered to better predict channel flow at a higher Reynolds
number Reτ = 395 than S-180C as shown in figure 27.

3.7. Application of ANN-SGS models trained with homogeneous isotropic turbulence to
turbulent channel flow

In this section it is discussed how SL-106H that is trained only with homogeneous isotropic
turbulence is partially successful in the prediction of the SGS stress for a turbulent channel
flow. As discussed in § 3.1, the ANN-SGS mixed model combines two input tensors (S̄ij
and Lij) to produce the SGS stress. Therefore, the investigation of statistical relations
between each input tensor and the true SGS stress for homogeneous isotropic turbulence
and a turbulent channel flow is important.

Correlation coefficients between each input tensor and the true SGS stress for both
flows from a priori tests are shown in tables 12 and 13. Because Corr(S̄ij, τij) and
Corr(Lij, τij) from fDNS are different in the two flows, it can be concluded that S̄ij and Lij
contribute differently to the prediction of the SGS stress. In particular, the absolute value
of Corr(S̄ij, τij) from fDNS is close to zero in a turbulent channel flow (see table 13) while
it is close to 0.3 in homogeneous isotropic turbulence (see table 12), which implies that the
relative importance of S̄ij for the prediction of τij should be considerably different. Such
difference in relative importance of S̄ij is particularly noticeable in the observation of the
near-wall behaviours of both input tensors and the SGS stress. As shown in figure 31(a),
in fDNS, 〈S̄xy〉 increases as y+ approaches 0 whereas 〈τxy〉 decreases from the peak value
near the wall as shown in figure 31(d). On the other hand, 〈Lxy〉 shows a similar distribution
to 〈τxy〉 as shown in figures 31(b) and 31(d).

These observations explain the incorrect prediction of 〈τxy〉 near the wall by S-106H-V
in figure 31(d) since S-106H-V only uses S̄xy to produce τxy. The absolute value of
Corr(S̄xy, τxy) from S-106H-V in a turbulent channel flow is close to 1 indicating that
S-106H-V predicts the SGS stress nearly aligned with S̄ij. This leads to the prediction of
〈τxy〉 by S-106H-V of which the near-wall behaviour mimics that of 〈S̄xy〉. Consequently,
S-106H-V significantly overestimates the mean SGS dissipation 〈εSGS〉 near the wall
(figure 31e).

Model SL-106H-V, on the other hand, predicts 〈τxy〉 near the wall more accurately
than S-106H-V. This is because (i) SL-106H-V highly relies on Lij to predict the tensor
alignment of τij that can be confirmed from tables 12 and 13 where Corr(Lij, τij) values
of SL-106H are higher than 0.8 for both types of flow, and (ii) Lij has high similarity to
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Figure 31. Results from an a priori test of a turbulent channel flow at Reτ = 180. (a) Strain-rate tensor 〈S̄xy〉,
(b) resolved stress tensor 〈Lxy〉, (c) L2 norm of resolved stress tensor 〈|L|〉, (d) SGS shear stress 〈τxy〉, (e) SGS
dissipation 〈εSGS〉 and ( f ) backscatter 〈ε−

SGS〉 = 1
2 〈εSGS − |εSGS|〉, where 〈·〉 denotes averaging over the x–z

plane and time. Here ©, fDNS; – – (thick yellow orange dashed line), SL-106H-V; – - – (thick yellow orange
dashed-dot line), S-106H-V; – – (thick blue dashed line), SL-106H-P.

the SGS stress in terms of the correlation coefficient to the true SGS stress (table 13) and
the near-wall behaviour (figure 31). It is noteworthy that Zang et al. (1993) reported that
the scale-similarity part of the dynamic mixed model (the modified Leonard term) shows
significant contribution to the Reynolds stress near the wall, while the contribution of the
eddy-viscosity part is negligible.

