REGULARIZATION OF THE EQUATIONS OF MOTION IN A CENTRAL FORCE-FIELD. APPLICATION TO THE ZONAL EARTH SATELLITE.

R. Cid, S. Ferrer, and A. Elipe
Departamento de Astronomía. Universidad de Zaragoza. Spain

Abstract. Within the framework of linear and regular celestial mechanics, we revise a recent method of Belen'kii (1981). We generalize some of his results, giving a new regularizing function.

We make an application to the zonal earth satellite, considering the hamiltonian function through the harmonic J_{4}. After the angular variable u has been removed, we introduce a new time and we reduce the problem to a linear equation.

1. INTRODUCTION

In this paper, the method of regularization given by Belen'kii (1981) is revised. We propose a function $g(r)$ that generalizes the one studied by him. Then an application to the zonal earth satellite, considering harmonics through J_{4}, is made.

We use the canonical set of variables ($\left.P_{r}, P_{u}, P_{h}, r, u, h\right)$ of Hill (1913) and, in order to apply that regularization, the angular variable u is eliminated (Caballero, 1975) using von Zeipel's method. As a consequence the new hamiltonian is

$$
\bar{H}\left(\bar{P}_{r}, \bar{P}_{u}, \bar{P}_{h}, \bar{r},-,-\right)=\frac{1}{2}\left(\bar{P}_{r}^{2}+\frac{\bar{P}^{2}}{\bar{u}^{2}}\right)-\left(\frac{a_{1}}{\bar{r}}+\frac{a_{3}}{\bar{r}^{3}}+\frac{a_{4}}{\bar{r}^{4}}+\frac{a_{5}}{\bar{r}^{-5}}\right)
$$

where \bar{P}_{u}, a_{i} are constant.
We make a transformation of time $d \tau=g_{5}^{-1}(\bar{r})$ dt that reduces the problem to a linear equation.

Other analytical theories have been proposed based on canonical elements associated with a suitable time regularization (KustaanheimoStiefel, 1965; Scheifele-Graf, 1974; Deprit, 1981). In particular, regularizations linearizing the equations, that have also applications in other dynamics problems, have been considered by Stiefel-Scheifele (1971), Belen'kii (1981), Szebehely (1976).
V. V. Markellos and Y. Kozai (eds.), Dynamical Trapping and Evolution in the Solar System, 39-46.
© 1983 by D. Reidel Publishing Company.

2. BELEN'KII REGULARIZATION

In certain problems of Celestial Mechanics, the hamiltonian of the relative motion of a particle in a central force-field has the form

$$
\begin{equation*}
H=\frac{1}{2}\left(P_{r}^{2}+\frac{1}{r^{2}} P_{\phi}^{2}\right)+V_{0}(r) \tag{1}
\end{equation*}
$$

where $\mathrm{P}_{\mathrm{r}}=\dot{\mathrm{r}}$ denotes the radial velocity, $\mathrm{P}_{\phi}=r^{2} \dot{\phi}=\mathrm{c}$ is the angular
momentum and momentum and

$$
\begin{equation*}
v_{0}=-\sum_{1}^{n} \frac{a_{i}}{r^{i}} \tag{2}
\end{equation*}
$$

is the potential function.

$$
\begin{align*}
& \text { The energy integral } H=h \text {, may be written as } \\
& \frac{1}{2}\left(\frac{d r}{d t}\right)^{2}=h-\left\{V_{0}(r)+\frac{c^{2}}{2 r^{2}}\right\}=h-V(r) \tag{3}
\end{align*}
$$

and Belen'kii introduces a new independent variable τ, by means of the relation

$$
\begin{equation*}
d \tau=g^{-1}(r) d t \tag{4}
\end{equation*}
$$

with $g(x)>0$ and $g(x) \in C^{(1)}$. Then, (3) can be written in the form

$$
\begin{equation*}
\frac{1}{2}\left(\frac{d r}{d \tau}\right)^{2}=g^{2}(r)\{h-V(r)\} \tag{5}
\end{equation*}
$$

