REGULARIZATION OF THE EQUATIONS OF MOTION IN A CENTRAL FORCE-FIELD.
APPLICATION TO THE ZONAL EARTH SATELLITE.
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‘Abstract. Within the framework of linear and regular celestial mecha-
nics, we revise a recent method of Belen'kii (1981). We generalize so-
me of his results, giving a new regularizing function.

We make an application to the zonal earth satellite, considering
the hamiltonian function through the harmonic J4. After the angular va-
riable u has been removed, we introduce a new time and we reduce the
problem to a linear equation.

1. INTRODUCTION

In this paper, the method of regularization given by Belen'kii
(1981) is revised. We propose a function g(r) that generalizes the one
studied by him. Then an application to the zonal earth satellite, con-
sidering harmonics through Jgr is made.

We use the canonical set of variables (Py, Py, P_, r, u, h) of
Hill (1913) and, in order to apply that regqularization, the angular
variable u is eliminated (Caballero, 1975) using von Zeipel's method.
As a consequence the new hamiltonian is
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where ﬁu' a, are constant.
We make a transformation of time dr = g; (r) dt that reduces the
problem to a linear equation.

Other analytical theories have been proposed based on canonical
elements associated with a suitable time reqularization (Kustaanheimo-
Stiefel, 1965; Scheifele-Graf, 1974; Deprit, 1981). In particular, re-
gularizations linearizing the equations, that have also applications in
other dynamics problems, have been considered by Stiefel-Scheifele (1971),
Belen“kii (1981), Szebehely (1976).
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2. BELEN'KII REGULARIZATION

In certain problems of Celestial Mechanics, the hamiltonian of the
relative motion of a particle in a central force~field has the form

1 2 1 2
H = 5—(Pr + —§-P¢ y + Vo(r) (1)
r
where Pr = r denotes the radial velocity, P¢ = r2¢ = ¢ is the angular
momentum and
noa,
vy = - z = (2)
1r

is the potential function.

The energy integral H = h, may be written as

2
1 dr 2 c
5‘(a£0 =h - { Vo(r) + ;;54 = h - V(r) (3)

and Belen'kii introduces a new independent variable 1, by means of the

relation
ar = g_l(r) at (4)
with g(r) > 0 and g(xr) € C(l). Then, (3) can be written in the form
1 dr 2 2
5‘(5;0 =g (x){h - v(r)} (5)

Differenciating (5) with respect to 1, and after dividing by the
nonzero factor dr/dt, Belen'kii equals the result to a linear expres-
sion, obtaining

d2r d 2

== =——(¢"tm{n-vi}) =20 +c (6)

dr dr 1 2

where we have written 2c1 for subsequent simplifications.

A full study of the linear equation (6) for the three. cases
c2/c1% 0, has been given by Belen'kii (198l.a; Section 2).

Integrating (6), the regularizing function must satisfy the rela-

tion
2 2
g (r){h-v()} =¢g,r“+cr+c (7)
1 2 3
Belen'kii has applied (7) to the potentials
I ] R e
0~ "2 2 7 0o~ "3 2 3
r r r r r
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where the corresponding regularizing functions are

9, =1 9,0 =% (1472

a., and h.

respectively. The parameter B depends on a o1 83

1 @

Likewise, Ferrer and Elipe (1982),studying these potentials have
considered the following regularizing function

3/2 - 1/2
g(r)=r/(B+r) /
which allows the treatment of these cases in a more uniform manner.

3. A NEW REGULARIZING FUNCTION

In a more general problem, with the potential

41, %3 %n
_\]Oz_\]n=—-—+—3+...+—-~r—1
r r r
we have
c2 n ai
V=Vt = - s (8)
2r 1r
where a, = - c2/2. In this case we propose the following regularizing
function
g (r) = rn/2{ rn_2 + alrn_3 + u2rn—4 + ..+ an_z} - 1/2 (9)
where ;) ee. O

o,, a2 n-2" are parameters which depend on ai, h, and must
be suitaély Chosen to ﬁave gn(r) > 0.

