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Abstract

Ziggurat is a meta-language system that permits programmers to develop Scheme-like macros

for languages with nontrivial static semantics, such as C or Java (suitably encoded in an

S-expression concrete syntax). Ziggurat permits language designers to construct ‘towers’ of

language levels with macros; each level in the tower may have its own static semantics, such as

type systems or flow analyses. Crucially, the static semantics of the languages at two adjacent

levels in the tower can be connected, allowing improved reasoning power at a higher level to

be reflected down to the static semantics of the language level below. We demonstrate the

utility of the Ziggurat framework by implementing higher level language facilities as macros

on top of an assembly language, utilizing static semantics such as termination analysis, a

polymorphic type system and higher order flow analysis.

1 Models and design

Designers work with models of the artifacts they propose to construct: architects

work with building schematics, antenna engineers with pole plots, electrical engineers

with circuit diagrams, chip designers with gate diagrams, financial engineers with

multivariate CAPM portfolio models and so forth. The power of a model lies in

its ability to provide predictive power – it tells us about critical properties of the

artifact while we can cheaply alter it ‘on paper’, giving us the freedom to explore

possibilities at design time with little commitment.

Models, themselves, are created and manipulated in some form of constraining

framework, which defines the form of the model. The meta-task of defining these

frameworks is a key enabler to doing good design: a good framework makes

the design task clear and straightforward; a poor one can complicate the task or

unnecessarily limit the space of possibilities.

Design frameworks have multiple important properties.

• Expressive range: Does it allow us to describe the full range of artifacts we

wish to construct? (We might not, for example, be able even to write down

asynchronous-logic circuits using a notation designed for globally clocked

gates.)

• Expressive constraint: Does it prevent us from erroneously specifying artifacts

with undesirable properties? (For example, it’s impossible for a program

1 This material is based upon work supported in part by the National Science Foundation’s Science of
Design program under Grant No. 0757025 and by the Microsoft Corporation.
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specified as a regular expression to become stuck in an infinite loop.) In other

words, a model framework is as important for what it does not allow us to

say as for what it does. Restricting the framework is a cognitively focussing

mechanism that channels us toward good designs – if, that is, our framework

is well chosen.

• Analysis: Can a human or an automatic tool reason about properties of the

specified artifact? (How much load can the bridge carry? How fast can the

airplane fly? Can we generate photo-realistic pictures of the building’s exterior

at dusk?)

• Abstraction: Does the model allow us to suppress and delay parts of the

specification deemed to be inessential to the current stage of design? (Which

processor registers will hold which values? What physical transport will carry

the protocol’s packets? Will the amplifier handle American or European

voltage standards?)

Abstraction has an interaction with analysis in the standard tradeoff between

model detail and analytic power. If, for example, we wish to design an electronic

circuit that will function at microwave frequency, we cannot use the standard

transistor model, but must instead employ the more complex Ebers–Moll model

which captures, among other things, the parasitic capacitances that become relevant

at very high frequencies. The extra complexity necessary to capture the behaviour

of transistors operating in the microwave regime comes with cost: it’s much harder

to analyse the circuit and make predictions about it.

What this means is that when we design circuits to function at audio frequencies,

we do not want to use the more ‘accurate’ Ebers–Moll model, for the same reason

we do not try to model the orbit of the planets using quantum mechanics. The

simpler, less accurate model gives us better answers. Thus, the ability to choose a

model that abstracts away properties inessential to the intended task is an important

source of model clarity and analytic power.

2 Meta-design of specialised notations

Many design tasks, software engineering among them, function primarily with text-

based or language-based design frameworks. A design framework in one of these

domains, then, is a language or set of languages whose syntax and semantics span

the relevant design spaces. All the criteria discussed above apply to the design of

these design frameworks.

Software engineering is a particularly interesting text-based design task, because

the boundary between the model and artifact is (usefully) vague: software is a

domain where the map is the territory. A C program can be considered both a final

product as well as a ‘partial specification’ for the actual machine-code program that

it represents. In turn, we could say the same thing of the machine-code program,

given different implementations of the same instruction-set architecture (e.g., a super-

scalar IA32 processor from Intel, versus a deeply pipelined implementation from

AMD, versus a system that does binary translation of the IA32 machine code to
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a Transmeta executable). This indefinite recursion is another sign of model/artifact

identification.

Language designers – that is, people whose job is designing the design framework

itself – exploit this identification of the model and artifact. For example, a type

system can be considered an auxiliary, redundant, coarse-grained behavioural model

of the program. It bounds the behaviour of the program by ruling out possible bad

actions (run-time type errors). By serving as a redundant specification, it acts to

double-check the rest of the program: if the types and the code get out of sync,

an error is revealed. So, the types in a program are simultaneously a part of the

artifact – the program – as well as annotations modelling important properties of

the artifact.

The basic structure of a language-based design framework is a syntax specification

and an associated semantics assigning meaning to forms from the language – that

is, it connects the syntactic forms (text strings or trees) to the world of artifacts

they describe (bridges, computations, airplanes, etc.). The meaning of a design is

the thing it models or describes or specifies. The semantics is usually provided in

multiple phases: a ‘static’ semantics that describes properties of the artifact that can

be determined purely from the specification, and a ‘dynamic’ semantics describing

properties that may escape static determination due to the lack of an effective

procedure to compute them, or dependence on the external environment. These are

concepts and terms taken from the field of programming languages, but they apply

to other design frameworks as well: some examples are the description of images

(Abelson et al., 1985), 3D objects (ISO, 2004), electronic circuits, and financial

models (Peyton Jones et al., 2000).

To take the example of a financial model for a stock portfolio or equity option,

its ‘static semantics’ are necessarily described in terms of statistical and probabilistic

properties, since we do not know at analysis time the future of the stock market. A

portfolio’s ‘dynamic semantics’ are determined by external events in the real world –

that is, what the given portfolio will be worth at some point in time, or what actual

value a call option will yield six months from now. The static semantics helps guide

financial advisors as they construct portfolios.