Differenciating (5) with respect to τ, and after dividing by the nonzero factor $d r / d \tau$, Belen'kii equals the result to a linear expression, obtaining

$$
\begin{equation*}
\frac{d^{2} r}{d \tau^{2}}=\frac{d}{d r}\left(g^{2}(r)\{h-V(r)\}\right)=2 c_{1} r+c_{2} \tag{6}
\end{equation*}
$$

where we have written $2 c_{1}$ for subsequent simplifications. $c_{2} / c_{1} \sum_{\text {full study of the linear equation (6) for the three cases }}^{\text {(}}$, has been given by Belen'kii (1981.a; Section 2).
Integrating (6), the regularizing function must satisfy the rela-
$g^{2}(r)\{h-V(r)\}=c_{1} r^{2}+c_{2} r+c_{3}$
Belen'kii has applied (7) to the potentials
$V_{0}=V_{2}=-\frac{a_{1}}{r}-\frac{a_{2}}{r^{2}} \quad ; \quad V_{0}=V_{3}=-\frac{a_{1}}{r}-\frac{a_{2}}{r^{2}}-\frac{a_{3}}{r^{3}}$
where the corresponding regularizing functions are

$$
g_{2}(r)=r \quad ; \quad g_{3}(r)=r^{3 / 2}(1+\beta r)^{-1 / 2}
$$

respectively. The parameter β depends on a_{1}, a_{2}, a_{3} and h.
Likewise, Ferrer and Elipe (1982), studying these potentials have considered the following regularizing function

$$
g_{3}(r)=r^{3 / 2}(\beta+r)^{-1 / 2}
$$

which allows the treatment of these cases in a more uniform manner.

3. A NEW REGULARIZING FUNCTION

In a more general problem, with the potential

$$
-v_{0}=-v_{n}=\frac{a_{1}}{r}+\frac{a_{3}}{r^{3}}+\ldots+\frac{a_{n}}{r^{n}}
$$

we have

$$
\begin{equation*}
v=v_{0}+\frac{c^{2}}{2 r^{2}}=-\sum_{1}^{n} \frac{a_{i}}{r^{i}} \tag{8}
\end{equation*}
$$

where $a_{2}=-c^{2} / 2$. In this case we propose the following regularizing
function

$$
\begin{equation*}
g_{n}(r)=r^{n / 2}\left\{r^{n-2}+\alpha_{1} r^{n-3}+\alpha_{2} x^{n-4}+\cdots+\alpha_{n-2}\right\}^{-1 / 2} \tag{9}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \ldots \alpha_{n-2}$, are parameters which depend on a_{i}, h, and must be suitably chosen to have $g_{n}(r)>0$.

$$
\begin{aligned}
& \text { Inserting (8), (9) in (7), we arrive at the equation } \\
& h r^{n}+\sum_{1}^{n} a_{i} r^{n-i}=\left\{r^{n-2}+\sum_{1}^{n-2} \alpha_{k} r^{n-k-2}\right\}\left\{c_{1} r^{2}+c_{2} r+c_{3}\right\}
\end{aligned}
$$

Equating the coefficients of the same powers of r in both sides, we have the system

$$
\begin{aligned}
& h=c_{1} ; \quad a_{1}=c_{1} \alpha_{1}+c_{2} ; \quad a_{2}=c_{1} \alpha_{2}+c_{2} \alpha_{1}+c_{3} \\
& a_{i}=c_{1} \alpha_{i}+c_{2}^{\alpha_{i-1}+c_{3} \alpha_{i-2}} \quad(i=3, \ldots, n-2) \\
& a_{n-1}=c_{2} \alpha_{n-2}+c_{3} \alpha_{n-3} ; \quad ; \quad a_{n}=c_{3} \alpha_{n-2}
\end{aligned}
$$

Solving (10) with respect to the coefficients $c_{1}, c_{2}, c_{3}, \alpha_{1}, \alpha_{2}, \ldots$ α_{n-2}, we get the expression of the coefficients in terms ${ }^{\prime}$ of a_{1}, a_{2}, \ldots $\cdots a_{n}, h$.

The study of this last system is difficult and it seems that the more practical way of solving it is by a numerical method.

In particular, we have studied the system (10) for $n=5$, taking

$$
\begin{equation*}
g_{5}(r)=r^{5 / 2}\left(r^{3}+\alpha r^{2}+\beta r+\gamma\right)^{-1 / 2} \tag{11}
\end{equation*}
$$

In this case, the equations of that system are given by

$$
\begin{array}{lll}
h=c_{1} & \left(122_{1}\right) & a_{3}=c_{1} \gamma+c_{2} \beta+c_{3} \alpha \\
a_{1}=c_{1} \alpha+c_{2} & \left(12_{4}\right) \tag{12}\\
\left.a_{2}=c_{1} \beta+c_{2} \alpha+c_{3}\right) & \left(12_{3}\right) & a_{4}=c_{2} \gamma+c_{3} \beta \\
a_{5}=c_{3} \gamma & \left(12_{5}\right)
\end{array}
$$