Inserting (8), (9) in (7), we arrive at the equation
n . n-2

e+ Y a, r T = 2 } a K2y fertrer e, )
1 i 1 k 1 2 3

Equating the coefficients of the same powers of r in.both sides, we
have the system

h = c1 ; a1 = c1a1 + c2 ; a2 = c1a2 + Czdl + c3
ai = clai + c2ui—1 + C3“i—2 (i=3, . , n=-2) (10)
an—l = c2an—2 + C3an—3 ; an - c3an_2

Solving (10) with respect to the coefficients c¢,, c,, ¢,, O,, Q. ,..
. . . ]t n& 3 1 2
an_2, we get the expression of the coefficients in “termns of al, ayre--
a , h.
n

The study of this last system is difficult and it seems that the
more practical way of solving it is by a numerical method.
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In particular, we have studied the system (10) for n = 5, taking

_ r5/2 3 2 )—1/2

g5(r) (r  +ar + Br + vy (11)
In this case, the equations of that system are given by
h = c1 (121) a3 = cly + c28 + c3u (124)
a1 = clu + c, (122) a, = c2y + c3B (125) (12)
a2 = cls + ¢, + cy (123) ag = 3y (126)
From (121), (122), (123) we obtain
c1 = h ; c2 = a1 - ha = cz(a)

5 (13)
cy=a, - aa + ha” - hB = c3(a, g)

From (126), if ag #0 , we get: ¢y # 0, vy # 0. Then v = a5/c3(u, B).

Finally, substituting the above expressions in (124), (125),we ha-
ve the system

2

CR™ +BR +A =0
14
3 5 (14)
D'B” +C'B” + BB+ A" =0
where
25 4 2 3 2 2
C =ho - 2ha1a + (a1 + 2ha2)a - (2a1a2 + a3h)a + (a2 + a1a3)a
+ _
ha5 a2a3

B =- h{(2h + 1) 3 + 4ha 2 - (3h + 2) + a + h

= o = a2 ajo 131 ay
A = h(2h -~ al)
D' = h2
c' = - 2h(hot2 - a,a+ a.)

1 2

.2 4 3 2 2 2

B' = ha 2ha1a + (a1 + 2ha2)a 2a1a2a + a2 + ha4
2

| —_ p—
A' = a4ha + (ala4 ha5)a + ala5 a2a4
Eliminating B in (14) we get an equation of the form P(a) = O whe-

re P(o) is a polynomial in o of eighteenth degree. Thus it seems conve-
nient to solve (14) by numerical methods.
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4. SOME PARTICULAR CASES FOR THE NEW REGULARIZING FUNCTION

In this case, from (12 ) it follows that we can take y = 0. Then,
the last three equations of (12) reduce to

a, =c B+ c,a
3 2 3 (15)
a, = c36
Then ,substituting Cqr given by (13), in (151), we get
a3 - a2a + a1a2 - ha3
B = (16)
a, - 2ho

1

and substituting f in (152), we have a sixth degree equation

6
z Aol =0
n
o
where
3
A6 = 2h
2
A5 = - 5a1h
A = 4(a2 + ha_ )h
4 1 2
A, = -1 a3+6aah+ (2a +1)h2}
3 1 1 2 3
2 2 2
A2 = 2a1a2 + (3a1a3 - 2a2 - al)h - 4a4h
2
A = -{ (ajay ~ajy)a, + (4aja, + 2a,a, + a2)h}

2
A = a1a2a3 - a1a4 - a3h
Then, the regularizing function is

g4(r) = r2(r2 + ar + 8)_1/2

and we must take the values a,B in such a way that r2 + ar + 8 >0 or

else, we must find the range of r for which the regularization is well
defined.

