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Abstract

Motivated by stability questions on piecewise-deterministic Markov models of bacterial
chemotaxis, we study the long-time behavior of a variant of the classic telegraph process
having a nonconstant jump rate that induces a drift towards the origin. We compute
its invariant law and show exponential ergodicity, obtaining a quantitative control of
the total variation distance to equilibrium at each instant of time. These results rely on
an exact description of the excursions of the process away from the origin and on the
explicit construction of an original coalescent coupling for both the velocity and position.
Sharpness of the obtained convergence rate is discussed.
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1. Introduction

1.1. The model and main results

Piecewise-deterministic Markov processes (PDMPs) have been extensively studied in the
last two decades and received renewed attention in recent years in different applied probabilistic
models (we refer the reader to [4] or [10] for general background). We consider the simple
PDMP of kinetic type (Zt )t≥0 = ((Yt ,Wt ))t≥0 with values in R × {−1, 1} and infinitesimal
generator

Lf (y,w) = w∂yf (y,w)+ (a + (b − a) 1{yw>0})(f (y,−w)− f (y,w)), (1.1)

where b ≥ a > 0 are given real numbers. That is, the continuous component Yt evolves
according to dYt/dt = Wt and represents the position of a particle on the real line, whereas
the component Wt represents the velocity of the particle and jumps between +1 and −1, with
instantaneous state-dependent rate. More precisely, as long as Yt is positive, the jump rate of
the velocity is equal to b ifW = +1, and it is equal to a ifW = −1; the situation is reversed if
Yt is negative. The case a = b corresponds to the classical telegraph process in R × {−1,+1}
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Figure 1: Trajectory of the continuous part Y from the dynamics (1.1) with a = 1 and b = 2.

introduced by Kac [11], in which case the density of (Yt ) solves the damped wave equation

∂2p

∂t2
− ∂2p

∂x2 + a
∂p

∂t
= 0,

called the telegraph equation. The telegraph process, as well as its variants and its connections
with the so-called persistent random walks have received considerable attention both in the
physical and mathematical literature (see, e.g. [9] for historical references and some recent
probabilistic developments). It is well known that (Yt )t≥0 converges when a = b to the
standard one-dimensional Brownian motion in the suitable scaling limit. Figure 1 shows a path
of Y driven by (1.1) with a = 1 and b = 2.

In this paper we are interested in the long-time stability properties of the process (1.1) when
b > a. One of our motivations is a better understanding of dissipation mechanisms in the setting
of hyperbolic equations, where the telegraph process appears as the prototypical associated
Markov process. A second motivation is to make a first step in tackling questions on the trend
to equilibrium of velocity jump processes introduced in [6] and [7], which model the interplay
between intra-cellular chemoattractant response mechanisms and the collective (macroscopic)
behavior of unicellular organisms. These PDMPs describe the motion of flagellated bacteria
as a sequence of linear ‘runs’, the directions of which randomly change at rates that evolve
according to some simple dynamics that represent internal adaptive or excitative responses to
chemical changes in the environment (we refer the reader to [20] for a deeper probabilistic
description). The emergence of macroscopic drift is expected when the response mechanism
favors longer runs in specific directions, and has been numerically confirmed in [6] and [7]. In
[20], with the aim of developing variance reduction techniques for the numerical simulation of
these models, a so-called gradient sensing process was derived from them, in asymptotics where
the response mechanisms of bacteria, roughly speaking, act infinitely fast (see Lemma 2.5 of
[20] for a precise mathematical statement). The process (Zt ) above exactly corresponds to the
gradient sensing process for the particular chemoattractant potential S(x) = c|x| ≥ 0 in R, and
constitutes a tractable toy model for the long-time behavior of the processes considered in [6],
[7], and [20].

When b > a, a particle driven by (1.1) spends in principle more time moving towards the
origin than away from it. Thus, a macroscopic attraction to the origin should take place in the
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long run, though in a consistent way with the fact that the particle has constant speed. Our main
goal is to clarify this picture by determining the invariant measure µ of (Y,W) when b > a,
and obtaining quantitative bounds (i.e. estimates that are explicit functions of the parameters a
and b) for the convergence to µ of the law of (Yt ,Wt ) as t goes to ∞. Denote by ‖η − η̃‖TV
the total variation distance between two probability measures η and η̃ on R (recalled below at
(1.4)). Our main result is the following.

Theorem 1.1. The invariant probability measure µ of (Y,W) is the product measure on R ×
{−1,+1} given by

µ(dy, dw) = b − a

2
e−(b−a)|y| dy ⊗ 1

2
(δ−1 + δ+1)(dw).

Moreover, denoting by µy,wt the law of Zt = (Yt ,Wt ) when issued from Z0 = (y,w), we have,
for any y, ỹ ∈ R and w, w̃ ∈ {−1,+1},

‖µy,wt − µ
ỹ,w̃
t ‖TV ≤ C(a, b)er(a,b)|y|∨|ỹ|e−λct , (1.2)

where

C(a, b) =
(
b

a

)5/2
a + b√
ab + b

, r(a, b) = 3(b − a)

4
∨ (b − √

ab),

and λc = (
√
b − √

a)2

2
.

We easily deduce the following result.

Corollary 1.1. Let η be a probability measure in R × {−1,+1}, and let µηt be the law of Zt
when the law of Z0 is given by η. Then,

‖µηt − µ‖TV ≤ C(a, b)

∫
er(a,b)|y| (µ+ η)(dy, dw)e−λct .

The upper bound (1.2) is integrable under the invariant measure µ of the full process (Y,W)
since r(a, b) < b − a. Thus, Corollary 1.1 is significant as soon as (y,w) 
→ er(a,b)|y| is
η-integrable, ensuring in that case the convergence to equilibrium at the exponential rate λc. In
Figure 2 we compare the empirical law of Yt to its invariant measure for successive times (the
shapes might be compared to those presented in [6, p. 385]).

In spite of the simple form of the process (1.1), fully explicit computations on this model
are not easy to carry out. When Y0 = y > 0, as long as t < y, the law of (Zs)0≤s≤t is equal to
the law of the process with generator

Hf (y,w) = w∂yf (y,w)+ (a + (b − a) 1{w>0})(f (y,−w)− f (y,w)), (1.3)

which was computed in [9] in terms of modified Bessel functions. We have been unable to
compute the transition laws for (1.1) for general time intervals. (Note that, when a < b, the
long-time behavior of the process driven by (1.1) is completely different from that of the process
driven by (1.3), which drifts to −∞.)