From $\left(12_{1}\right),\left(12_{2}\right),\left(12_{3}\right)$ we obtain
$c_{1}=\mathrm{h} \quad ; \quad \mathrm{c}_{2}=\mathrm{a}_{1}-\mathrm{h} \alpha=\mathrm{c}_{2}(\alpha)$
$c_{3}=a_{2}-a_{1} \alpha+h \alpha^{2}-h \beta=c_{3}(\alpha, \beta)$
From $\left(12_{6}\right)$, if $a_{5} \neq 0$, we get: $c_{3} \neq 0, \gamma \neq 0$. Then $\gamma=a_{5} / c_{3}(\alpha, \beta)$.
Finally, substituting the above expressions in $\left(12_{4}\right)$, (12 $)$, we have the system

$$
\begin{align*}
& C \beta^{2}+B B+A=0 \\
& D^{\prime} \beta^{3}+C^{\prime} \beta^{2}+B^{\prime} B+A^{\prime}=0 \tag{14}
\end{align*}
$$

where

$$
\begin{aligned}
& c=h^{2} \alpha^{5}-2 h a_{1} \alpha^{4}+\left(a_{1}^{2}+2 h a_{2}\right) \alpha^{3}-\left(2 a_{1} a_{2}+a_{3} h\right) \alpha^{2}+\left(a_{2}^{2}+a_{1} a_{3}\right) \alpha \\
& +h a_{5}-a_{2} a_{3} \\
& B=-h(2 h+1) \alpha^{3}+4 h a_{1} \alpha^{2}-\left(3 h a_{2}+a_{1}^{2}\right) \alpha+a_{1} a_{1}+h a_{3} \\
& A=h\left(2 h-a_{1}\right) \\
& D^{\prime}=h^{2} \\
& C^{\prime}=-2 h\left(h \alpha^{2}-a_{1} \alpha+a_{2}\right) \\
& B^{\prime}=h^{2} \alpha^{4}-2 h a_{1} \alpha^{3}+\left(a_{1}^{2}+2 h a_{2}\right) \alpha^{2}-2 a_{1} a_{2} \alpha+a_{2}^{2}+h a_{4} \\
& A^{\prime}=-a_{4} h \alpha^{2}+\left(a_{1} a_{4}-h a_{5}\right) \alpha+a_{1} a_{5}-a_{2} a_{4} \\
& \text { Eliminating } \beta \text { in (14) we get an equation of the form } P(\alpha)=0 \text { whe- } \\
& \text { re } P(\alpha) \text { is a polynomial in } \alpha \text { of eighteenth degree. Thus it seems conve- } \\
& \text { nient to solve (14) by numerical methods. }
\end{aligned}
$$

4. SOME PARTICULAR CASES FOR THE NEW REGULARIZING FUNCTION
i) $a_{5}=0$

In this case, from (12_{6}) it follows that we can take $\gamma=0$. Then, the last three equations of ${ }^{6}(12)$ reduce to

$$
\begin{aligned}
& a_{3}=c_{2} \beta+c_{3} \alpha \\
& a_{4}=c_{3} \beta
\end{aligned}
$$

Then,substituting c_{3}, given by (13), in (151), we get
$\beta=\frac{a_{3}-a_{2} \alpha+a_{1} \alpha^{2}-h \alpha^{3}}{a_{1}-2 h \alpha}$
and substituting β in $\left(15{ }_{2}\right)$, we have a sixth degree equation $\sum_{0}^{6} A_{n} \alpha^{n}=0$
where

$$
\begin{aligned}
& A_{6}=2 h^{3} \\
& A_{5}=-5 a_{1} h^{2} \\
& A_{4}=4\left(a_{1}^{2}+h a_{2}\right) h \\
& A_{3}=-\left\{a_{1}^{3}+6 a_{1} a_{2} h+\left(2 a_{3}+1\right) h^{2}\right\} \\
& A_{2}=2 a_{1}^{2} a_{2}+\left(3 a_{1} a_{3}-2 a_{2}^{2}-a_{1}\right) h-4 a_{4} h^{2} \\
& A_{1}=-\left\{\left(a_{1} a_{3}-a_{2}^{2}\right) a_{1}+\left(4 a_{1} a_{4}+2 a_{2} a_{3}+a_{2}\right) h\right\} \\
& A_{0}=a_{1} a_{2} a_{3}-a_{1}^{2} a_{4}-a_{3} h
\end{aligned}
$$