The ability to choose an appropriate framework, one that hides the inessential,

eliminates the undesirable, constrains and focusses one’s thinking toward good

designs, and allows appropriate reasoning about the artifact being designed, is a

critically important part of the design process.

In this article, we will explore a tool, Ziggurat, that makes it possible for engineers

to engage in meta-design – that is, to design specialised notations to aid the design

process. The notation-design process happens by means of what we call ‘language

towers’.

Our goal is to provide a system that will drastically reduce the difficulty of

constructing useful text-based design frameworks. While our expertise lies within

the domain of software, we believe this technology could be applied to other

areas as well – any design domain that can profit by having a text-based design

notation that permits useful formal, static analysis of the design as expressed in this

notation.
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The remainder of this paper describes the Ziggurat meta-design framework. We

begin (Section 3) by explaining the concept of a ‘language tower’; then (Section 4)

outline how this topic has been addressed with Scheme macros, and discuss how this

solution does not by itself generalise to other languages. Next, we give a high-level

overview (Section 5) of how a language designer can use Ziggurat to construct a

language tower that has associated static semantics. We then introduce (Section 6)

the key model of computation behind Ziggurat, called lazy delegation. The next two

sections discuss how Ziggurat is used to implement languages: how it is used to

define an abstract syntax tree (Section 7), and how one parses terms with Ziggurat

(Section 8). We then begin an extended example (Section 9) by designing an assembly

language with Ziggurat. With our language defined, we demonstrate how to perform

static analyses on this language: termination analysis (Section 10) and a simple

type system (Section 11). In both cases, the static semantics of the language can

be extended to syntactic extensions created with Ziggurat. The next few sections

build a tower up from this language, beginning with one-way CPS function calls

(Section 12) and an associated procedural control-flow analysis (Section 13), then

introducing closures (Section 14) and direct-style functions (Section 15). We conclude

by discussing possible variations on the Ziggurat design and related and future work.

3 Language towers

The notion of a language tower arises when we are able to use a higher level language

to describe an artifact expressible in some lower level notation by specifying a

relationship between the semantics of the two languages. We typically specify the

relationship between the two languages by providing a translation from the higher

level to the lower level one. Having done so, we can shift to performing design in

the high-level language, yet still realise these artifacts in the lower level framework

by means of translation.

3.1 Specialised notations as sources of understanding

The use of language towers allows us to express a design in a specialised notation.

These notations are a source of information that helps us to understand the system

we are designing. When we think of extending a language, we frequently think of

adding new features, in the sense that C++ extends C. However, it is far more

frequent to adopt a specialised notation that removes features. This is because of a

fundamental tradeoff between the power of a programming language and our ability

to analyse computations expressed in that language – restricting the expressiveness

or power of the notation usually increases our ability to statically analyse the

programs so expressed, and vice versa.

Consider, for example, the great success of regular expressions as a specialised

notation. There’s nothing we can do with regular expressions that we cannot do with

C or some other Turing-complete language. A major benefit of regular expressions

lies precisely in their lack of power. Because they are so restricted, there are almost

no questions one can ask about a regular expression or its associated automaton that
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cannot be answered. When we shift to Turing-complete languages, the situation is

much worse: there are almost no questions we can ask that we can answer, in general.

Program analyses for Turing-complete languages are always limited approximations

that skate along the edge of intractability (if we’re lucky) or uncomputability (if

we’re not).

When we can express a desired computation in a restricted notation such as regular

expressions, it’s almost always to our benefit to do so. It’s easier for automatic tools

to analyse the computation; it’s easier for a human to write the program and get

it right; it’s easier for a human to look at the program and understand it. These

benefits – clarity of expression and power of analysis – are related, which is one of

the key reasons why domain-specific languages have become a focus of interest in

recent years.

3.2 Connecting across layers of the tower

One of the key desiderata in the design of a system for constructing language towers

is providing a way to relate the static semantics of adjacent layers in the tower. This

enables us to project the increased analytic power we have for terms in the higher

layer down to their corresponding translations in the lower layer.

Consider our regular-expression example. Suppose our regular expressions are

given dynamic semantics by translating them into C code that implements the

corresponding finite-state automata. Suppose, further, that we have a static analysis

for general-purpose C code that determines if a given C statement is guaranteed

to terminate. Since such an analysis is necessarily approximate, we clearly would

be better off if we could do the analysis at the regular-expression level, where we

can do a perfectly precise job (since all regular expressions represent terminating

computations), and then map the answer down to the underlying C layer of the

language tower.

4 Scheme macros

The most successful system for extending syntax in use today is the Lisp family’s

macro facility, including Scheme’s ‘hygienic’ macros. It is an everyday task for

Scheme and Lisp programmers to create small, domain-specific languages to handle

database queries, string searches, Unix shell scripts, VLSI design or web-based service

queries, when programming in these domains.

Our goal, then, is to take Scheme’s syntax-extension facility, and adapt it for

use as a front end for other languages, such as Java, Standard ML, C or even

assembly language. We’ll commence by exploring the basic elements of Scheme

macro technology, and then move to the issues that are raised when we attempt to

apply it in other contexts.

4.1 Macros and S-expression languages

Scheme’s concrete syntax is unusual in that it is not defined in terms of character

strings, but in terms of trees, that is, list structure whose leaves are symbols and

https://doi.org/10.1017/S0956796808006928 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006928


712 David Fisher and Olin Shivers

literals such as integers, strings and booleans. These trees, and their sub-trees,

correspond to Scheme expressions. Thus, we describe the concrete syntax of the

Scheme conditional as ‘a four-element list whose first element is the symbol if,

and whose other three elements are the test, consequent and alternate expressions,

respectively’.