The proof of the bound in Theorem 1.1 will rely on the construction of a coupling (see
[12] and [21] for background), which classically provides a convergence rate to equilibrium
depending on tail estimates of the coupling time. A related and popular approach to the long-
time behavior of Markov processes is the Foster–Lyapounov–Meyn–Tweedie theory (see [2],
[14], [15], and [19]), which allows one to prove exponential ergodicity under conditions that are
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Figure 2: Empirical law of Yt starting at (5,−1) for t ∈ {2, 6, 10, 14, 18, 22} with a = 1 and b = 2.

relatively easy to check. Specific applications to PDMPs have been developed in [3] and [5].
Such general results however provide convergence estimates which are not fully explicit, and
sharpness of the bound and rates that can be deduced are hardly assessable.

A fundamental step in proving Theorem 1.1 will be to first establish an analogous result
for the reflected (at the origin) version of the process. A fully explicit coupling will first be
constructed for the latter, inspired by coalescent couplings for classic nonnegative continuous-
time Markov processes, namely the M/M/1 queue and reflected Brownian motion with negative
drift. The main difficulties in our case are that we have to couple both the position and velocity
and that, contrary to the M/M/1 queue or reflected Brownian motion with drift, we do not
have a natural order structure. This prevents us from using the framework developed in [13] to
construct couplings for processes that are said to be stochastically ordered.

We will next recall basic ideas employed to study the long-time behavior of Markov processes
via couplings, following [12]. We also introduce the ‘reflected version’of the process driven by
(1.1) and state an analogue of Theorem 1.1 for this version in Theorem 1.2. The strategy of the
proofs of Theorems 1.1 and 1.2, together with the structure of the remainder of the paper, is then
explained. Let us anticipate that the convergence rate λc in (1.2) will arise as the supremum
of the domain of the Laplace transform of the hitting times of the origin for the process (Yt ),
suggesting that this rate is sharp. In this direction, we will also see below that in the suitable
scaling limit where (Yt ) converges to the Brownian motion drifted to the origin, the known
total variation convergence rate to equilibrium of the latter is recovered as the rescaled limit of
the λcs.

1.2. Preliminaries

In the sequel, we will use the notation ‘
L=’ to denote ‘equal in law to’. By E(λ) and P (λ)we

will respectively denote the exponential law and the Poisson law of parameter λ > 0, whereas
B(p) will stand for the Bernoulli distribution of parameter p ∈ (0, 1).

Recall that the total variation distance between two probability measures η and η̃ in a
measurable space X is given by

‖η − η̃‖TV = inf{P(X �= X̃) : X and X̃ are random variables with L(X) = η

and L(X̃) = η̃}, (1.4)
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where each pair of random elements (X, X̃) of X is simultaneously constructed in some
probability space and is called a coupling (see [12] for alternative definitions of this distance
and its main properties). A coupling (Ut , Ũt )t≥0 of two stochastic processes such thatUt+T∗ =
Ũt+T∗ for any t ≥ 0 and an almost surely finite random time T∗ is called a coalescent coupling
(T∗ is then called a coupling time). It follows in this case that

‖L(Ut )− L(Ũt )‖TV ≤ P(T∗ > t).

A helpful notion in obtaining an effective control of the distance is stochastic domination.

Definition 1.1. ([12].) Let S and T be two nonnegative random variables with respective
cumulative distribution functions F and G. We say that S is stochastically smaller than T ,
written as S ≤st T , if F(t) ≥ G(t) for any t ∈ R.

In particular, for a couple (Ut , Ũt ) as above, Chernoff’s inequality yields

‖L(Ut )− L(Ũt )‖TV ≤ P(T > t) ≤ E(eλT )e−λt (1.5)

for any nonnegative random variable T such that T∗ ≤st T , and any λ ≥ 0 in the domain of the
Laplace transform λ 
→ E(eλT ) of T .

We will use these ideas to obtain the exponential convergence estimates for Z = (Y,W)

in Theorem 1.1, and in Theorem 1.2 below for its reflected version (X, V ) which we now
introduce. The Markov process ((Xt , Vt ))t≥0 is defined by its infinitesimal generator

Af (x, v) = v∂xf (x, v)+
(
a + (b − a) 1{v>0} +1{x=0}

1{x>0}

)
(f (x,−v)− f (x, v)), (1.6)

with 0 < a < b (the term 1{x=0}(1{x>0})−1 means that X is reflected at 0). The dynamics of
the process are simple: whenX is increasing (respectively decreasing), V flips to −V with rate
b (respectively a) and it is reflected at the origin (i.e. as soon as X = 0, V flips to 1). Given a
path ((Yt ,Wt ))t≥0 driven by (1.1), a path of ((Xt , Vt ))t≥0 can be constructed by taking

Xt = |Yt | and V0 = sgn(Y0)W0,

and defining the set of jump times of V to be

{t > 0 : �Vt �= 0} = {t > 0 : �Wt �= 0} ∪ {t > 0 : Yt = 0}.
Note that, sinceW does not jump with positive probability when Y hits the origin, we can also
construct a path of ((Yt ,Wt ))t≥0 from an initial value y ∈ R and a path ((Xt , Vt ))t≥0 driven
by (1.6): writing σ0 = 0 and (σi)i≥1 for the successive hitting times of the origin, we define

(Yt ,Wt ) = (−1)isgn(y)(Xt , Vt ) if t ∈ [σi, σi+1].
Let us state our results about the long-time behavior of (X, V ).

Theorem 1.2. The invariant measure of (X, V ) is the product measure on R+ × {−1,+1}
given by

ν(dx, dv) = (b − a)e−(b−a)x dx ⊗ 1
2 (δ−1 + δ+1)(dv).

Let νx,vt stand for the law of (Xt , Vt ) when X0 = x and V0 = v. Then, for any x, x̃ ≥ 0 and
v, ṽ ∈ {−1,+1},

‖νx,vt − ν
x̃,ṽ
t ‖TV ≤ (a + b)b

2a2 er(a,b)(x∨x̃)e−λct ,
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where

r(a, b) = 3(b − a)

4
∨ (b − √

ab) and λc = a + b

2
− √

ab = (
√
b − √

a)2

2
.