Consequently, SL-106H-V shows an improved near-wall behaviour of the mean SGS
shear stress 〈τxy〉 as it is influenced by the near-wall behaviour of the mean resolved stress
〈Lxy〉. Model SL-106H-P shows the best near-wall behaviour among the tested models
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fDNS SL-106H S-106H

Corr(S̄12, τ12) −0.2806 −0.3992 −0.8217
Corr(S̄13, τ13) −0.2849 −0.3993 −0.8370
Corr(S̄23, τ23) −0.2825 −0.3806 −0.8172
Corr(L12, τ12) 0.6620 0.9553 0.3505
Corr(L13, τ13) 0.6712 0.9423 0.3200
Corr(L23, τ23) 0.6878 0.9518 0.3507

Table 12. Correlation coefficients (Corr(S̄ij, τij), Corr(Lij, τij)) between the input variables and the predicted
SGS stress by ANN-SGS models from an a priori test of forced homogeneous isotropic turbulence at
Reλ = 106.

since the L2 norm of Lij, which is multiplied to the output of SL-106H-P for rescaling,
shows a correct near-wall behaviour at the wall (figure 31c).

However, SL-106H-V and SL-106H-P show higher absolute values of Corr(S̄xy, τxy)
than those of SL-180C-V and fDNS in channel flow (table 13), which indicates the
contribution of S̄ij for τij is overestimated. Since Corr(S̄xy, τxy) of fDNS has a small
absolute value of 0.08 in channel flow, alignment of τij is inaccurately predicted when
the contribution of S̄ij is overestimated. This explains the overprediction of the SGS stress
and the SGS dissipation in figures 31(d) and 31(e).

It is also investigated whether SL-106H-V and SL-106H-P can reflect the anisotropy
of Lij to produce τij in a turbulent channel flow. In order to quantitatively compare the
anisotropy of the predicted SGS stress by ANN-SGS models, the anisotropy invariant maps
(Lumley & Newman 1977) of the SGS anisotropy tensor are examined in figure 32. The
SGS anisotropy tensor is defined as (Rasam et al. 2016; Inagaki & Kobayashi 2020)

aij =
〈
τij

〉
〈τkk〉 − 1

3
δij, (3.9)

where 〈·〉 denotes averaging over the x–z plane and time. The anisotropy invariant maps
are constructed based on the two invariants of the anisotropy tensor aij,

II = aijaij, III = aikakjaji, (3.10a,b)

where II and III are the second and third invariants of aij, respectively. The invariant
map lies in the region bounded by the limits of the two-component turbulence state (II =
2/9 + 2III) and the axisymmetric turbulence state (II = 3/2(4/3|III|)2/3). The triangular
region defined by the limits represents the realizability condition for the invariants of the
SGS tensor.

In the invariant map, the two-component turbulence (II = 2/9 + 2III), which is the
condition in which the wall-normal component is negligible relative to the other two
components, occurs at the wall (Inagaki & Kobayashi 2020). The right curved edgy is
the axisymmetric turbulence in which the streamwise component is larger than the other
two components (Rasam et al. 2016). The origin corresponds to the isotropic turbulence
state that occurs at the channel centreline.

The invariant map for SL-180C-V approaches the top right corner and ends at the
two-component limit as it approaches the wall, indicating that SL-180C-V represents
the anisotropy of the SGS stress similar to the true SGS stress. The invariant map
of Lij indicates that Lij itself has similar anisotropy to that of the true SGS stress.
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Figure 32. Anisotropy invariant maps of the SGS stress anisotropy tensor from an a priori test of a turbulent
channel flow at Reτ = 180. Here ©, fDNS; —— (thick green solid line), Lij; —— (thick red solid line),
SL-180C-V; —— (thick yellow orange solid line), SL-106H-V; —— (thick blue solid line), SL-106H-P; �
(yellow orange triangle), S-106H-V.

Since the invariant map of S-106H-V remains near the origin, it is concluded that
the SGS stress predicted by S-106H-V is isotropic. On the other hand, the SGS stress
from SL-106H-V and SL-106H-P show larger anisotropy than that of S-106H-V as the
invariant maps follow the axisymmetric limit, which represents the streamwise component
becoming larger than the other two components. Due to the large contribution of Lij
for predicting τij by SL-106H-V and SL-106H-P, they represent a limited magnitude of
anisotropy by indirectly accounting for the anisotropy of Lij. However, the anisotropy
magnitude is significantly underestimated and the invariant map does not approach
the two-component turbulence state at the wall. This indicates that SL-106H-V and
SL-106H-P are not fully capable of representing the asymptotic behaviour of the SGS
stress near the wall since they are not trained with channel flow.