Then, the regularizing function is

$$
g_{4}(r)=r^{2}\left(r^{2}+\alpha r+\beta\right)^{-1 / 2}
$$

and we must take the values α, β in such a way that $r^{2}+\alpha r+\beta>0$ or else, we must find the range of r for which the regularization is well defined.
ii) $a_{4}=a_{5}=0$

Again, it is sufficient to take $\gamma=\beta=0$ in (12). Then, the parameter α verifies the cubic equation

$$
\begin{equation*}
h \alpha^{3}-a_{1} \alpha^{2}+a_{2} \alpha-a_{3}=0 \tag{17}
\end{equation*}
$$

The regularizing function is now

$$
\begin{equation*}
g_{3}(r)=r^{3 / 2}(r+\alpha)^{-1 / 2} \tag{18}
\end{equation*}
$$

A study and application of (17) and (18) has been made by FerrerElipe (1982).
iii) $a_{3}=a_{4}=a_{5}=0$

In this case it is sufficient to take $\gamma=\beta=\alpha=0$. Then, the system (12) reduces to
where $^{\mathrm{c}_{1}=\mathrm{h}} \quad ; \quad \mathrm{c}_{2}=\mathrm{a}_{1} \quad ; \quad \mathrm{c}_{3}=\mathrm{a}_{2}$
$g_{2}(r)=r$
is the regularizing function of Sundman.

5. AN APPLICATION TO THE ZONAL EARTH SATELLITE

I.- It is well known that the kinetic energy T and the potential V of an artificial zonal satellite of the Earth, in the canonical set of variables $\left(P_{r}, P_{u}, P_{h}, r, u, h\right)$ of $H i l l(1913)$, are given by the equations

$$
\begin{aligned}
& T=\frac{1}{2}\left(P_{r}^{2}+\frac{P_{u}^{2}}{r^{2}}\right) \\
& V=-\frac{\mu}{r}\left\{1-\sum_{n>2} J_{n}\left(\frac{1}{r}\right)^{n} P_{n}(\sin \phi)\right\}
\end{aligned}
$$

The corresponding hamiltonian with the harmonics J_{2}, J_{3}, J_{4} is given by the expression

$$
\mathrm{H}=\mathrm{H}\left(\mathrm{P}_{r}, \mathrm{P}_{\mathrm{u}^{\prime}}, \mathrm{P}_{\mathrm{h}}, r, u,-\right)=\mathrm{H}_{0}+\mathrm{H}_{1}+\mathrm{H}_{2}
$$

where

$$
\begin{aligned}
H_{0}= & \frac{1}{2}\left(P_{r}^{2}+\frac{P^{2}}{r^{2}}\right)-\frac{\mu}{r} \\
H_{1}= & -\frac{\mu}{r^{3}} J_{2}\left(B_{20}+B_{22} \cos 2 u\right) \\
H_{2}= & \frac{\mu}{8 r^{4}} J_{3} \sqrt{1-\theta^{2}}\left\{3\left(1-5 \theta^{2}\right) \sin u-5\left(1-\theta^{2}\right) \sin 3 u\right\}+ \\
& \frac{3 \mu}{8 r^{5}} J_{4}\left\{\left(\frac{3}{8}-\frac{15}{4} \theta^{2}+\frac{35}{8} \theta^{4}\right)+\left(-\frac{5}{6}+\frac{20}{3} \theta^{2}-\frac{35}{6} \theta^{4}\right) \cos 2 u+\right.
\end{aligned}
$$

$$
\left.\frac{35}{24}\left(1-\theta^{2}\right)^{2} \cos 4 u\right\}
$$

and where we use the notation

$$
B_{20}=-\frac{1}{4}\left(1-3 \theta^{2}\right) \quad ; \quad B_{22}=\frac{3}{4}\left(1-\theta^{2}\right) \quad ; \quad \theta=\frac{P_{h}}{P_{u}}=\cos I
$$

The equatorial radius of the Earth, has been taken as unity.