Note that, for small times t ≤ |x − x̃|/2, the total variation distance does not decrease
exponentially fast: the distance between νx,vt and νx̃,ṽt is equal to 1 since the supports of these
two probability measures are disjoint.

Theorem 1.2 should be compared to the results of two classic examples of ergodic non-
negative continuous-time Markov processes, obtained by coupling arguments that are briefly
recalled next. Consider first Brownian motion with negative drift −c < 0 reflected at the
origin and which has the law E(2c) as the invariant measure (see [12] for this and the
following facts). A coupling of two of its copies (Uxt )t≥0 and (U x̃t )t≥0 respectively starting
from x and x̃ consists in letting them evolve independently until they are equal for the first
time and choosing them equal from that moment on. By nonnegativity and continuity, the
coupling time T∗ for (Uxt , U

x̃
t )t≥0 is stochastically smaller that the hitting time T of the

origin for (Ux∨x̃t )t≥0. Since, for y > 0, the hitting time T of the origin by (Uyt )t≥0 satisfies
Ey(eλT ) = exp(y(c − √

c2 − 2λ)) if λ ∈ (−∞, c2/2] and Ey(eλT ) = +∞ otherwise (see, e.g.
[17, p. 70]), taking λ = c2/2 in (1.5) yields

‖L(Uxt )− L(U x̃t )‖TV ≤ ec(x∨x̃)e−c2t/2 for all x, x̃ ∈ R+, t ≥ 0. (1.7)

This estimate can also be used to study the long-time behavior of the solution of the stochastic
differential equation

dξt = dBt − c sgn(ξt ) dt, (1.8)

which has the Laplace law ce−2c|x| dx as the invariant measure. One first has to couple the
absolute values; the first hitting time of the origin after their coupling time stochastically
dominates the coupling time for (1.8). A second example is the M/M/1 queue, that is, the
continuous-time Markov process (Nt )t≥0 taking values in N with infinitesimal generator

Ãf (n) = a(f (n+ 1)− f (n))+ b 1{n>0}(f (n− 1)− f (n)),

where b > a > 0 (to ensure ergodicity). Since two independent copies of the process starting
from n and ñ do not jump simultaneously and they have jumps of size 1, their coupling time
is smaller than the hitting time of the origin T for the process starting at n ∨ ñ. For each
initial state n ∈ N, the Laplace transform of T has domain (−∞, (

√
b − √

a)2] and we have
En(e(

√
b−√

a)2T ) = (b/a)n/2 (see [18] for these facts) which as before yields

‖L(Nn
t )− L(Ñ ñ

t )‖TV ≤
(
b

a

)(n∨ñ)/2
e−(√b−√

a)2t for any n, ñ ∈ N, t ≥ 0.

We note that in the appropriate scaling limit, the M/M/1 queue is furthermore known to converge
to the reflected Brownian motion with negative drift (see [18]).

The construction of a coalescent coupling for the process (X, V ) driven by (1.6) is harder
than the previous examples since both the positions and velocities must be coupled at some
time. This will be done in two steps. In Section 3.1 we will obtain an estimate (in the sense of
stochastic domination) for the first crossing time and position ofX and X̃ for a suitable coupling
of the pair. At that time the velocities will be different. We will then construct in Section 3.2
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the coalescent coupling when starting from that special configuration. In Section 3.3 we will
obtain an explicit upper bound for the Laplace transform of the coalescent time, and, thus, the
quantitative convergence bound (1.2). The required stochastic dominations will be established
in terms of the hitting times and lengths of excursions of (X, V ) away from the origin, studied
in Section 2. We will also give in Section 2 a complete description of such excursions and we
will compute the invariant measure of (X, V ) using a standard regeneration argument. Finally,
Theorem 1.1 will be proved in Section 4 by transferring these results to the unreflected process.

We end this section by noting thatλc in (1.2) is the right convergence rate for the process (1.1),
at least in the natural diffusive asymptotics of the process. Let c > 0 and 0 < aN < bN, N ∈ N,

be real numbers.

Proposition 1.1. Assume that aN + bN → ∞ and bN − aN → 2c ∈ (0,∞) as N → ∞.
Let (Y (N)t ,W

(N)
t )t≥0 denote the process driven by (1.1) with coefficients a = aN and b = bN ,

starting from a random variable Y (N)0 = ξ0 ∈ R. Then, as N → ∞, the process

(ξ
(N)
t )t≥0 := (Y

(N)
t (aN+bN )/2)t≥0

converges in law in C([0,∞),R) to the solution ξt of the stochastic differential equation (1.8)
with initial condition ξ0.

Remark 1.1. By Theorem 1.1 and the dual representation of the total variation distance,

|E(f (ξ (N),yt )− E(f (ξ (N),ỹ ))| ≤ C(aN, bN)e
r(aN ,bN )(|y|∨|ỹ|)

× exp

{
−(aN + bN)

(
√
bN − √

aN)
2

4
t

}

holds for every t > 0 and each continuous function f : R → [−1,+1]. Letting N → ∞ and
taking the supremum over even functions f in the previous class, we then obtain

‖L(Uxt )− L(U x̃t )‖TV ≤ e3c(x∨x̃)/2e−c2t/2 for all x, x̃ ∈ R+, t ≥ 0,

where (Uxt )t≥0 and (U x̃t )t≥0 are Brownian motions with drift −c < 0 reflected at the origin,
respectively starting from x and x̃. Comparison with (1.7) suggests that the convergence rate
λc of Theorem 1.1 cannot be substantially improved on, and that one could in principle improve
upon the exponent r(a, b) therein (more precisely, upon the term 3(b − a)/4).