In figure 33 results from an a posteriori test of a turbulent channel flow are presented
to compare the ANN-SGS models trained only with homogeneous isotropic turbulence.
Model S-106H-V shows a significant underprediction of the mean streamwise velocity
due to the inaccurate prediction of the SGS shear stress and the SGS dissipation, although
the model employs the same normalisation of variables with SL-106H-V. Model S-106H-V
also shows poor prediction of the r.m.s.velocity fluctuations and the mean Reynolds shear
stress. Compared with SL-106H-V, SL-106H-P that employs plane-wise normalisation
further improves the near-wall behaviour of the SGS shear stress and the prediction of
the mean streamwise velocity since the rescaling factor (〈|L|〉x−z) becomes zero at the wall
(figure 31c).

In summary, since the strain-rate tensor that is almost aligned with the SGS stress in
S-106H-V is poorly correlated to the true SGS stress and has an inaccurate near-wall
behaviour, proper normalisation of variables is not enough for accurate prediction of a
turbulent channel flow. Improved results by SL-106H-V and SL-106H-P are explained as
they predict the SGS stress using Lij that has high similarity to the true SGS stress in
terms of the near-wall behaviour and anisotropy. Therefore, the most important factor for
generalization to an untrained turbulent channel flow is considered to be the use of Lij.

4. Conclusions

In the present study an ANN-based mixed SGS model applicable to LES of turbulent
flow under untrained Reynolds number and grid resolution conditions has been developed.
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Figure 33. Results from fDNS and LES of a turbulent channel flow at Reτ = 180 with a grid resolution
of 48 × 48 × 48 (LES180). (a) The mean streamwise velocity; (b) r.m.s. velocity fluctuations; (c) the mean
Reynolds shear stress 〈ū′v̄′〉, where 〈·〉 denotes averaging over the x–z plane and time. The three sets of
curves in (b) represent ūrms/uτ , w̄rms/uτ and v̄rms/uτ from top to bottom, respectively. Here ©, fDNS; +,
DSM; ∇, no-SGS; – – (thick yellow orange dashed line), SL-106H-V; – - – (thick yellow orange dashed-dot
line), S-106H-V; – – (thick blue dashed line), SL-106H-P; – – - (thick black dashed line), the law of the wall
〈ū〉/uτ = 0.41−1 log y+ + 5.2.

The predictive capabilities of two different ANN-SGS models that use either the resolved
strain-rate tensor (S̄ij) as the only input (ANN-SGS model) or the combination of the
resolved strain-rate tensor and the resolved stress tensor (S̄ij and Lij) as the inputs
(ANN-SGS mixed model) to predict the six components of the SGS stress tensor have
been examined for forced and decaying isotropic turbulence and turbulent flow through a
channel.

From a priori tests with forced isotropic turbulence, it was found that the ANN-SGS
model with the resolved strain-rate tensor as the only input predicts the SGS stress that
is nearly aligned with the given input strain-rate tensor instead of the true SGS stress. In
addition, in an a posteriori test for the same flow, the ANN-SGS model showed almost
identical performance to that of the algebraic DSM in terms of the energy spectrum and
p.d.f.s of the SGS dissipation and the SGS stress. To improve the accuracy of the predicted
SGS stress as well as its misalignment to the true SGS stress, the ANN-SGS mixed model
has been devised using the resolved stress tensor as an additional input based on the
concept of the algebraic dynamic mixed SGS models.

The ANN-SGS mixed model has been found to predict the SGS stress with higher
correlation coefficients to the true SGS stress and to provide more accurate p.d.f.s of the
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SGS dissipation and SGS stress than the ANN-SGS model. In addition, the ANN-SGS
mixed model has been found to predict the SGS stress with closer alignment with the true
SGS stress than the ANN-SGS model. At the same time, the present ANN-SGS mixed
model has been found to perform better than the algebraic DSM and the ANN-SGS model
in an a posteriori test with forced isotropic turbulence in terms of the energy spectrum and
the p.d.f. of the SGS dissipation.

The present ANN-SGS mixed model also has additional advantages over the algebraic
dynamic SGS models in that the model predicts the SGS stress with less computational
cost and does not necessitate ad hoc stabilisation procedures for numerical stability.
Compared with the algebraic dynamic mixed models (Zang et al. 1993; Vreman et al.
1994; Anderson & Meneveau 1999), the present ANN-SGS mixed model has been found
to more accurately predict energy spectra and temporal evolution of the resolved kinetic
energy of decaying isotropic turbulence without any ad hoc stabilisation procedures. The
computational time required for the ANN-SGS mixed model to produce the SGS stress
has been found to be notably less than that of the algebraic dynamic mixed models and
even that of the DSM.

