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Abstract. Within the framework of linear and regular celestial mecha­
nics, we revise a recent method of Belen'kii (1981). We generalize so­
me of his results, giving a new regularizing function. 

We make an application to the zonal earth satellite, considering 
the hamiltonian function through the harmonic J 4. After the angular va­
riable u has been removed, we introduce a new time and we reduce the 
problem to a linear equation. 

1. INTRODUCTION 

In this paper, the method of regularization given by Belen'kii 
(1981) is revised. We propose a function g(r) that generalizes the one 
studied by him. Then an application to the zonal earth satellite, con­
sidering harmonics through J*, is made. 

We use the canonical set of variables (Pr, Pu, P , r, u, h) of 
Hill (1913) and, in order to apply that regularization, the angular 
variable u is eliminated (Caballero, 1975) using von Zeipel's method. 
As a consequence the new hamiltonian is 

1 -0 ^ al aT a4 as 

H (V P P r, -, -) = _(Pr + -§) - ( - + - + - + -) 
r r r r r 

where P , a. are constant, 
u 1 

-1 -
We make a transformation of time dT = g (r) dt that reduces the 

problem to a linear equation. 
'5 

Other analytical theories have been proposed based on canonical 
elements associated with a suitable time regularization (Kustaanheimo-
Stiefel, 1965; Scheifele-Graf, 1974; Deprit, 1981). In particular, re-
gularizations linearizing the equations, that have also applications in 
other dynamics problems, have been considered by Stiefel-Scheifele (1971), 
Belen'kii (1981), Szebehely (1976). 

39 

V. V. Markellos and Y. Kozai feds), Dynamical Trapping and Evolution in the Solar System, 39-46. 
© 1983 by D. Reidel Publishing Company. 

https://doi.org/10.1017/S0252921100096901 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100096901


40 R- CID ET AL. 

2. BELEN'KII REGULARIZATION 

In certain problems of Celestial Mechanics, the hamiltonian of the 
relative motion of a particle in a central force-field has the form 

H = \ (P2 + -4r P2 ) + Vn(r) (1) 
2 r 2 d> 0 r Y 

2" 
where P = r denotes the radial velocity, P = r <j> = c is the angular 

momentum and 

n a. 
vn = " I -^ <2> 
0 , i 1 r 

is the potential function. 

The energy integral H = h, may be written as 
2 

\ (ir)2 = h ~ { v o ( r ) + ^~2} = h"v(r ) (3) 

2r 
and Belen'kii introduces a new independent variable T , by means of the 
relation 

dx = g_1(r) dt (4) 

with g(r) > 0 and g(r) £ C . Then, (3) can be written in the form 

\ (ir)2 = g2 (r) {h ~v(r)} (5) 

Differenciating (5) with respect to x, and after dividing by the 
nonzero factor dr/dx, Belen'kii equals the result to a linear expres­
sion, obtaining 

2 
~ = — ( g2(r) {h - V(r)}) = 2Clr + c2 (6) 
dx dr 

where we have written 2c for subsequent simplifications. 

A full study of the linear equation (6) for the three, casss 
c /c,# 0, has been given by Belen'kii (1981.a; Section 2 ) . 

Integrating (6), the regularizing function must satisfy the rela­
tion 

g2(r) { h - V(r) } = c,^2 + c ^ + c 3 (7) 

Belen'kii has applied (7) to the potentials 
ai a 2 ai a 2 a 3 

V = V = — : V = V = - — — 
0 2 2 ' 0 3 2 3 

r r r r r 
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where the corresponding regularizing functions are 

3/2 -1/2 
g2(r) = r ; g3(r) = r ' ( 1 + Br ) ' 

respectively. The parameter g depends on a , a , a and h. 

Likewise, Ferrer and Elipe (1982),studying these potentials have 
considered the following regularizing function 

3/2 - 1/2 
g3(r) = r

 / Z ( 3 + r ) X 

which allows the treatment of these cases in a more uniform manner. 

3. A NEW REGULARIZING FUNCTION 

In a more general problem, with the potential 
" v o = 

we have 

v = v0 

- V .'-I 
n r 

2 

2r 

3 r 

n a. 
1-
1 r 1 

a 
. . + - ^ n r 

(8) 
: 1 r 

2 
where a = - c / 2 . In this case we propose the following regularizing 
function 

, . n/2 , n-2 , n-3 , n-4 , . , •, - 1/2 
g (r) = r { r + a.r + a„r + ... + a } (9) 
n \ l n-z 

where a , a , ... a , are parameters which depend on a., h, and must 
be suitably chosen to nave g (r) > 0. 