Proof of Proposition 1.1. We will use a standard diffusion approximation argument. Omit-
ting for the moment the sub- and superscripts for notational simplicity, and writing jt :=
Wt − 2κWt(a + (b − a) 1{YtWt>0}), Jt := ∫ t

0 js ds, and Ŷt := Yt + κWt for a given constant
κ > 0, we see by Dynkin’s theorem that the processes Mt := Ŷt − Jt = Yt + κWt − Jt and
Nt := Ŷ 2

t − t2κ − ∫ t
0 2Ysjs ds are local martingales with respect to the filtration generated

by (Yt ,Wt ). Using integration by parts, we then obtain M2
t = Nt − 2

∫ t
0 Js− dMs + 2κt −

2κ
∫ t

0 Wsjs ds. Thus, noting that js = sgn(Ys)((2aκ − 1)+ 2 × 1{YsWs>0}(1 − κ(b + a))), we
see that, for κ = (a + b)−1,

Mt = Yt −
[∫ t

0
sgn(Ys)

a − b

a + b
ds − Wt

a + b

]

and M2
t −

[
2t

a + b
− 2

∫ t

0
Wssgn(Ys)

a − b

(a + b)2
ds

]
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are local martingales. Therefore, defining, for each N ∈ N,

β
(N)
t := aN − bN

2

∫ t

0
sgn(ξ (N)s ) ds − W

(N)
t (aN+bN )/2
aN + bN

and

α
(N)
t := t − aN − bN

aN + bN

∫ t

0
W
(N)
s(aN+bN )/2sgn(ξ (N)s ) ds,

we readily check that the processes ξ (N)t , α
(N)
t , and β(N)t satisfy Assumptions (4.1)–(4.7) of

Theorem 4.1 of [8, p. 354] (in the respective roles of the processes Xn(t), An(t), and Bn(t)
therein). That result ensures that L(ξ (N)) converges weakly to the unique solution of the mar-
tingale problem with generator Gf (x) := 1

2f
′′(x)− csgn(x)f ′(x), f ∈ C∞

c (R), and initial
law L(ξ0).

2. The invariant measure of the reflected process

In this section we will determine the invariant measure of (X, V ). This process is clearly
positive recurrent since, as will be shown in the sequel, the Laplace transform of the hitting
time of (0,+1) is finite on a neighborhood of the origin, whatever the initial data. We will need
the following well-known results for Poisson processes.

Proposition 2.1. ([16].) Let (Nt )t≥0 be a Poisson process with intensity λ > 0. Denote by
(Tn)n≥1 its jump times. Then,Nt ∼ P (λt) for any t ≥ 0. Moreover, conditionally on {Nt = k},
the jump times T1, T2, . . . , Tk have the same distribution as an ordered sample of size k from
the uniform distribution on [0, t].
2.1. Excursion and hitting times

We start by computing the Laplace transforms of the length of an excursion (to be defined
next) and of the hitting times of the origin when starting from (x, v) ∈ R+ × {−1,+1}.
Definition 2.1. An excursion of (X, V ) driven by (1.6) is a path starting at (0,+1) and stopped
at

S = inf {t > 0 : Xt = 0}.
We denote by ψ the Laplace transform of S, i.e.

ψ : λ ∈ R 
→ ψ(λ) = E(0,+1)(e
λS). (2.1)

Note that limt→S− Vt = −1 and VS = 1.

Lemma 2.1. (Length of an excursion.) The domain ofψ defined in (2.1) is equal to (−∞, λc],
where

λc = a + b

2
− √

ab = (
√
b − √

a)2

2
. (2.2)

Furthermore, if λ ≤ λc,

ψ(λ) = a + b − 2λ− √
(a + b − 2λ)2 − 4ab

2a
. (2.3)

In particular, ψ(λc) = √
b/a and E(0,+1)(S) = 2/(b − a).
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Proof. During a time length E of law E(b), V is equal to 1 and X grows linearly. At time
t = E, V flips to −1 and X starts going down. Denote by T2 the second jump time of V . If
XT2 = 0 then S = 2E. Otherwise,X starts a new excursion aboveXT2 which has the same law
as S and is independent of the past. After this excursion, (X, V ) is equal to (XT2 ,−1). Once
again, it reaches 0 directly or V flips to 1 before doing so, in which case a new independent
excursion begins. Proposition 2.1 and the strong Markov property ensure that, conditionally on
{E = x}, the number N of embedded excursions has the law P (ax). We can thus decompose
S as

S
L= 2E +

N∑
k=1

Sk,

where E ∼ E(b), L(N | E = x) = P (ax), and (Sk)k≥1 is an independent and identically
distributed (i.i.d.) sequence of random variables distributed as S and independent of the couple
(E,N). Consequently,

ψ(λ) = E

(
E

(
exp

{
2λE + λ

N∑
k=1

Sk

} ∣∣∣∣ E,N
))

= E(e2λE E(ψ(λ)N | E))
= E(e2λEeaE(ψ(λ)−1))

= b

b + a − 2λ− aψ(λ)

for each λ in the domain of ψ (which contains (−∞, 0]). This implies (since ψ is a Laplace
transform) that

ψ(λ) = a + b − 2λ− √
(a + b − 2λ)2 − 4ab

2a
.

The relation is in fact valid as soon as the argument of the square root is nonnegative, i.e. as
soon as λ ≤ λc with λc defined in (2.2). Finally, E(0,+1)(S) = ψ ′(0) = 2/(b − a).

Remark 2.1. (Number of jumps in an excursion.) Since each excursion is preceded by a jump,
the number M of jumps of V during an excursion (omitting the jump at time S) satisfies

M
L= 1 +

N∑
i=1

(1 +Mi),

where (Mi)i≥0 is an i.i.d. sequence with the same law as M and independent of the random
variable N such that L(N | E) = P (aE) with E ∼ E(b). By conditioning first in E,N
as in the previous proof, we can easily derive a second-degree equation and then an explicit
expression for the Laplace transform of the number of jumps. We omit the details since this
result will not be needed.

Lemma 2.2. For x > 0, let S(x,−1) denote the hitting time of 0 starting from (x,−1). Then

E(eλS(x,−1) ) = exc(λ) with c(λ) = b − a − √
(a + b − 2λ)2 − 4ab

2
(2.4)

if λ ∈ (−∞, λc], and +∞ otherwise.
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Proof. As in the proof of Lemma 2.1, we can decompose S(x,−1) as

S(x,−1)
L= x +

N∑
k=1

Sk,

where N is a random variable with law P (ax) independent of the i.i.d. sequence of random
variables (Sk)k≥1 with Laplace transform ψ . Then,

E(eλS(x,−1) ) =
∑
k≥1

E(eλ(x+S1+S2+···+Sk) 1{N=k}) = eax(ψ(λ)−1)+λx.

Finally, a(ψ(λ)− 1)+ λ is equal to c(λ).

Corollary 2.1. For any x ≥ 0, let us denote by S(x,+1) the hitting time of 0 starting from
(x,+1). Then

E(eλS(x,+1) ) = ψ(λ)exc(λ),

where ψ is given by (2.3) and c(λ) is given by (2.4).