For generalization of the ANN-SGS models to LES of untrained flows, it has been found
that proper selection of normalisation factors such that distributions of the normalised
input and output variables remain unchanged as the Reynolds number and grid resolution
vary is crucial. From a priori and a posteriori studies with forced and decaying
homogeneous isotropic turbulence and turbulent channel flow, it has been found that
averaged L2 norms of the gradient model term and the resolved stress term can be the good
scaling factor 〈|τ |〉 for normalisation of the output SGS stress tensor as τ ∗

ij = τij/〈|τ |〉,
while the magnitudes of the resolved strain-rate tensor and the resolved stress tensor are
sufficient for normalisation of the input variables as S̄∗

ij = S̄ij/〈|S̄|〉 and L∗
ij = Lij/〈|L|〉 since

they maintain the most constant distributions of the input and output variables for various
Reynolds numbers and grid resolution.

The present ANN-SGS mixed model trained only with forced homogeneous isotropic
turbulence has been found to be successfully generalized for LES of untrained transient
decaying homogeneous isotropic turbulence. The ANN-SGS mixed model has been found
to predict energy spectra and temporal evolution of the resolved kinetic energy more
accurately than DSM and the ANN-SGS model. Furthermore, the ANN-SGS mixed model
has shown consistently good performance in LES of decaying homogeneous isotropic
turbulence with various untrained initial Reynolds numbers and grid resolution.

Lastly, it has been investigated whether the developed ANN-SGS mixed model can be
applied to a wall-bounded turbulent flow. The present ANN-SGS mixed model has been
found to be capable of predicting the SGS stress and thereby the mean and fluctuating
velocity fields of a turbulent channel flow. If the model was trained with a turbulent channel
flow at a certain Reynolds number and a certain grid resolution, the model accurately
predicted a turbulent channel flow even at an untrained Reynolds number and on an
untrained grid resolution. The ANN-SGS mixed model trained with forced homogeneous
isotopic turbulence only has been found to also be capable of predicting the Reynolds shear
stress and velocity fluctuations favourably with a marginal underprediction of the mean
velocity profile. Generalization of the ANN-SGS mixed model to an untrained turbulent
channel flow is considered to be realizable as the model predicts the SGS stress using Lij
that has high similarity to the true SGS stress in terms of the near-wall behaviour and
the anisotropy. Interestingly, the ANN-SGS mixed model trained with both homogeneous
isotropic turbulence and turbulent channel flow has provided consistently accurate and
stable solutions for both types of flow.
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fDNS SL-180C-V SL-106H-V S-106H-V SL-106H-P

Corr(τ fDNS
xy , τANN

xy ) — 0.6528 0.4149 0.0796 0.4404
Corr(S̄xy, τxy) −0.0765 −0.1224 −0.5559 −0.9945 −0.3194
Corr(Lxy, τxy) 0.4581 0.6923 0.8687 0.1446 0.9141
Corr(εfDNS

SGS , εANN
SGS ) — 0.7994 0.4203 0.1416 0.5705

Table 13. Correlation coefficients (Corr(τ fDNS
xy , τANN

xy ), Corr(S̄xy, τxy), Corr(Lxy, τxy), Corr(εfDNS
SGS , εANN

SGS ))
from an a priori test of a turbulent channel flow at Reτ = 180.

DNS case q2/2 ε λ Reλ

Langford & Moser (1999) 41.1 62.9 0.209 164
Present study
with the negative viscosity forcing 30.2 60.3 0.183 122.9
Present study
with the deterministic viscosity forcing 41.2 64.5 0.235 164.7

Table 14. Comparison of turbulence statistics from DNS of Langford & Moser (1999) and those from the
present DNS using the negative viscosity forcing and the deterministic forcing. Here q2/2 is kinetic energy, ε

is dissipation, λ is the Taylor microscale and Reλ is the Taylor-scale Reynolds number.
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Appendix A. Forcing schemes used at Reλ = 164

While Langford & Moser (1999) reported the use of a negative viscosity forcing for
simulating forced homogeneous isotropic turbulence at Reλ = 164, both the deterministic
forcing and the negative viscosity forcing are used in the present study. The energy
spectrum reported in Langford & Moser (1999) is almost identical to that of the case
in which the deterministic forcing is used as shown in figure 1(b). Furthermore, the value
of Reλ calculated from the cases with the deterministic forcing and the negative viscosity
forcing are found to be 165 and 123 (table 14), respectively, where the former case is close
to the reported value of 164 by Langford & Moser (1999). Turbulence statistics reported in
Langford & Moser (1999) have also been successfully reproduced using the deterministic
forcing as shown in table 14.