Inserting (8), (9) in (7), we arrive at the equation 

, n , r n~i r n~2, v n-k-2, r 2 , , •, 
h r + 2 , a . r = { r + I a r } { c r + c r + c } 

. 1 . K 1 z j 

Equating the coefficients of the same powers of r in .both sides, we 
have the system 

h = C l ; 3 l = cl0l + c2 ; a2 = c ^ + c ^ + c3 

ai = C l a i + C2ai-1 + C3 ai-2 ( i = 3, ... , n-2 ) (10) 

a = c„a c a a = c0a 
n-1 2 n-2 + 3 n-3 ; n 3 n-2 

Solving (10) with respect to the coefficients c , c , c.., a , a„ ,. 
Verbs' ~3'^ 1 ? a ., we get the expression of the coefficients in terms of a, , a„, 

n-2 , 1 2 
. . a , h. 

n 

The study of this last system is difficult and it seems that the 
more practical way of solving it is by a numerical method. 
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In particular, we have studied the system (10) for n = 5, taking 

5/2 3 2 -1/2 

g (r) = r ' ( r + or + gr + y ) ' (11) 

In this case, the equations of that system are given by 

h = c1 (12^ a3 = ClY + c23 + c3a ( 124 ) 

a: = c^a + c2 (122) a^ = c^ + c ^ ( 125 ) (12) 

a2 = C l f 3 + C2° + C3 (123) a5 = c ^ ( 1 2 ^ 

From (12 ), (12 ), (12 ) we obtain 

c = h ; c2 = a1 - ha = c (a) 

2 
c = a - a a + ha - hg = c (a, g) 

(13) 

From (12 ), if ar ^ 0 , we get: c. ? 0, y £ 0. Then y = ar/c_(a, g). 6 5 3 5 3 

Finally, substituting the above expressions in (12 ), (12 ), we ha­
ve the system 

Cg2 + Bg + A = 0 

3 2 (1 4 ) 

D'g + C'g + B'g + A' = 0 

where 

2 5 4 2 3 2 2 

C = h a - 2ha a + (a + 2ha )a - (2a a + a h)a + (a + a a )a 

+ ha5 - a2a3. 

B = - h(2h + l)a3 + 4ha,a - (3ha0 + a j a + a,a, + ha,, 
1 2 1 1 1 3 

A = h(2h - a ) 
2 

D' = h 

C = - 2h(ha2 - a a + a ) 

2 4 3 2 2 2 
B' = h a - 2ha a + (a + 2ha )a - 2a a a + a + ha 

2 
A' = - a^ha + (a.a„ - ha_)a + a.an - a„a„ 4 1 4 5 1 5 2 4 

Eliminating g in (14) we get an equation of the form P(a) = 0 whe­
re P(a) is a polynomial in a of eighteenth degree. Thus it seems conve­
nient to solve (14) by numerical methods. 
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4. SOME PARTICULAR CASES FOR THE NEW REGULARIZING FUNCTION 

i) a5 = 0 

In this case, from (12 ) it follows that we can take y = 0. Then, 
the last three equations of (12) reduce to 

a = c S + c a 
1 (15) 

a4 = C 3 3 

Then,substituting c , given by (13), in (15 ), we get 
2 u 3 

a^ - a ra + a,a - ha 
B =-i ? 1 

a - 2ha 

and substituting (3 in (15 ), we have a sixth degree equation 
6 2 

(16) 

T A an = 0 
n 

o 

where 

A^ = 2h3 

6 

A5 = - 5al h
2 

A4 = 4 ( ai + h S 2 ) h 

A^ = - { af + 6a a h + (2a., + l)h2} 
3 1 1 2 3 

2 2 2 
A2 = 28^2 + (3a1a - 2a2 - a^h - 4a4h 

2 
Ax = - { (a a - a2)a1 + (4a a + 2a2a3 + a2)h} 

AQ = a i a 2 a 3 - a
2a4 - a ^ 

Then, the regularizing function is 

2 2 -1/2 
g (r) = r (r + ar + g) ' 

2 
and we must take the values a, 3 in such a way that r + ar + g > 0 or 
else, we must find the range of r for which the regularization is well 
defined. 

ii) a4 = a5 = 0 

Again, it is sufficient to take y = 3 = 0 in (12) . Then, the para­
meter a verifies the cubic equation 
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ha - a a2 + a a - a = 0 (17) 

The regularizing function is now 

3/2 -1/2 
g3(r) = r / Z (r + a) ' (18) 

A study and application of (17) and (18) has been made by Ferrer-

Elipe (1982) . 

iii) a = a = a = 0 

In this case it is sufficient to take y = 3 = a = 0. Then, the system 

(12) reduces to 

C l = h ; c2 = a: ; c3 = a2 

where 
92(r) = r 

is the regularizing function of Sundman. 