The elimination of the variable u has been done by Caballero (1975) using the method of von Zeipel. The new hamiltonian

$$
\left.\overline{\mathrm{H}}=\overline{\mathrm{H}}, \overline{\mathrm{P}}_{\mathrm{r}}, \overline{\mathrm{P}}_{\mathrm{u}}, \overline{\mathrm{P}}_{\mathrm{h}}, \overline{\mathrm{r}}^{\prime},-,-\right)
$$

takes the form

$$
\bar{H}=\frac{1}{2}\left(\overline{\mathrm{P}}_{r}^{2}+\frac{\overline{\mathrm{P}}_{\mathrm{u}}^{2}}{\overline{\mathrm{r}}^{2}}\right)-\left(\frac{\mathrm{a}_{1}}{\bar{r}}+\frac{\mathrm{a}_{3}}{\bar{r}^{3}}+\frac{\mathrm{a}_{4}}{\bar{r}^{4}}+\frac{\mathrm{a}_{5}}{\bar{r}^{5}}\right)
$$

or

$$
\begin{equation*}
\overline{\mathrm{H}}=\frac{1}{2}\left(\frac{d \bar{r}}{d t}\right)^{2}-\sum_{1}^{5} \frac{a_{i}}{\bar{r}^{i}} \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{1}=\mu ; \quad a_{2}=\frac{\bar{P}_{u}^{2}}{2} ; \quad a_{3}=J_{2} \mu B_{20}+\frac{J_{2}^{2} \mu^{3} B_{22}}{16 \bar{P}_{u}^{2}}\left(3-7 \theta^{2}\right) \\
& a_{4}=\frac{J_{2}^{2}{ }^{2} B_{22}}{48 \bar{P}_{u}^{2}}\left(-21+69 \theta^{2}\right) \quad ; \quad a_{5}=-\frac{9 J_{4}^{\mu}}{64}\left(1-10 \theta^{2}+\frac{35}{3} \theta^{4}\right)
\end{aligned}
$$

Since \bar{u} and \bar{h} are cyclic, \bar{P}_{u}, \bar{P}_{h} are constant. Hence the coefficients a_{i} are constant too. Then we can apply to (19) the study made in section ${ }^{3}$. (Cid et al., 1982).
II.- As we have said, the solution of $P(\alpha)=0$ as well as the effective calculation of the values of α, β, γ which determines a regularizing function $g_{5}(r)$ with $g_{5}(r)>0$, seems to need numerical methods.

Now we give two numerical examples, obtained through the system (12), which show the feasibility of the method proposed. The existence of $g_{5}(r)$ for a wide set of values for the orbital parameters $a, ~ e, ~ I$, remains to be analyzed.

Data:
$\mu=0.00553 \quad J_{2}=1.08263110^{-3} \quad J_{4}=-1.6510^{-6}$
example 1:
$a=2$
$e=0.1$
$I=80^{\circ}$
example 2:
$a=4$
$e=0.1$
$I=80^{\circ}$

Results:

Case 1
$\begin{array}{lll}\gamma & -0.295732 & \\ \beta & -0.400184 & 10 \\ \alpha & 0.24578710^{3}\end{array}$
$\begin{array}{lll}c_{1} & -0.2765 & 10^{-2} \\ c_{2} & -0.2553 & 10^{-5} \\ c_{3} & -0.3076 & 10^{-8}\end{array}$

Case 2

-0.1425387
-
-
0.8003057101
0.472656410
$-0.1382 \quad 10_{-5}^{-2}$
$\begin{array}{ll}-0.2113 & 10^{-5} \\ -0.6383 & 10^{-8}\end{array}$

We have also checked that the variation of the eccentricity e in the range $0.01 \leqslant e \leqslant 0.3$ has small influence on the values of the last table. It is easy to see that in the two cases considered we have $g_{5}(r)>0$, because $r \geqslant 1$.

REFERENCES.
Belen'kii, I.M.: 1981a, Celes. Mech. 23, 9-31
Belen'kii, I.M.: 1981b, PMM U.R.S.S. 45, 24-29
Caballero, J.A.: 1975, Tesis Doctoral. Universidad Zaragoza
Cid, R., Ferrer, S., Elipe, A.: 1982, IX Jornadas Hisp-Lusas de Mat. Salamanca (to appear)
Deprit, A.: 1981, Celes. Mech., 23, 299-305
Ferrer, S., Elipe, A.: 1982, IX Jornadas Hisp-Lusas de Mat. Salamanca (to appear)
Hill, G.W.: 1913, Astron. J., 27, 171
Kustaanheimo, P., Stiefel, E.: 1965, J.R.A.M., 218, 204-219
Scheifele, G., Stiefel, E.: 1971, Linear and Regular Celestial Mechanics Springer-Verlag, Berlin.
Szebehely, V.: 1976, Celes. Mech. 14, 499-508.