Proof. The strong Markov property implies that S(x,+1)
L= S + S(x,−1), where S is the length

of an excursion independent from S(x,−1).

Lemma 2.3. For any x, x̃ ≥ 0,

S(x+x̃,−1)
L= S(x,−1) + S(x̃,−1) ≥st S(x,−1),

where S(x,−1) and S(x̃,−1) are independent.

Proof. This is a straightforward consequence of the strong Markov property.

2.2. The invariant measure

Recall that the invariant law of (X, V ) is denoted by ν.

Lemma 2.4. For any bounded function f : R × {−1,+1} → R, we have∫
f dν = 1

E(0,+1)(S)
E(0,+1)

(∫ S

0
f (Xs, Vs) ds

)
,

where S is the first hitting time of 0.

Proof. We will use a standard result on regenerative processes (see [1, Chapter VI] for
background). Let (Sn)n≥1 denote the lengths of the consecutive excursions away from 0, let
S0 := S, and let 
n := S0 + · · · + Sn. By the strong Markov property, (
n)n∈N is a renewal
process, and, for each n ∈ N, the post
n-process (
n+1,
n+2, . . . , (X
n+t , V
n+t )t≥0) is in-
dependent of (
0, . . . , 
n) and is equally distributed for all n ≥ 1. This means that (Xt , Vt )t≥0
is a regenerative process with regeneration points (
n)n∈N and cycle length corresponding to
the length of an excursion. The result is immediate from [1, Theorem 1.2, Chapter VI] and
Lemma 2.1.

Lemma 2.5. Define, for a nonnegative function g : {−1,+1} → R and λ ∈ R,

F :=
∫ S

0
eλXs g(Vs) ds.
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Then, conditionally on (X0, V0) = (0,+1), we have

F
L= (g(1)+ g(−1))

∫ E

0
eλy dy +

N∑
i=1

∫ S(i)

0
eλ(EU(i,N)+X

(i)
s )g(V (i)s ) ds,

where

• (Ui)i≥0 is a sequence of independent uniformly distributed random variables on [0, 1],
and, for eachn≥ 1, (U(1,n), U(2,n), . . . , U(n,n)) is the reordered sampling of (U1, U2, . . . ,

Un);

• (X
(i)
t , V

(i)
t )0≤t≤S(i) is a sequence of independent excursions;

• E ∼ E(b), L(N | E = x) = P (ax), and the pair (E,N) is independent of all the
previous random variables.

Proof. The argument has already been given in the first part of the proof of Lemma 2.1. We
just note that the N independent embedded excursions therein occur at the heights (EU(N,N),
EU(N−1,N), . . . , EU(1,N)) (see Proposition 2.1).

We are now ready to compute ν, which is the first point in Theorem 1.2. Since

E

(∫ S(i)

0
eλ(EU(i,N)+X

(i)
s )g(V (i)s ) ds

∣∣∣∣ E,N, (Ui)i≥1

)
= eλEU(i,N) E(0,+1)(F ),

we obtain

E(0,+1)(F ) = E

(
g(1)+ g(−1)

λ
(eλE − 1)+ E(0,+1)(F )

N∑
i=1

eλEU(i,N)
)
.

We have, for any x > 0 and k ∈ N,

k∑
i=1

E(eλxU(i,k) ) = E

( k∑
i=1

eλxUi
)

= k

λx
(eλx − 1),

and then

E

( N∑
i=1

eλEU(i,N)
∣∣∣∣ E

)
= E

(
N

λE
(eλE − 1)

∣∣∣∣ E
)

= a

λ
(eλE − 1).

In conclusion, we have

E(0,+1)(F ) = g(1)+ g(−1)+ a E(0,+1)(F )

λ

(
b

b − λ
− 1

)

= g(1)+ g(−1)

b − λ
+ a

b − λ
E(0,+1)(F ),

which provides the expression of E(0,+1)(F ) for any λ < b − a:

E(0,+1)(F ) = g(1)+ g(−1)

b − a − λ
.
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On the other hand, Lemma 2.1 ensures that E(0,+1)(S) = 2/(b − a), from where we obtain, for
any λ < b − a,

∫
R×{−1,+1}

eλxg(v)ν(dx, dv) = b − a

b − a − λ

g(1)+ g(−1)

2
.

In other words, the invariant measure of (X, V ) is ν = E(b − a)⊗ 1
2 (δ−1 + δ+1).

3. The coalescent time for the reflected process

3.1. The crossing time

We will first construct a coupling (X, V, X̃, Ṽ ) starting at (x, v, x̃, ṽ) until a time Tc =
Tc(x, v, x̃, ṽ), called the crossing time, at which XTc = X̃Tc . In doing so, we will also
stochastically control Tc and XTc . The coupling will consist in making the two velocities
equal for as long as possible. Assume without loss of generality that x̃ < x. Plainly, if V and
Ṽ are different, we let the two processes evolve independently until one of them performs a
jump or until X − X̃ hits 0. At that time, if X �= X̃, the two velocities are equal and we set
them equal until X̃ hits the origin. During this period the paths of X and X̃ are parallel and, at
the hitting time of the origin, V and Ṽ are once again different. We then iterate this procedure
until Tc. Note that X̃ is smaller than X on [0, Tc). We now fully detail the construction.

3.1.1. The main initial configuration. Assume first that (X0, V0, X̃0, Ṽ0) = (x,−1, 0,+1).
The coupling works as follows. With rate a, V flips to +1 and with rate b, Ṽ flips to −1;
if neither of these two events occurs before time x/2 then

Xx/2 = X̃x/2 and Vx/2 = −1 = −Ṽx/2.

If a jump occurs at time τ1 < x/2 then (Xτ1 , Vτ1 , X̃τ1 , Ṽτ1) = (x − τ1, U, τ1, U), where U =
−1 with probability b/(a + b) (Ṽ jumps before V ) and U = 1 with probability a/(a + b).
Then, V and Ṽ are chosen equal until X̃ hits 0, i.e. during a time S(τ1,U) and

(Xτ1+S(τ1,U) , Vτ1+S(τ1,U) , X̃τ1+S(τ1,U) , Ṽτ1+S(τ1,U) ) = (x − 2τ1,−1, 0,+1).

Note that S(τ1,+1)
L= S + S(τ1,−1), where S is the length of an excursion independent of S(τ1,−1).