This form of concrete syntax is often called S-expressions or sexps. In Scheme’s

syntax, symbols represent program identifiers and literals represent constants, but

there are two possibilities for lists. If the first element of a list is a keyword (such

as if or lambda), then the keyword specifies the syntactic form. Otherwise, the list

is interpreted as a function call.

Similarly, we can define other, completely different languages using a sexp-based

concrete syntax. For example, we could define a regular-expression notation where

(: bol ; beginning of line

(* (| " " "\t")) ; zero or more space or tab chars

";" ; semicolon char

(* any) ; zero or more chars of any kind

eol) ; end of line

represents, not Scheme code, but a regular expression that matches, in sequence,

the beginning of the line, zero or more occurrences of a space or tab character, a

semi-colon, and then zero or more characters up to the end of the line. We might,

alternately, define an S-expression grammar for Unix process notation, so that

(| (gunzip -c notes.txt.gz)

(spell)

(lpr -Pgaugin))

creates a three-process pipeline that uncompresses a file, spell checks it and sends

the spelling errors to the printer.

The macro facility in Scheme and Lisp permit the programmer to define new

keyword-marked syntactic forms. The new keyword is tagged with code that is

executed by the compiler: when the compiler encounters an expression of the form

(keyword subform1 . . .)

it passes the entire expression (as a tree) to the keyword’s associated code, which is

responsible for translating the entire form into some other expression. This is the

macro-expansion step; it is repeated as necessary until the entire program is nothing

but core Lisp or Scheme syntax.

We can use this facility simply to provide a new form in the language. For example,

we might define an ‘arithmetic if ’ form that branches one of three ways depending

on the sign of its first expression by tagging the keyword arith-if with code to

translate

(arith-if exp neg-arm zero-arm pos-arm)

into
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(let ((tmp exp))

(if (< tmp 0) neg-arm

(if (= tmp 0) zero-arm

pos-arm)))

More ambitiously, we can use Scheme’s macro facility to embed an entire language

within Scheme, by arranging for the macro to be a compiler that translates terms

in the embedded language to an equivalent term in Scheme. For example, we might

have a macro rx that translates regular expressions written in an S-expression

grammar (as in our example above) to Scheme code implementing a string-matcher

for that regular expression:

(let ((matcher (rx regexp-term)))

. . . (matcher str) . . .)

This is how we can embed arbitrary domain-specific languages within Scheme or

Lisp – assuming that they are represented using an S-expression (or tree-based)

concrete grammar.

4.2 Scheme macros, hygiene and lexical scope

One of the key features of the Scheme macro facility (which is not found in the

older Lisp macro systems) is that Scheme macros are ‘hygienic’, in that they respect

Scheme’s lexical scope. The notion of lexical scope has a subtle interaction with

macros; in particular, it has two main implications.

First, suppose we declare a macro keyword in a Scheme program, with, for

example, the Scheme form

(let-syntax ((keyword macro-definition))

body)

In the body of the let-syntax form, occurrences of the identifier keyword refer to

the defined macro; the syntax binding shadows any meaning that keyword might

have outside the let-syntax form. Similarly, forms occurring within body that

themselves bind the identifier keyword will lexically shadow the macro definition.

Note that keyword can be any identifier, including one that is bound elsewhere as a

regular variable, or even one that, at the top level of the program, is used to mark

core language forms, such as if or lambda: in Scheme, there are no ‘reserved’ words

at all; there are only identifiers with lexical scope.

Second, note that our macro has two significant lexical contexts: the one pertaining

at its point of definition, and the one pertaining at its point of use. In our example

above, if our keyword macro is used somewhere inside the body expression, the

lexical context at that point may be quite different from the context where the

keyword/macro-definition binding was made.

When the macro executes, it expands into Scheme code that itself contains

identifiers. Should these identifiers be resolved, in turn, using their meaning at

the macro’s point of definition, or using their meaning at the macro’s point of use?

In fact, we need both. Consider our arith-if macro defined above. Referring back
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to its expansion, we can see that the macro produces a sexp tree containing the

identifiers let, tmp, if, <, and =, plus all the identifiers occurring in the sub-trees exp,

neg-arm , zero-arm and pos-arm . The macro writer intended for all the identifiers in

the first part of this list to mean what they mean at the macro’s point of definition,

which almost certainly includes these meanings:

• let should mean the keyword for Scheme’s basic variable-binding form;

• if should mean the keyword for Scheme’s core conditional form; while

• < and = should mean the top-level variables bound to Scheme’s numeric-

comparison functions.

It would break the macro if bindings appearing in body were accidentally to shadow

these bindings. That is, it would be a bad thing if a binding of tmp, or <, or if

occurring in body caused arith-if to break, e.g.:

(let-syntax ((arith-if macro-definition))

. . .

(let ((< gregorian-date-less-than))

. . .

(arith-if (* x y)

(- x 3)

0

(+ x 3))

. . .))

Further, we would not want to require arith-if clients to avoid binding any of

these identifiers; it should be invisible to the arith-if client how the form is

implemented.

On the other hand, lexical scope also means that we want all identifier references

appearing in the exp, neg-arm , zero-arm and pos-arm sub-expressions to be resolved

in the context where they actually appear in the original source code – that is, at

the point of the macro’s use. Suppose, for example, that the body expression of our

let-syntax form itself contained a binding of the variable tmp, e.g.,

(let-syntax ((arith-if macro-definition))

. . .

(let ((tmp (- x 3)))

. . .

(arith-if (* x y)

(- x tmp)

0

(+ tmp 3))

. . .))

When the arith-if form expands, it will introduce its own binding of tmp (marked

with an underline):
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(let-syntax ((arith-if macro-definition))

. . .

(let ((tmp (- x 3)))

. . .

(let ((tmp (* x y)))

(if (< tmp 0) (- x tmp)

(if (= tmp 0) 0

(+ tmp 3))))

. . .))

It would break the program if bindings introduced by arith-if were accidentally

to shadow the client’s ability to bind and reference its own tmp. Again, we would

not want to require arith-if clients to avoid binding tmp; it should be invisible to

the arith-if client how the form is implemented.

