In-situ Electron Diffraction Studies of Sodium Electrochemistry in MoS$_2$

Jinsong Wu1,2, Qianqian Li1,2, Zhenpeng Yao2, Sagar Mitra3, Shiqiang Hao2, Tuhin Subhra Sahu3, Yuan Li1,2, Christopher M. Wolverton2 and Vinayak P. Dravid1,2.

1. NUANCE Center, Northwestern University, Evanston, IL, United States
2. Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States

MoS$_2$ is a promising electrode materials for sodium-ion batteries. In the structure of MoS$_2$, there is adequate “space” between the MoS$_2$ layers interconnected with weak van der Waals force to accommodate Na ions during charging. It turns out that MoS$_2$ allows Na ions to intercalate therein without a significant volume expansion (1); which enables MoS$_2$ to be a promising electrode material for rechargeable batteries (2). However, the number of the electrons can be accommodated in the S-MoS-S layer is limited while the structural framework remains stable. It has been shown that up to 1.5 electrons can be stored per unit formula in MoS$_2$ before the layered structure collapses (3). Meanwhile, there is a structural transition between trigonal 2H- and octahedral 1T-AMoS$_2$ ($A = Li, Na, K$, etc.) accompanied by an electronic state change from semiconducting to metallic observed upon alkali-metal ion’s intercalation (4). Recent developments of **in-situ** transmission electron microscopy (TEM), as one unique tool to conduct real time structural measurements under the dynamic electrochemical reaction processes. (5) Such **in-situ** or **in-operando** measurements make it possible to analyze and tackle the intricacies of the sodiation mechanism in electrode materials during charge/discharge cycles.

In general, a large electron beam dose is required to imaging materials structure at atomic resolution, which introduces artificial microstructural changes during the observations. Herein, we applied **in-situ** electron diffraction with a remarkably low electron beam dosage to study the dynamic structural evolution in sodium intercalated MoS$_2$ crystals during sodiation. The diffraction patterns are then carefully indexed and compared to the DFT calculations to derive the structural evolution at or close-to atomic resolution and unravel the mechanism of MoS$_2$ sodiation under dynamic conditions.

Figure 1 shows the recorded electron diffraction patterns along with the sodiation process and the illustration of the Na-ion intercalated structures with Na content from 0.125 to 1.75 (the formula of each crystal is labeled). In each indexed pattern, the measured d-spacing of three spots are labeled. When Na content reaches 0.375, phase transformation from 2H to 1T occurs with appearance of superlattice spots. When Na content is higher than 1.75, the conversion reaction occurs, leading to the formation of metallic Mo and Na$_2$S reaction product. The structural models of the Na-intercalated structures are derived from DFT calculations and their simulated electron diffraction patterns are compared to the experimental ones; as shown in Fig.2. Several metastable phases have been identified in the early stage of sodiation in nanostructured MoS$_2$ crystals. The nano-MoS$_2$ crystal can host up to 1.75 Na per unit formula before the layered structure collapses. This study provides relevant insights into understanding the sodiation kinetics in typical layered transition-metal dichalcogenide structures, which we believe will be helpful in designing next generation advanced sodium ion batteries of the future [6].

References:
Figure 1. In-situ electron diffraction of Na-intercalation into MoS$_2$. (A) The starting 2H-MoS$_2$ is identified to be oriented along the [332] zone axis, along with the illustration of the atomic structure (underneath the pattern). (B)-(H) The indexed diffraction patterns and structural illustrations of Na-ion intercalated structures with Na content from 0.125 to 1.75 (the formula of each crystal is labeled), along with the sodiation, while the sodiation time is marked in each pattern. In each indexed pattern, the measured d-spacing of three spots are labeled. When Na content reaches 0.375, phase transformation from 2H to 1T occurs with appearance of superlattice spots. When Na content is higher than 1.75, the conversion reaction occurs leading to the formation of Mo and Na$_2$S.

Figure 2. Comparison of experimental electron diffraction patterns to the simulated ones. The experimental selected-area electron diffraction (SAED) patterns of all the intermediate phases appeared in the sodium insertion process are compared to the simulated ones calculated by DFT.