In conclusion, if a jump occurs at time τ1 < x/2 then the full process (X, V, X̃, Ṽ ) is equal to
(x−2τ1,−1, 0,+1) at time τ1 + S(τ1,−1) + BS, where B ∼ B(a/(a+b)). We have to iterate
this procedure until X − X̃ hits 0.

Now consider a Poisson process (N(t))t≥0 with intensity a + b. We denote by (Tn)n≥0 its
jump times (with T0 = 0), and define (τi)i≥1 by τi = Ti − Ti−1 for i ≥ 1. The number of
return times at 0 for X̃ before Tc is distributed as N(x/2), and the length of the periods when
(X, V ) and (X̃, Ṽ ) are independent are given by τ1, τ2, . . . , τN(x/2) and x/2 − TN(x/2). Then,

Tc(x,−1, 0,+1)
L=
N(x/2)∑
i=1

(τi + S(τi ,−1) + BiS
(i))+ x

2
− TN(x/2),

where the law of (S(i))i≥1 is that of the length of an excursion, the (S(τi ,−1))i≥1 are the hitting
times of 0 starting from (τi)i≥1, the (Bi)i≥1 have the law B(a/(a + b)), and all these random
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variables are independent. Since TN(x/2) = τ1 + τ2 + · · · + τN(x/2), Lemma 2.3 ensures that

Tc(x,−1, 0,+1)
L= x

2
+ S(TN(x/2),−1) +

N(x/2)∑
i=1

(BiS
(i))

≤st
1
2x + S(x/2,−1) +�(x), (3.1)

where

�(x) :L=
N(x/2)∑
i=1

(BiS
(i)).

Note that�(u+ v)
L= �(u)+�(v), where�(u) and�(v) are independent, and that�(u)

distributes as the sum of the lengths of N independent excursions, with N ∼ P (au/2).

3.1.2. Other configurations. We next construct the paths until Tc(x, v, x̃, ṽ) and control this
time irrespective of the initial velocities. Without loss of generality, we can assume that x ≥ x̃.
We just have to construct the paths until (X, V, X̃, Ṽ ) reaches a state (u,−1, 0,+1), and then
make use of the results in the previous section.

Assume first that v = ṽ = U ∈ {−1,+1}. We have to construct a trajectory of (X̃, Ṽ )
until S(x̃,U), the hitting time of 0. Define, for any t ∈ [0, S(x̃,U)), Vt = Ṽt , Xt = X̃t − x̃ + x,
VS(x̃,U) = −1, and XS(x̃,U) = x − x̃. Using Lemma 2.3 and (3.1), we have

Tc(x, U, x̃, U)
L= S(x̃,U) + Tc(x − x̃,−1, 0,+1)
L= S 1{U=+1} +S(x̃,−1) + Tc(x − x̃,−1, 0,+1)

≤st S 1{U=+1} +x − x̃

2
+ S((x+x̃)/2,−1) +�(x − x̃).

Assume now that v = 1 = −ṽ. The processes (X, V ) and (X̃, Ṽ ) are chosen independent
of each other until the first jump time. This is equal to E = (E1 ∧ x̃)∧E2, where E1 ∼ E(a),
E2 ∼ E(b), and (XE, VE, X̃E, Ṽ ) = (x + E,U, x̃ − E,U)withU ∈ {−1,+1}. In particular,
we have

XE + X̃E

2
= x + x̃

2
and

XE − X̃E

2
= x − x̃

2
+ E.

Since, for any y, ỹ ≥ 0, Tc(y,−1, ỹ,−1) ≤st Tc(y, 1, ỹ, 1), this ensures that

Tc(x,+1, x̃,−1) ≤st E + Tc(x + E,+1, x̃ − E,+1)

≤st E + S + x − x̃

2
+ E + S((x+x̃)/2,−1) +�(x − x̃ + 2E)

≤st 2E +�(2E)+ S + x − x̃

2
+ S((x+x̃)/2,−1) +�(x − x̃).

If v = −1 = −ṽ, we proceed as in the previous case. With the same notation,

XE + X̃E

2
= x + x̃

2
and

|XE − X̃E |
2

≤ x − x̃

2
+ E.

We then get the same upper bound as before. In conclusion, we have established the following
upper bound for Tc.
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Lemma 3.1. For any x ≥ x̃ and v, ṽ ∈ {−1,+1},

Tc(x, v, x̃, ṽ) ≤st 2E +�(2E)+ S + S((x+x̃)/2,−1) + x − x̃

2
+�(x − x̃),

with E = F ∧ x̃, where F is an exponential variable with parameter a + b and �(u) is the
sum of the lengths of N independent excursions, with N ∼ P (au/2). Moreover,

XTc = X̃Tc ≤ x − x̃

2
+ E and VTc = −ṼTc .

3.2. A simple way to stick the paths

We now assume that (X0, V0) = (x, 1) and (X̃0, Ṽ0) = (x,−1), and construct two paths
which are equal after a coalescent time Tcc(x). The idea is to use the same exponential clocks
for both paths but in a different order. We explain the generic step of this construction using
two given independent random variables, R andQ, with respective laws E(a) and E(b). There
are two possible situations.

Case 1: R < x. In this case, defining T = R +Q,

Vt =

⎧⎪⎨
⎪⎩

+1 if t ∈ [0,Q),
−1 if t ∈ [Q,T ),
+1 if t = T ,

and Ṽt =

⎧⎪⎨
⎪⎩

−1 if t ∈ [0, R),
+1 if t ∈ [R, T ),
−1 if t = T ,

(3.2)

we have XT = x +Q− R = X̃T and VT = 1 = −ṼT .

Case 2: R ≥ x. In this case, defining T = x +Q,

Vt =
{

+1 if t ∈ [0,Q),
−1 if t ∈ [Q,T ), and Ṽt =

⎧⎪⎨
⎪⎩

−1 if t ∈ [0, x),
+1 if t ∈ [x, T ),
−1 if t = T ,

(3.3)

we haveXT = Q = X̃T andVT = ṼT = −1. In this case (X, V ) and (X̃, Ṽ ) are coupled
at time T .