While the major differences in the energy spectra obtained using different types of
forcing schemes are observed to be in the forcing wavenumber range as shown in
figure 1(b), the characteristics of each forcing scheme can be inferred from (2.3) and (2.4).
The deterministic forcing scheme (2.4) acting on each wavenumber shell is weighted by
the Fourier coefficient of the velocity at each wavenumber shell. In forced homogeneous
isotropic turbulence higher energy is contained at lower wavenumbers; therefore, such
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weighting gives higher energy contents at lower wavenumbers in the forcing range that
can be seen in the energy spectra of the cases with the deterministic forcing scheme in
figures 1(b) and 1(c). The negative viscosity forcing (2.3), on the other hand, weights
relatively more on higher wavenumber shells in the forcing range due to |k|2, leading to
higher energy levels at higher forcing wavenumbers. This is consistent with the energy
spectra in figures 1(a) and 1(b) in the forcing range. This trend was also observed in the
energy spectra by Jiménez et al. (1993) in which a negative viscosity forcing was used.

In order to accurately reproduce the DNS results of Langford & Moser (1999), the
deterministic forcing scheme is adopted in the present study.

Appendix B. Energy spectra at Reλ = 286

Although the overall energy spectra of the present DNS and those obtained by Chumakov
(2008) are similar, a slight underprediction by the present DNS is observed. To investigate
the reason for the difference, the energy dissipation rate ε is estimated by

ε = ν3/η4, (B1)

where η is the Kolmogorov length scale. This allows us to estimate the energy dissipation
rate for the DNS result of forced homogeneous isotropic turbulence, as η is available in
both the present study and the study by Chumakov (2008). While it is expected for the
well-converged statistics of forced homogeneous isotropic turbulence to have ε close to
the prescribed mean dissipation rate of 0.12, ε estimated from η of the present DNS result
and Chumakov (2008) are 0.12 and 0.16, respectively. Therefore, the DNS database used
in the present study is considered to provide better converged statistics, which explains the
difference.

Appendix C. A posteriori tests with different inputs

In the present study consideration of the resolved stress Lij as an input in addition to the
resolved strain-rate tensor S̄ij is found to significantly improve the performance of the
ANN-SGS model. The alternative terms of the resolved stress Lij can be found in the
literature on various mixed SGS models (Bardina et al. 1983; Liu et al. 1994; Salvetti
& Banerjee 1995; Anderson & Meneveau 1999). Thus, in this section the modified
Leonard term (Lm

ij = ūiūj − ¯̄ui ¯̄uj) (Bardina et al. 1983; Germano 1986; Salvetti & Banerjee

1995), the resolved stress (Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj) (Liu et al. 1994) and the gradient model
term ( 1

12Δ̄2(∂ ūi/∂xk)(∂ ūj/∂xk)) from the Clark model (Anderson & Meneveau 1999) are
considered as inputs to the ANN, in addition to the resolved strain-rate tensor S̄ij. The
performance of ANN-SGS models are compared by conducting LES of decaying isotropic
turbulence with a grid resolution of 483 and 243.

Figure 34 shows results from LES of decaying homogeneous isotropic turbulence with a
grid resolution of 483. The ANN-SGS model with S̄ij and the gradient model term as inputs
is found to predict the temporal evolution of the resolved kinetic energy most accurately,
but shows the largest error in the prediction of energy spectra at k = 1. On the other hand,
the performance of the ANN-SGS model with S̄ij and the modified Leonard term as inputs
is found to be similar to that of the ANN-SGS model with S̄ij and Lij as inputs in predicting
the energy spectra and the decaying kinetic energy.