Thus, we want (1) identifiers introduced by the macro (e.g., let and <, in our

arith-if macro) to have the meaning that they have at the point where the macro

is defined and (2) identifiers appearing within the macro use’s sub-forms (e.g., the

*, x and y references appearing within the exp sub-tree) to have the meaning that

they have at the point where the macro is used. ‘Hygiene’ is the means by which

these bindings and references are kept sorted out.1 We will return to the mechanisms

that provide hygiene, but the key point to observe here is that what the Scheme

community calls ‘macro hygiene’ is nothing more than correctly providing lexical

scope for macros. This allows programmers to reason about their macro definitions

with the solid assurances that come with lexical scope: it is always possible to resolve

an identifier reference in a Scheme program simply by looking at the point in the

code where the reference occurs.

4.3 Parsing in the presence of hygienic macros

The classical view of compiler construction holds that we first lex and parse our

program into a syntax tree, and then – after parsing is completed – we implement our

language’s static semantics with algorithms that process the tree, resolving variable

references, checking types and so forth.

Scheme’s lexically scoped (or hygienic) macros, however, require that we abandon

this simple picture: parsing, in Scheme, must be intertwined with static analysis. This

is necessary because Scheme abandons the notion of the fixed ‘reserved keyword’

in favour of lexically scoped keywords. Consider, then, what is required when the

parser attempts to parse the form (if x 4 5). It must resolve the identifier if to

determine where in the program it is defined. Perhaps it is the top-level if – that

is, it is the keyword for Scheme’s basic conditional form. But there are no reserved

1 It’s also useful to have a controlled ability to violate hygiene. For example, we might wish to define
a macro that causes its body to be evaluated in an augmented scope that binds the identifier abort
to a function; calling this function during evaluation of the body triggers a non-local exceptional
transfer from the entire form. Thus, the macro must introduce a binding for abort which is visible to
its subform, hiding any outer binding of abort. Scheme macro systems provide mechanisms by which
this can be managed.
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tokens in Scheme, so perhaps it is instead a reference to a variable bound by some

intermediate let or λ form, e.g.,

(λ (x if z) . . . (if x 4 5) . . .)

in which case our (if x 4 5) form is not a conditional, but is instead a function

call. Or perhaps the if reference is a reference to a macro the programmer bound

with an intermediate let-syntax form:

(let-syntax ((if macro-definition))

. . . (if x 4 5) . . .)

We must resolve the if reference and determine where it was defined in the current

scope before we can parse the (if x 4 5) form in which it appears. But this is a

static analysis problem: lexical scope (which is the rule by which we are resolving

identifier references) is part of a language’s static semantics.

Thus, we have a circularity not occurring in more classical compilers: we need a

parse tree in order to perform static analysis, but we need to do static analysis in

order to parse. This is why Scheme’s provision of macros with lexical scope requires

parsing to be interleaved with analysis.

4.4 Hygiene mechanisms

The simplified core of what a macro does is that it (1) substitutes its arguments

into some template and then (2) substitutes the filled-in template at the point

of the macro use. The identifiers in the template appear in the program at one

lexical context (where the macro is defined), while the identifiers in the arguments

appear in the program at a different, inner context (where the macro is used).

The essential requirement of hygiene is that we perform these substitutions in a

manner that preserves lexical scope. This is a problem that was solved at the birth

of the λ-calculus, in the form of specifying precisely how β-reduction performs

substitution (Church, 1941; Barendregt, 1984; Baader & Nipkow, 1998). Hygiene

mechanisms in macro systems are simply mechanisms that employ the substitution

machinery from the λ-calculus, instead of using näıve textual substitution – for the

same reason that β-reduction does not employ näıve textual substitution. The core

of the λ-calculus’s substitution mechanism lies in its ability to α-rename identifiers

that might capture or be captured to fresh names that cannot possibly interfere with

other, distinct bindings of the original name. Thus, all Scheme macro systems that

provide hygiene do so by means of some kind of renaming capability.

One such mechanism is Rees’s explicit-renaming system (Clinger, 1991; Clinger

& Rees, 1991). To explain explicit renaming, suppose that we have a compiler

recursively walking the S-expression source-code tree, parsing it and expanding

macros. As the compiler recurs through the source tree, it keeps track of a symbol

table, which is used to resolve identifiers. Looking up an identifier in a symbol

table produces the static definition of the identifier in a given lexical context; these

definitions include meanings such as ‘the core-Scheme if conditional form’, ‘the

second parameter of λ term t37’, ‘the third variable bound by the letrec term t82’
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or ‘a macro with such-and-such definition’, where t37 and t82 are nodes in the syntax

tree. When the compiler encounters identifier-binding forms, such as let, λ, letrec

or let-syntax forms, it adds the new bindings to the symbol table, and recurs into

the body of the binding form with the augmented table.

In explicit renaming, the right-hand side of a macro definition is written as Scheme

code that takes three arguments, e.g.,

(let-syntax ((arith-if (λ (exp rename compare) ...)))

...)

When the compiler encounters the use of the macro (arith-if ...), it invokes

the associated procedure, passing it the entire macro form as the first argument

exp. The rename argument is bound to a special function which provides the

renaming capability. It additionally captures, as we’ll see, the lexical context where

the macro was defined, for use as the macro expander executes at the inner, macro-use

context.

This renamer function has two key properties. First, when applied to an identifier,

it guarantees to return a fresh identifier that occurs nowhere in the program. Suppose

that the macro’s expander procedure applies the renamer function to the symbol =,

e.g., (renamer ’=). It is guaranteed to get an identifier id that is completely fresh.

Thus, if our macro constructs a source tree containing occurrences of id , it can

be sure that these occurrences cannot be accidentally captured by other code in

the program; references to such an identifier can only be references inserted by the

macro itself.