We now construct the paths. We take an i.i.d. sequence of independent pairs of exponential
variables (Rn,Qn) with Rn ∼ E(a) and Qn ∼ E(b), and inductively define τ0 = 0 and
τn+1 = τn+Tn, withTn defined from (Rn,Qn) as above until case 2 occurs. At each iteration,

• if X̃ does not hit the origin in the interval [τn, τn+1] (case 1), we set

Xτn+1 = X̃τn+1 and Vτn+1 = 1 = −Ṽτn+1;
• if X̃ hits the origin in the interval [τn, τn+1] (case 2), we set

Xτn+1 = X̃τn+1 , Vτn+1 = Ṽτn+1 = −1, and Tcc(x) := τn+1.

By construction, Xt ≥ X̃t for any t ≥ 0 and the coupling time Tcc(x) is smaller than the
hitting time of the origin time ofX (see Figure 3). In conclusion, we have shown the following
result.

Lemma 3.2. There exists a coupling of (X, V ) and (X̃, Ṽ ) starting respectively from (x, 1)
and (x,−1) such that the coalescent time Tcc(x) is (stochastically) smaller than S(x,+1) and

XS(x,+1) = X̃S(x,+1) = 0 and VS(x,+1) = ṼS(x,+1) = 1.
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Figure 3: Two paths starting at x = 3 with different velocities until they stick together.

3.3. The Laplace transform of the coupling time

We now gather the previous estimates to control the Laplace transform of the coupling time
of the two paths starting respectively from (x, v) and (x̃, ṽ).

Proposition 3.1. For any x ≥ x̃ ≥ 0 and any v, ṽ ∈ {−1,+1}, there exists a coalescent
coupling such that the coupling time T (x, v, x̃, ṽ) is stochastically smaller than a random
variable

T̄ (x, x̃)
L= F +�(2F)+ S(F,−1) + S + S̃ + S(x,−1) + x + x̃

2
+�(x − x̃), (3.4)

where F ∼ E(a + b), S and S̃ are excursion lengths, and all the random variables are
independent. Furthermore, for any λ ∈ [0, λc],

E(eλT (x,v,x̃,ṽ)) ≤ (a + b)ψ(λ)2

2a + b − λ− aψ(λ)− c(λ)
exp

{
xc(λ)+ x + x̃

2
λ+ x − x̃

2
a(ψ(λ)− 1)

}
.

Finally, a realization of T̄ (x, x̃) is the first hitting time at 0 of X after Tc(x, v, x̃, ṽ) +
Tcc(XTc(x,v,x̃,ṽ)), and then XT̄ (x,x̃) = X̃T̄ (x,x̃) = 0 and VT̄ (x,x̃) = ṼT̄ (x,x̃) = 1 hold.

Proof. From the previous sections, we can construct a coalescent coupling with a coalescent
time T such that

T (x, v, x̃, ṽ)
L= Tc(x, v, x̃, ṽ)+ Tcc(XTc(x,v,x̃,ṽ)).

Thanks to Lemmas 2.3, 3.1, and 3.2, we obtain

T (x, v, x̃, ṽ) ≤st 2E +�(2E)+ S + S((x+x̃)/2,−1) + x − x̃

2
+ S((x−x̃)/2+E,+1) +�(x − x̃)

≤st 2E +�(2E)+ S(E,−1) + S + S̃ + S(x,−1) + x − x̃

2
+�(x − x̃),

where S̃ is an independent copy of S and all the random variables on the right-hand side are
independent. Recall that E is equal to F ∧ x̃, where F is a random variable of law E(a + b).
In particular, 2E ≤st F + x̃ and then

T (x, v, x̃, ṽ) ≤st T̄ (x, x̃),
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where T̄ (x, x̃) is given by (3.4). Finally, for any λ ≤ λc, we have

λ+ a(ψ(λ)− 1)+ c(λ) ≤ λc + a(ψ(λc)− 1)+ c(λc) = b − a < a + b.

This ensures that, for any λ ≤ λc,

E(eλF+λ�(2F)+λS(F,−1) ) = E(e(λ+a(ψ(λ)−1)+c(λ))F ) = a + b

2a + b − λ− aψ(λ)− c(λ)
.

Using the independence of the random variables provides the desired upper bound.

Corollary 3.1. In particular, if x̃ ≤ x,

E(eλcT (x,v,x̃,ṽ)) ≤ (a + b)b

2a2 er(a,b)x,

where λc is given in (2.2) and

r(a, b) = 3(b − a)

4
∨ (b − √

ab).

Proof. Let us choose λ = λc. Since

λc = (
√
b − √

a)2

2
, c(λc) = b − a

2
, and ψ(λc) =

√
b

a
,

we obtain

xc(λc)+ x + x̃

2
λc + x − x̃

2
a(ψ(λc)− 1) =

√
b − √

a

4
(3x(

√
b + √

a)+ x̃(
√
b − 3

√
a)).

If x is fixed then the right-hand side is a linear function of x̃ ∈ [0, x] and it is bounded above
by the maximum of its values at x̃ ∈ {0, x}. In other words,

xc(λ)+ x + x̃

2
λ+ x − x̃

2
a(ψ(λ)− 1) ≤ 3

4
(b − a) ∨ (b − √

ab),

which concludes the proof.

Proof of Theorem 1.2. The invariant measure was determined in Section 2. The proof of the
other assertions is immediate using inequality (1.5) and the estimate provided in Corollary 3.1.

4. The unreflected process

We finally sketch the proof of Theorem 1.1. The invariant measure is obtained by a similar
regeneration argument given in the proof of Lemma 2.4, using the obvious relation between
excursions away from (0,+1) of the reflected and unreflected processes, and Lemma 2.5. The
sketch of the proof of bound (1.2) is as follows.

• Construct a coupling (X, V, X̃, Ṽ ) starting from (x, v, x̃, ṽ) until time T̄ (x, x̃), where

x = |y|, v = sgn(y)w, x̃ = |ỹ|, and ṽ = sgn(ỹ)w̃,

and note that XT̄ (x,x̃) = X̃T̄ (x,x̃) = 0 (see Proposition 3.1).
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• Construct (Y,W, Ỹ , W̃ ) on [0, T̄ (x, x̃)] from (X, V, X̃, W̃ ) and (y,w, ỹ, w̃) (see Sec-
tion 1.2). Note that YT̄ (x,x̃) = ỸT̄ (x,x̃) = 0, but, in general, WT̄ (x,x̃) = −W̃T̄ (x,x̃).

• Wait for the first jump time E ∼ E(2b) of (Y,W, Ỹ , W̃ ) (as the minimum of two
independent random variables of law E(b)).