Figure 35 shows results from LES of decaying homogeneous isotropic turbulence with
a grid resolution of 243. Temporal evolution of the resolved kinetic energy predicted by
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Figure 34. Results from fDNS and LES of decaying isotropic turbulence at the initial Reynolds number Reλ
of 106 with a grid resolution of 483. (a) Energy spectra at t/Te,0 = 1.1, 3.3 and 6.6; (b) temporal evolution of
the resolved kinetic energy. Here �, fDNS; —— (thick red solid line), ANN-SGS model with S̄ij and Lij; – – -
(thick blue dashed line), ANN-SGS model with S̄ij and the modified Leonard term; – - – (thick yellow orange
dashed-dot line), ANN-SGS model with S̄ij and the gradient model term.
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Figure 35. Results from fDNS and LES of decaying isotropic turbulence at the initial Reynolds number Reλ of
106 with a grid resolution of 243 (two-times coarser resolution than that of training data). (a) Energy spectra at
t/Te,0 = 1.1, 3.3 and 6.6; (b) temporal evolution of the resolved kinetic energy. Here �, fDNS; —— (thick red
solid line), ANN-SGS model with S̄ij and Lij; – – - (thick blue dashed line), ANN-SGS model with S̄ij and the
modified Leonard term; – - – (thick yellow orange dashed-dot line), ANN-SGS model with S̄ij and the gradient
model term.

the ANN-SGS model with S̄ij and the gradient model term as inputs shows the smallest
error (see figure 35b). However, this model has significantly large errors in the energy
spectra at k = 2 (see figure 35a). The gradient model is derived using Taylor series
expansion of a filtered velocity field with a fourth-order leading error term in Δ̄ (Vreman,
Geurts & Kuerten 1996; Horiuti 1997). Therefore, the truncation error of the gradient
term increases when grid resolution becomes coarse, which is a possible reason for the
inaccurate prediction of the energy spectra in figure 35(a). Thus, ANN-SGS models are
more robust to the change in grid resolution when the resolved stress Lij or the modified
Leonard term Lm

ij is provided as an input in addition to S̄ij. In the present study, the
resolved stress Lij and S̄ij are considered as the best combination of input variables for
the ANN-SGS model, as it shows the best performance and ensures robustness.
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Figure 36. Results from fDNS and LES of decaying isotropic turbulence at the initial Reynolds number Reλ
of 106 with a random-phase initial field. (a) Energy spectra at t/Te,0 = 1.1, 3.3 and 6.6; (b) temporal evolution
of the resolved kinetic energy. Here �, fDNS; —— (thick black solid line), DSM; —— (thick red solid line),
SL-106H; – – - (thick blue dashed line), SL-286H; – – - (thick green dashed line), S-106H.

Appendix D. A posteriori test of decaying isotropic turbulence with a random-phase
initial condition

To assess the robustness of the present ANN-SGS models to the initial conditions, LES
of decaying isotropic turbulence with a random-phase initial condition is performed using
the rescaling method of Kang et al. (2003). The three-dimensional energy spectrum from
a fully converged flow field of forced isotropic turbulence at Reλ = 106 is given as the
initial energy distribution. The simulation is started with random-phase Fourier modes
until t/Te,0 = 3.87 when the derivative skewness becomes steady. Thereafter, the velocity
field is rescaled to have the initial energy spectrum of fDNS (Kang et al. 2003). Results
with SL-106H, SL-286H and S-106H are compared with those of DSM and fDNS.

Despite the fact that the random-phase initial field as well as the transient development
of the flow is not included in the training data, the performance and stability of ANN-SGS
models are maintained. Models SL-106H and SL-286H predict the energy spectra more
accurately, whereas DSM and S-106H show large errors at k � 5, as shown in figure 36(a).
Similarly, SL-106H and SL-286H predict the temporal evolution of the resolved kinetic
energy more accurately than DSM and S-106H, as shown in figure 36(b).

Appendix E. Comparison of input and output normalisation

Normalisation of the present study is compared with wall-unit normalisation in which
input and output variables are normalised in wall units: uτ and ν/uτ as velocity and length
scales, respectively (i.e. S̄+

ij = 1
2(∂ ūi

+/∂x+
j + ∂ ūj

+/∂x+
i ), Lij/u2

τ , τij/u2
τ ). It is found that

ANN-SGS mixed models with both the proposed normalisation (discussed in § 3.2) and
the wall-unit normalisation provide the same results in LES of channel flow on the trained
grid resolution (LES180).