But this leaves the question: when the compiler later attempts to parse the result

of our macro expression, which contains a reference to id , to what will id refer, when

it is looked up in the symbol table? This is the second key property of the renamer

function. The renamer function has access to the symbol table that describes the

lexical context at the macro’s point of definition. When passed the symbol =, it looks

up the meaning m of = in this symbol table, then inserts an id �→ m binding into the

outermost, top-level contour of the symbol table. So if, in the future, the compiler

encounters a free reference to the identifier id at some point in the code, it will

resolve to the same thing at that point that = resolves to at the macro’s definition

point. So the macro writer can confidently insert id into constructed code and know

that no matter what its lexical context might be, id will serve as a suitable ‘synonym’

for the top-level = variable – this will be true even in some context that locally

binds = to some other meaning. Thus, the renamer function gives the macro access

to the scoping context that pertains at its point of definition; it permits the macro

to rename identifiers from this context away to fresh names that have the same

meaning, where they cannot subsequently be accidentally captured by the vagaries

of the client code where the macro is used.

Note, however, that if the code produced by the macro expansion itself chooses

to bind the fresh identifier id , then this local definition will shadow the top-level

binding inserted in the symbol table by the renamer function. Here is our arith-if

macro, then, written using explicit renaming:
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;;; Call this let-syntax form’s lexical context lcls.

(let-syntax ((arith-if (λ (e r c)

(let ((exp (cadr e)) ; Disassemble

(neg-arm (caddr e)) ; source

(zero-arm (cadddr e)) ; tree

(pos-arm (car (cddddr e))))

(%let (r ’let)) ; Make fresh synonyms

(%if (r ’if)) ; for these ids --

(%< (r ’<)) ; with their

(%= (r ’=)) ; lcls meaning.

(%tmp (r ’tmp)) ; Fresh var.

‘(,%let ((,%tmp ,exp))

(,%if (,%< ,%tmp 0) ,neg-arm

(,%if (,%= ,%tmp 0) ,zero-arm

,pos-arm)))))))

. . .)

Thus, the macro’s renamer function r is used to get synonyms for the identifiers

we’d like to reference from the macro’s point of definition (let, if, < and =), and is

also used simply to generate a unique identifier to serve the role of the tmp variable.

(Note that we have not discussed the purpose of the transformer function’s third

argument, the ‘compare’ procedure. It only comes into play with more sophisticated

transforms.)

Another approach involves the use of annotating identifiers in the source tree

with marks (sometimes called ‘paint’) to α-rename entire sub-terms during macro

processing (Dybvig et al., 1992); the syntax-case system is the chief example of

such a macro system (Dybvig, 1992). As with the explicit-renaming mechanism,

the point of the α-renaming is to make the textual substitution performed by the

macro expansion conform to the kind of reference-preserving substitution we find

in the λ-calculus. The basic idea is to begin macro expansion by renaming the

source sub-trees comprising the macro’s ‘arguments’ or sub-terms (e.g., the exp,

neg-arm , zero-arm and pos-arm sub-trees in our arith-if example). That is, every

identifier occurring in the macro-use’s source tree is marked with a new, fresh mark,

effectively α-renaming them. This mark-annotated source tree is then given to the

macro’s associated source-to-source transform function. If these marked sub-terms

are incorporated into the macro’s result, their unique marks distinguish them from

identifiers introduced by the macro itself. After the macro has assembled its complete

result term, the macro system walks the term, where it toggles the fresh mark added

previously. That is, we (1) remove the marks from these incorporated sub-trees

and (2) mark the identifiers that the macro itself introduced. Part (1) causes these

identifiers to return to their original form, so that they are restored to whatever

meaning they had in the lexical context where the macro appeared. Part (2), however,
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ensures that identifiers introduced by the macro are renamed away to unique names,

ensuring they will not interfere with part (1)’s local identifiers.

4.5 Problems adapting Scheme macro technology to other languages

Macro hygiene makes it straightforward to correctly construct general syntax

extensions in Scheme. The next logical step is to take the macro mechanism, ‘peel’ it

from the Scheme language and apply it to other languages. However, the system is

narrowly adapted to the specifics of Scheme, in ways that make it difficult to apply

the technology to other languages.

Focus on expressions: The Scheme language has an extremely spare grammar in the

following sense: its S-expressions represent very little besides expressions. Thus, in

Scheme we can restrict macros to the syntactic context of an expression, and that

will cover nearly all uses we might wish to make of them. (Some examples of the

few syntactic forms that would not be covered are the variable/initial-expression

bindings in a let or let* form, the parameter list in a lambda form, and the arms

of a cond conditional form. We cannot, in Scheme, write macros for these syntactic

elements.)

By way of contrast, consider what would be needed if we added macros to a

version of the C language with a sexp-based concrete syntax. Unlike Scheme, the

expression is not the overwhelmingly dominant syntactic form in C. We would

wish to allow macros to appear in many syntactic contexts: expressions, statements,

declarations, types, initialisers and so forth.

Little static semantics: Even more problematic is that Scheme’s static semantics is

as spare as its syntax. The only real static semantics provided by the language is

lexical scope: the ability to resolve an identifier reference to its point of definition.

As we’ve seen, this is reflected in the Scheme’s macro system: hygiene is precisely the

mechanism one needs to control identifier scoping during macro expansion. It’s not

a problem that there is no other mechanism in the Scheme macro system to reason

about static semantics, because Scheme does not have any other static semantics

about which to reason.

This is a serious problem for languages with more static semantics. Suppose,

for example, that we implemented a Scheme-like macro system for a variant of

Standard ML written with an S-expression concrete syntax. Loops in SML are

typically written with tail-recursive function calls, but a programmer might wish to

implement an SML version of Scheme’s do loop, so that expressions of the form

(do ((var1 initial1 update1) . . .)

(end-test final-value)

body)

would expand into
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(letrec ((loop (λ (var1 . . .)