5. AN APPLICATION TO THE ZONAL EARTH SATELLITE 

I.- It is well known that the kinetic energy T and the potential V of 
an artificial zonal satellite of the Earth, in the canonical set of va­
riables (P , P , P , r, u, h) of Hill (1913), are given by the equa­
tions 

r 

V = - ̂ { 1 - V J (-)np (sin <j))} 
r ^ n r n 

n>2 

The corresponding hamiltonian with the harmonics J , J , J is gi­
ven by the expression 

H = H(Pr, Pu, Ph, r, u, -) = HQ + B1 + H2 

where 

H = i (P2 + !H ) _ E 
0 2 r 2 r 

r 

Hl = - ^ J 2 ( B 2 0 + B 2 2 C O S 2 U ) 

r 

H = - L J /l - 92 { 3(1 - 592)sin u - 5(1 - 92)sin 3u} + 
8r 

3 V T r , 3 15 Q2 35 _4^ 5 20 .2 35 Q4. _ , 
~E J

4
 { ( 8 - X 6 + y 8 1 + ( - 6 + T e - -g- 6 ) cos 2u + 

8r 
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| | (1 - e V c o s 4u } 

and where we use the notation 

p 
B2 Q = - \ (1 - 392) ; B 2 2 = | ( l - 9 2 ) ; 6 = ̂  = cos I 

u 

The equatorial radius of the Earth, has been taken as unity. 

The elimination of the variable u has been done by Caballero (1975) 
using the method of von Zeipel. The new hamiltonian 

H = H ( Pr, Pu, Ph, r -, 

takes the form 

-2 

r r r r r 

5 

1 r 

where _ 2 2 

Pu V B22 , n 2 N 
a l = V ; a2 = Y- ; a 3 = J2lJB20 +

 l r - 2 ( 3 " 7@ > 
16P 

u 

J2 B22 2 9 J 4 U 2 35 4 
a = - ~ (- 21 + 69 9 ) ; a = — (1 - 106 + — 6 ) 

48P b 64 3 
u 

Since u and h are cyclic, P , P, are constant. Hence the coeffi-
u h 

cients a. are constant too. Then we can apply to (19) the study made in 
section 3. (Cid et al., 1982). 

II.- As we have said, the solution of P(a) = 0 as well as the effective 
calculation of the values of a, 3, Y which determines a regularizing 
function g,-(r) with g,-(r) > 0, seems to need numerical methods. 

Now we give two numerical examples, obtained through the system 
(12), which show the feasibility of the method proposed. The existence 
of gr(r) for a wide set of values for the orbital parameters a, e, I, 
remains to be analyzed. 

Data: 

0.00553 J2 = 1.082631 10
 3 J4 = - 1.65 10

 6 
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example 1: 

example 2: 

Results: 

Case 1 

a = 2 
a = 4 

e = 0.1 
e = 0.1 

I = 80° 
I = 80° 

Case 2 

Y - 0.295732 - 0.1425387 
3 - 0.400184 10 - 0.8003057 10;, 
a 0.245787 10 0.4726564 10 

c - 0.2765 10~j? - 0.1382 10~^ 
c2 - 0.2553 10 - 0.2113 10_l! 
c3 - 0.3076 10 - 0.6383 10 

We have also checked that the variation of the eccentricity e in 
the range 0.01 ^ e £ 0.3 has small influence on the values of the last 
table. It is easy to see that in the two cases considered we have 
g (r) > 0, because r >, 1. 

REFERENCES. 

Belen'kii, I.M.: 1981a, Celes. Mech. 23, 9-31 
Belen'kii, I.M.:1981b, PMMU.R.S.S. 45, 24-29 
Caballero, J.A.: 1975, Tesis Doctoral. Universidad Zaragoza 
Cid, R., Ferrer, S., Elipe, A.: 1982, IX Jornadas Hisp-Lusas de Mat. Sa­

lamanca (to appear) 
Deprit, A.: 1981, Celes. Mech., 23, 299-305 
Ferrer, S., Elipe, A.: 1982, IX Jornadas Hisp-Lusas de Mat. Salamanca, 

(to appear) 
Hill, G.W.: 1913, Astron. J., 27, 171 
Kustaanheimo, P., Stiefel, E.: 1965, J.R.A.M., 218, 204-219 
Scheifele, G., Stiefel, E.: 1971, Linear and Regular Celestial Mechanics 

Springer-Verlag, Berlin. 
Szebehely, V.: 1976, Celes. Mech. 14, 499-508. 

https://doi.org/10.1017/S0252921100096901 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100096901