Figure 37 shows LES results of a turbulent channel flow on coarser and finer grid
resolutions than a trained resolution (LES180c and LES180f cases). On a coarser
resolution (LES180c) the wall-unit normalisation leads to an underestimation of the mean
streamwise velocity with similar errors to that of no-SGS and an overestimation of the
Reynolds shear stress and r.m.s.velocity fluctuations. In contrast, the Reynolds shear
stress and r.m.s.velocity fluctuations by wall-unit normalisation are underestimated on a
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Figure 37. Results from fDNS and LES of a turbulent channel flow at Reτ = 180 with a grid resolution of
32 × 48 × 32 (a,c,e; LES180c) and 64 × 64 × 64 (b,d,f ); LES180f). (a,b) The mean streamwise velocity;
(c,d) r.m.s. velocity fluctuations; (e,f ) the mean Reynolds shear stress 〈ū′v̄′〉, where 〈·〉 denotes averaging
over the x–z plane and time. The three sets of curves in (c,d) represent ūrms/uτ , w̄rms/uτ and v̄rms/uτ from
top to bottom, respectively. Here ©, fDNS; +, DSM; ∇, no-SGS; —— (thick red solid line), SL-180C with
the proposed normalisation (§ 3.2); —— (thick orange solid line), SL-180C with wall-unit normalisation; – – -
(thick black dashed line), the law of the wall 〈ū〉/uτ = 0.41−1 log y+ + 5.2.

finer resolution (LES180f). This indicates that the normalisation method proposed in the
present study shows better generalization to different grid resolutions. Since the wall-unit
normalisation does not account for the change of the filter width, the magnitude of the
SGS stress is inaccurately predicted on an untrained grid resolution.

For LES of forced and decaying isotropic turbulence, results from the normalisation
of input and output variables using the Taylor microscale λ, the r.m.s.velocity fluctuation
u′ as a characteristic length and velocity scales are compared with those obtained using
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Figure 38. Energy spectra from fDNS and LES of forced homogeneous isotropic turbulence at Reλ = 106
with a grid resolution of (a) 243 and (b) 963. Energy spectra from fDNS and LES of decaying homogeneous
isotropic turbulence at the initial Reλ = 106 with a grid resolution of (c) 243 and (d) 963 (coarser and finer
resolution by a factor of 2 than that of training data, respectively). Here �, fDNS; —— (thick black solid
line), DSM; —— (thick red solid line), SL-106H with output normalisation using 〈|τgrad|〉; – – - (thick blue
dashed line), SL-106H with output normalisation using 〈|L|〉; – – - (thick orange dashed line), SL-106H with
normalisation using u′ and λ.

the normalisation method proposed in the present study. Energy spectra from LES of
forced and decaying isotropic turbulence on an untrained grid resolution are presented
in figure 38. On a coarser resolution (243), normalisation with u′ and λ results in
overprediction of energy spectra at high wavenumbers k � 3. Moreover, the errors at k = 2
significantly increase as the flow decays when the input and output are normalised with u′
and λ (figure 38c). In figures 38(b) and 38(d), normalisation with u′ and λ also leads to
underprediction of energy spectra at high wavenumbers k > 6 on a finer grid resolution
(963), and errors at k � 4 increase when the flow decays. Similarly to the discussion about
wall-unit normalisation in channel flow, since the normalisation using u′ and λ is not
capable of accounting for the change of the SGS stress magnitude, the model becomes
inaccurate on an untrained grid resolution.

Lastly, results obtained with output normalisation using the resolved stress tensor
(τ ∗

ij = τij/〈|L|〉) and the gradient term (τ ∗
ij = τij/〈|τgrad|〉) are compared. Although the use

of 〈|L|〉 for output normalisation tends to overpredict energy spectra on a coarser resolution
(243), it produces similar results in forced and decaying isotropic turbulence to those of
the case using 〈|τgrad|〉 for output normalisation on a finer grid resolution (963).

Therefore, it is concluded that the gradient term is the best option for normalising the
output variable in homogeneous isotropic turbulence. Nevertheless, output normalisation
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with 〈|L|〉 also shows generalization performance comparable to that of output
normalisation with the gradient term on a sufficient grid resolution and considerably better
generalization performance compared with normalisation using characteristic velocity and
length scales of target flows (e.g. u′ and λ for isotropic turbulence or uτ and ν/uτ for
channel flow), and it has an advantage for LES of wall-bounded flow. It is worth noting
that an ANN trained with normalisation using characteristic length and velocity scales of
certain flow is not applicable for untrained flow types since the characteristic scales are
different.
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