(if end-test final-value

(begin body

(loop update1 . . .))))))

(loop initial1 . . .))

How should we type-check programs written in our macro-augmented SML

dialect? One way would be simply to expand all macros, and then type-check the

residual core-SML program. This would work, in the sense that it would guarantee

the type safety of the program. But in a more practical sense, it works only when

the programmer makes no mistakes: type errors are reported to the programmer

not in terms of the original source code, but in terms of its macro-expanded residue,

which might be an incomprehensible mess of low-level code bearing little obvious

relationship to the original source.

The compiler needs the ability to reason about the program as it is written by the

programmer. To return to our example above, the compiler needs a type rule for do

forms, just as it has type rules for if forms and λ-expressions; then it can type-check

the program and report type errors in terms of the original code the programmer

wrote. In other words, we need the ability to associate static semantics with our

extensions, something Scheme macro technology does not provide. With Scheme

macros, the static and dynamic semantics of a new form are given implicitly by

means of translation – i.e., specification by compiler. The translation mechanism is

opaque, being defined procedurally either in Scheme itself, or by means of the Turing-

complete pattern-matching language used for Scheme’s ‘high-level’ macros. As the

macros get larger and more complex, e.g., providing object systems, database-query

languages or parser generators, there is no hope at all that an automatic system can

extract much useful static information from their specification in standard Scheme

technology.

4.6 Adding static semantics to macros

Ziggurat extends the basic technology of Scheme’s hygienic macros, allowing macros

to be tagged not only with code that provides its dynamic semantics by means of

translation, but also with code that provides its static semantics. Our approach is

twofold:

• Ziggurat employs a specialised object system, called lazy delegation. Syntax

nodes are represented as objects, and analyses are done as methods on these

objects. If a particular analysis is undefined for a class of syntax node, then

the analysis is delegated to a macro-rewritten form of the syntax object.

• Analyses are structured monadically. This solves a problem in building complex

semantic analyses incrementally: it is difficult to do a global analysis that

requires information to flow through the syntax tree in ways that do not

correspond to the sequencing associated with a recursive walk through the

tree, i.e., not obeying a simple propagation pattern, such as bottom-up. In
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Ziggurat, this is solved by arranging for the syntax nodes locally to provide

higher order analysis constructors. That is, we structure the analysis as a set

of syntax-node methods, each one of which takes in a partial analysis, and

returns the analysis augmented with the part for that node.

We also provide two standard libraries to help the meta-designer define static

semantics for languages constructed with Ziggurat: Kanren, a Prolog-like logic

language (Friedman et al., 2005; Byrd & Friedman, 2006), and Tsuriai, a system

we developed for computing fixed points of recursively defined, monotone

functions on lattices. In the context of language semantics, Kanren is useful for

reasoning in typeful ways; Tsuriai is a framework that makes it straightforward

to work in the flow-analysis paradigm. Neither of these subsystems is primitive;

they are simply libraries defined in Ziggurat for the convenience of the

Ziggurat programmer. There’s nothing to prevent an ambitious Ziggurat

programmer from implementing other libraries of a similar assistive nature.

For example, it might be useful to provide programmers with a library to assist

programmers in constructing abstract interpretations (Cousot & Cousot, 1977),

or an implementation of the extensible HM(X) type system (Pottier & Remy,

2005), which permits language designers to implement Hindley–Milner style

polymorphic type systems, parameterised over different base types.

Using this semantic extension capability, it is possible to layer one language on

top of another, thus building up a ‘tower’ of languages. In this way, Ziggurat is a

tool for the incremental development of programming languages.

5 Designing a language with Ziggurat

Languages in Ziggurat are meant to be designed in stages, thus providing an

opportunity for several actors to contribute (or for one person to play several roles).

Figure 1 shows a sample workflow for building a language in two stages, but this is

by no means the only way to go about it. Languages can be layered as deeply as is

needed, and Ziggurat is designed to allow for complex collaboration between layers.

Consider the three characters of Figure 1. Let us assume they are building a

software system in assembly language. The first character is a programmer, who

will be the eventual consumer of our language. Another is a language designer,

who will focus on producing a low-level assembly language. The programmer will

probably not want to program in the raw assembly language, so we introduce a

third character: the macro programmer. The macro programmer writes new control

primitives and data operations in order to make the application programmer’s life

easier.

We will introduce an example assembly language later in the paper. (We’ve

purposefully chosen assembly to have an example language that is as far from

Scheme as we can arrange.) Since this will not be the final language that the

application programmer will be using, the language designer is free to make the

language very simple. A language with a small semantics has several advantages: it

can be easy to implement, reason about and analyse. In this paper, the lowest level
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Fig. 1. Workflow to design a language with Ziggurat.

language we use is an assembly language, with register and control manipulation

instructions similar to a machine language. The macro writer adds additional forms,

such as nested blocks and loops, and cons, car and cdr forms for constructing and

manipulating simple tuples.

This is enough for the application programmer to start programming. However,

we are not yet done; the language designer will also want to specify static semantics

for his assembly language. Thus, he specifies a type system for the language, and

implements algorithms for termination analysis, type reconstruction and control-flow

analysis.

At this point, though the macro writer has information that the language designer

does not have, the programmer may use structured control operations, which can

provide more precise information about control-flow; similarly, data operations can

provide more precise type information. So, the macro writer extends the analyses of

the language designer to better account for the new forms.

In order to see how this all works, we show the system from the ground up.

We start with the object system of Ziggurat, which uses a mechanism for method

resolution we call lazy delegation.

6 Lazy delegation

Ziggurat is used by the language designer to define the low-level language, and by

the macro designer to extend the semantics of that language. The Ziggurat language

is based on Scheme, to which we add an object model, called lazy delegation.

Lazy delegation is similar to other delegation-based object systems, such as Self

(Ungar & Smith, 1987), with a twist: the parent of an object, instead of being
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Fig. 2. Ziggurat extends Scheme with lazy-delegation objects.

provided at object-creation time, is calculated only when it is needed. The additions

that Ziggurat makes to the standard Scheme grammar are presented in Figure 2.