• Construct a coalescent coupling (Y,W, Ỹ , W̃ ) starting from (E,w,−E,w) with a
coupling time smaller than the hitting time of the origin when starting at (E,+1).

We just give the details of the last point, as the others are clear. The construction is similar to
that of Tcc(x) for the reflected process. Assume that y = −ỹ > 0 and w = w̃ = +1, and
consider two independent random variables (R,Q) with respective laws E(a) and E(b). Then
we may have the following cases.

Case 1: R < y. In this case, defining T = R +Q,

W̃t =

⎧⎪⎨
⎪⎩

+1 if t ∈ [0, R),
−1 if t ∈ [R, T ),
+1 if t = T ,

and Wt =

⎧⎪⎨
⎪⎩

+1 if t ∈ [0,Q),
−1 if t ∈ [Q,T ),
+1 if t = T ,

we have YT = y +Q− R = −ỸT and WT = W̃T = 1.

Case 2: R ≥ y. In this case, defining T = y +Q,

W̃t =

⎧⎪⎨
⎪⎩

+1 if t ∈ [0, y),
+1 if t ∈ [y, T ),
−1 if t = T ,

and Wt =
{

+1 if t ∈ [0,Q),
−1 if t ∈ [Q,T ),

we have YT = ỸT andWT = W̃T = −1. In this case, (Y,W) and (Ỹ , W̃ ) are coupled at
time T .

The algorithm to construct the paths (Y,W, Ỹ , W̃ ) consists in repeating the above construction
until case 2 occurs for the first time. This will happen before Y reaches the origin. From this
scheme and previous work on the process (X, V ), the coupling time S(y,w, ỹ, w̃) satisfies

S(y,w, ỹ, w̃) ≤st T̄ (|y|, |ỹ|)+ E + S(E,+1)
L= T̄ (|y|, |ỹ|)+ E + S + S(E,−1).

In conclusion,

E(eλS(y,w,ỹ,w̃)) ≤ E(eλT̄ (|y|,|ỹ|))ψ(λ) 2b

2b − λ− c(λ)
.

In particular,

E(eλcS(y,w,ỹ,w̃)) ≤
(
b

a

)5/2
a + b√
ab + b

er(a,b)x,

where r(a, b) = 3(b − a)/4 ∨ (b − √
ab). Using (1.5) completes the proof.

Acknowledgements

J. Fontbona acknowledges financial support from Fondecyt 1110923 and Basal-Conicyt, and
the invitation and support of IRMAR (Université de Rennes I). F. Malrieu acknowledges finan-
cial support from ANR EVOL. All three authors thank an anonymous referee for suggestions
that improved the presentation of an earlier version of this paper.

https://doi.org/10.1239/aap/1354716586 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716586


994 J. FONTBONA ET AL.

References

[1] Asmussen, S. (2003). Applied Probability and Queues (Appl. Math. 51), 2nd edn. Springer, New York.
[2] Bakry, D., Cattiaux, P. and Guillin, A. (2008). Rate of convergence for ergodic continuous Markov processes:

Lyapunov versus Poincaré. J. Funct. Anal. 254, 727–759.
[3] Costa, O. L. V. and Dufour, F. (2008). Stability and ergodicity of piecewise deterministic Markov processes.

SIAM J. Control Optimization 47, 1053–1077.
[4] Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic

models. J. R. Statist. Soc. B 46, 353–388.
[5] Dufour, F. and Costa, O. L. V. (1999). Stability of piecewise-deterministic Markov processes. SIAM J. Control

Optimization 37, 1483–1502.
[6] Erban, R. and Othmer, H. G. (2004/05). From individual to collective behavior in bacterial chemotaxis. SIAM

J. Appl. Math. 65, 361–391.
[7] Erban, R. and Othmer, H. G. (2005). From signal transduction to spatial pattern formation in E. coli: a

paradigm for multiscale modeling in biology. Multiscale Model. Simul. 3, 362–394.
[8] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. John Wiley, New York.
[9] Herrmann, S. and Vallois, P. (2010). From persistent random walk to the telegraph noise. Stoch. Dynamics

10, 161–196.
[10] Jacobsen, M. (2006). Point Process Theory and Applications. Birkhäuser, Boston, MA.
[11] Kac, M. (1974). A stochastic model related to the telegrapher’s equation. Rocky Mountain J. Math. 4, 497–509.
[12] Lindvall, T. (1992). Lectures on the Coupling Method. John Wiley, New York.
[13] Lund, R. B., Meyn, S. P. and Tweedie, R. L. (1996). Computable exponential convergence rates for

stochastically ordered Markov processes. Ann. Appl. Prob. 6, 218–237.
[14] Meyn, S. and Tweedie, R. L. (1993). Stability of Markovian processes. III. Foster-Lyapunov criteria for

continuous-time processes. Adv. Appl. Prob. 25, 518–548.
[15] Meyn, S. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability, 2nd edn. Cambridge University

Press.
[16] Norris, J. R. (1997). Markov Chains (Camb. Ser. Statist. Prob. Math. 2). Cambridge University Press.
[17] Revuz, D. and Yor, M. (1994). Continuous Martingales and Brownian Motion (Fundamental Principles Math.

Sci. 293), 2nd edn. Springer, Berlin.
[18] Robert, P. (2003). Stochastic Networks and Queues (Appl. Math. 52). Springer, Berlin.
[19] Roberts, G. O. and Rosenthal, J. S. (1996). Quantitative bounds for convergence rates of continuous time

Markov processes. Electron. J. Prob. 1, 21pp.
[20] Rousset, M. and Samaey, G. (2011). Simulating individual-based models of bacterial chemotaxis with

asymptotic variance reduction. Preprint. Available at http://arxiv.org/abs/1111.5321v1.
[21] Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Springer, New York.

https://doi.org/10.1239/aap/1354716586 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716586

	1 Introduction
	1.1 The model and main results
	1.2 Preliminaries 

	2 The invariant measure of the reflected process
	2.1 Excursion and hitting times
	2.2 The invariant measure

	3 The coalescent time for the reflected process
	3.1 The crossing time
	3.1.1 The main initial configuration.
	3.1.2 Other configurations.

	3.2 A simple way to stick the paths
	3.3 The Laplace transform of the coupling time

	4 The unreflected process
	Acknowledgements
	References