Again, it is sufficient to take vy = B = 0 in (12). Then, the para-
meter o verifies the cubic equation
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3
- 2 - =
ho alu + a2a a3 0 (17)

The regularizing function is now

= r3/2(r + u)—l/z

93(r) (18)
A study and application of (17) and (18) has been made by Ferrer-
Elipe (1982).
iii) a; =a, =a; = 0
In this case it is sufficient to take y=B=a=0. Then, the system
(12) reduces to
c, = h ; c, = a H c, = a
where
g,(r) =r
is the regularizing function of Sundman.

5. AN APPLICATION TO THE ZONAL EARTH SATELLITE
I.- It is well known that the kinetic energy T and the potential V of

an artificial zonal satellite of the Earth, in the canonical set of va-
riables (Pr’ Pu' P r, u, h) of Hill (1913), are given by the equa-

tions h
2
P
1 2 u
T= 5'(Pr +-75)
r
ve-2r1- 7 0 D% (sin 9}
ba nr n
n>2
The corresponding hamiltonian with the harmonics J2, J3, J4 is gi-
ven by the expression
H=H(Pr, Pu, Ph' r, u, -) :HO+H1+H2
where 5
P
1 2 u u
Bp=3 ot =50 -1
ha
= - K
H1 3 J2(B20 + B22 cos 2u )
r
m,o= X 3/1 - 02{3(1 - 56%)sin u - 5(1 - 8°)sin 3u} +
2 4 3
8r
3 3 15 2 35 4 5 20 2 35 4
= = . = 4+ = - = fanitedt - =
8r5J4{(8 2 © g 0) T -z +5 0 ¢ 0) cos 2u+

https://doi.org/10.1017/50252921100096901 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100096901

REGULARIZATION OF THE EQUATIONS OF MOTION IN A CENTRAL FORCE-FIELD 45

35 2.2
52 (1 - 87) cos 4u }

and where we use the notation

B, = -

P
2 3 2 h
20 (1 - 387) ; B22 = Z—(l -07) ; 6 = p = cos I

=

The equatorial radius of the Earth, has been taken as unity.

The elimination of the variable u has been done by Caballero (1975)
using the method of von Zeipel. The new hamiltonian

B=H (P, P, P, ro-, - )

takes the form

52 a a a a
- 1 =2 u 1 3 5
= = — - — 4+ = —
H=g (Pt 3) - (=t 3+ 3 +5)
r r r r r
oY _ §a
- 1 dr . 2 i
Az la) ~ 1o
1r
where
=2 2 3
a, =1y ; a, = EE— ; a, = J,uB + EEE——EZEE (3 - 782 )
1 2 2 3 27720 1652
u
2 2
J B 93 u
a, = _g_tzgg (- 21 + 69 62) ; ag = - ——é—-(1 - 1092 + 32 64)
48Pu 64 3

Since u and h are cyclic, P , P, are constant. Hence the coeffi-
cients a, are constant too. Then we can apply to (19) the study made in
section 3. (Cid et al., 1982).

II.- As we have said, the solution of P(a) = 0 as well as the effective
calculation of the values of a, B, Yy which determines a regularizing
function gs(r) with gS(r) > 0, seems to need numerical methods.

Now we give two numerical examples, obtained through the system
(12) , which show the feasibility of the method proposed. The existence
of g5(r) for a wide set of values for the orbital parameters a, e, I,
remains to be analyzed.

Data:

u = 0.00553 3, = 1.082631 107 34 = - 1.65107°
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example 1: a = 2 e = 0.1 I = 80°

example 2: a=4 e = 0.1 I =80°

Results:

Case 1 Case 2

Y - 0.295732 1 - 0.1425387 i

B - 0.400184 103 - 0.8003057 10

a 0.245787 10 0.4726564 10
-2 -2

cy - 0.2765 10_5 - 0.1382 10_5

<, - 0.2553 10_8 - 0.2113 10_8

s - 0.3076 10 - 0.6383 10

We have also checked that the variation of the eccentricity e in
the range 0.01 £ e € 0.3 has small influence on the values of the last
table. It is easy to see that in the two cases considered we have
g5(r) > 0, because r > 1.
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