In Ziggurat, each object has a unique class. A class defines (among other things)

the fields that an object has. If we wanted to define a class of object to represent

floating-point real numbers, we would use the code

(define-class real (mantissa exponent))

(define real-seven (object real 7 0))

The first line declares that objects of class real have two fields: mantissa and

exponent. The second line declares a variable real-seven to be an object of class

real with mantissa 7 and exponent 0.

Generic functions are introduced with the form

(define-generic (m i . . .) [edefault])

which defines a generic function named m with the i . . . providing the argument

parameters. The optional body edefault, if it is present, defines the default behaviour

of the function. Generic functions must have at least one argument, which is the

‘this’ object of the function invocation. Generic functions are called as if they were

ordinary Scheme functions, and can be passed around and used as such. Thus,

the following code defines a generic function of one argument, num, whose default

behaviour is to return the string "<object>".

(define-generic (object-number->string num)

"<object>")

In order to give the generic function more interesting behaviour, we must override

it with class-specific method definitions:

(define-method real object-number->string

(λ (this) (string-append (number->string mantissa) "e"

(number->string exponent))))

This code defines the behaviour of the object-number->string generic function

if its first argument is an object of class real. Since we know that the first argument

of this method is an object of class real, we know that it has fields mantissa and

exponent. These fields are available in the method body, as if they were ordinary

Scheme variables. One consequence of this is that classes cannot be first-class values,

https://doi.org/10.1017/S0956796808006928 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006928


724 David Fisher and Olin Shivers

since we must be able to tell statically what is a field of the object, and what is

a regular variable. Though objects and generic functions are first-class values, they

can be passed around and manipulated just like any other Scheme value.

Objects have a special method, the delegate-instantiation method. Unlike other

methods, delegate-instantiation methods have no arguments. A delegate-instantiation

method must return an object or #f. This object is the delegate of the current object,

and is used in case a generic function is applied to the object and it has no

corresponding defined method. If the delegate-instantiation method returns #f, the

object has no delegate, and any method the object attempts to delegate will fall

through to the generic function’s default behaviour. Delegates are thus created on

demand and then cached; after an object has invoked its delegate-instantiation

method, future method lookups will automatically be passed to the delegate object

when needed.

The delegate-instantiation method is provided as part of the define-class form.

For example, to define an int class that delegates to a real object:

(define-class int (value)

(λ () (if (= value 0)

(object real 0 0)

(let* ((exponent (inexact->exact

(floor (/ (log (abs value))

(log 10)))))

(mantissa (exact->inexact

(/ value (expt 10 exponent)))))

(object real mantissa exponent)))))

What if we called (object-number->string (object int 4007))? Since the

int class does not have its own method for object-number->string, it delegates

the generic function to the real object produced by its lazy-delegation method,

which in turn produces "4.007e3". If we wanted integers to have a specialised

object-number->string method, we would simply define one, e.g.,

(define-method int object-number->string

(λ (this) (number->string value)))

Now (object-number->string (object 4007)) will return "4007".

Ziggurat also allows the programmer to delegate explicitly through the function

pass. The return value of the function pass during a function call is the same as

calling the generic function on the delegate object. For example, if we wanted an

int object to use scientific notation when its value is less than zero, we would define

the method object-number->string on objects of class int to be

(define-method int object-number->string

(λ (this) (if (< value 0)

(pass)

(number->string value))))
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Fig. 3. An arithmetic-expression language.

Fig. 4. Implementation of the arithmetic-expression language.

The use of pass here specifies that the delegate will be invoked if and only if the

integer value is less than zero.

7 Representing abstract syntax trees

Building abstract syntax trees is a simple matter in Ziggurat. Consider a language

for expressing simple arithmetic calculations, presented in Figure 3. This language

has one basic syntax class: the expression. An expression is either a variable, a

constant, a primitive operation such as multiplication or addition, or a let form to

bind variables.

In order to implement this in Ziggurat, each syntax node is represented by

an object. The classes of the syntax nodes correspond to the productions of the

grammar, and the fields of the syntax node correspond to the sub-terms of the

production. Implementing this involves directly transcribing the grammar into code,

as seen in Figure 4.

In the let form, we have two fields to represent bindings: a list of variables and

a list of expressions. The two lists are linked by their order; e.g., the third item in

the list of variables is the variable bound to the value of the third item in the list

of expressions. This is in opposition to the concrete syntax of a let statement, which

takes the form of a list of pairs of labels and expressions.

This language is fairly basic, and there are any number of extensions we might

want to add. For example, we might want to add a sqr form that squares the value

of an expression. With our AST represented by lazy-delegation objects, this is easy

to do:
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(define-class arith-sqr (expr)

(λ ()

(let ((temp-var-name (gensym))) ; create fresh var

(object arith-let ‘(,(object arith-var temp-var-name))

‘(,expr)

(object arith-mul

(object arith-var temp-var-name)

(object arith-var temp-var-name))))))

Suppose that we have a generic function (execute expr ctx), defined on the basic

language nodes, that calculates the numerical value of the arithmetic expression expr

in the variable-binding context ctx . Evaluating

(execute (object arith-mul (object arith-const 3)

(object arith-const 7))

empty-arith-context)

would return the value 21. Now, what about running execute on a syntax node of

class arith-sqr? Consider what would happen if we attempted to evaluate

(execute (object arith-sqr (object arith-const 5))

empty-arith-context)

Since arith-sqr does not define an execute method, it gets delegated to the

expanded syntax tree:

(object arith-let ’(,(object arith-var ’g300))

’(,(object arith-const 5))

(object arith-mul (object arith-var ’g300)

(object arith-var ’g300)))

When execute is delegated to this AST, the result is the expected 25. Although we

did not explicitly write an execute method for arith-sqr, this piece of semantics

was handled through rewriting.

8 Parsing

Up to this point, we’ve looked at programs built as Ziggurat objects with Ziggurat

code. But programmers do not write programs this way; they write concrete syntax

that must be parsed into corresponding Ziggurat objects.

In our S-expression setting, we have a reader that takes in a stream of characters,

and produces a tree of raw data that corresponds to the nested list structure of

the unparsed code. For example, the reader takes the string ‘(* (+ 1 2) 3)’, and

produces the data structure constructed by

(cons ’* (cons (cons ’+ (cons 1 (cons 2 ’())))

(cons 3 ’())))

The parser is a function that takes the output of the reader and produces a

tree of Ziggurat objects based on the abstract syntax of the language being
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implemented. For our arithmetic language, we will define a generic Ziggurat function,

parse-arith-expr, that will take, for example, the list (+ x 3), and construct the

syntax tree:

(object arith-plus

(object arith-var ’x)

(object arith-const 3))

We could implement parse-arith-expr as a function of one argument, such that

evaluating (parse-arith-expr ’(+ x 3)) would construct the term’s syntax tree

as above. However, this means of parsing makes it difficult to add a new keyword,

and thus, we introduce syntactic environments.

8.1 Syntactic environments

A syntactic environment is a lazy-delegation object on which we hang parse methods.

For our arithmetic language, we will define a syntactic-environment class, arith-env.

This class defines a method parse-arith-expr. The parse method is invoked with

two arguments, (parse-arith-expr e s), where e is a syntactic environment and

s is the form to be parsed. The class arith-env can näıvely be defined as

(define-class arith-env ()

(λ () #f))

We will expand this definition shortly.

When the generic function parse-arith-expr is invoked on a parse environment

of class arith-env, the environment’s method extracts a keyword from the form it

is parsing, and then uses a specialised parse function based on that keyword. We

could define parse-arith-expr as

(define-generic (parse-arith-expr env form)

(error "Could not parse arithmetic expression" form))

(define-method arith-env parse-arith-expr

(λ (env form)

(if (pair? form)

(if (symbol? (car form))

(case (car form)

((’+) (parse-arith-add env form))

((’-) (parse-arith-sub env form))

((’*) (parse-arith-mul env form))

((’/) (parse-arith-div env form))

((’let) (parse-arith-let env form))

(else (pass)))

(pass))

(cond ((symbol? form) (parse-arith-var env form))

((integer? form) (parse-arith-const env form))

(else (pass))))))
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While this would certainly parse the language we have described, it is too inflexible

for our purposes: in order to add a new keyword, we would have to alter the

definition of the generic function. So, in order to fix this, we alter the definition of

arith-env to include a field keywords that contains an association list mapping

keywords (symbols) to parse functions:

(define-class arith-env (keywords)

(λ () #f))

(define-method arith-env parse-arith-expr

(λ (env form)

(if (pair? form)

(if (symbol? (car form))

(let ((parse-fun (assq (car form) keywords)))

(if parse-fun

((cadr parse-fun) env form)

(pass)))

(pass))

(cond ((symbol? form) (parse-arith-var env form))

((integer? form) (parse-arith-const env form))

(else (pass))))))

(The Scheme assq function will search the list of keyword/parser pairs, and return

the first match it finds.) For this new parse method, in order to define a new keyword,

all we need to do is alter the keywords field of an object of class arith-env. We

would define a top-level syntactic environment that contains the basic keywords of

the arith language:

(define top-level-arith-env

(object arith-env ‘((+ ,parse-arith-add) ...)))

However, this is still too inflexible for our purposes. What if we alter the language

to permit local syntax declarations, similar to let-syntax in Scheme?

For this, we permit layering of syntactic environments. We alter the class

arith-env to define a field super. The field super contains the syntactic envi-

ronment to which the current arith-env will delegate if it does not recognise the

current keyword.

(define-class arith-env (keywords super)

(λ () super))

Now, to define a new keyword locally, we can create a new syntactic environment

that contains the keyword in its keyword table. For example, if we wanted to define

a keyword sqr, we would write

(define sqr-arith-env

(object arith-env ‘((sqr ,parse-arith-sqr))

top-level-arith-env))
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Upon defining this, we can invoke parse-arith-expr with sqr-arith-env if we

wish to recognise the sqr form, or top-level-arith-env if we do not.

In Ziggurat, we provide a form define-keyword-syntax-class that automates

the process of writing such a parse function. Invoking

(define-keyword-syntax-class syntax-class-name

parse-function-name environment-name

no-keyword-function atom-function)

defines a generic parse function named parse-function-name, and a syntactic environ-

ment named environment-name, in order to parse concrete syntax for syntax-class-

name. The argument atom-function is a parse function which is invoked if the form

is not a list, and the argument no-keyword-function is a parse function which is

invoked if the form is a list but the first element is not a recognised keyword. We

can use this form to define arith-env.

(define-keyword-syntax-class arith-expr

parse-arith-expr arith-env

(λ (env form)

(error form "Could not parse arithmetic expression"))

(λ (env form)

(cond ((symbol? form) (object arith-var form))

((integer? form) (object arith-const form))

(else (pass)))))

Note that we are using lazy delegation for a new purpose here. Previously, we’ve been

using it to layer abstract syntax; here, we are using it to layer syntactic environments.

Parse functions for non-terminals, such as parse-arith-add, typically work by

matching a pattern, recursively parsing sub-forms and creating an object. Ziggurat

provides a utility to automate this process: the macro parse-pattern-variables.

This section of code, for example, defines a function parse-arith-add that matches

the concrete syntax of the addition non-terminal and produces the corresponding

piece of abstract syntax.

(define parse-arith-add

(parse-pattern-variables ‘(+ ,parse-arith-expr

,parse-arith-expr)

(_ l r)

(object arith-add l r)))

The Ziggurat macro parse-pattern-variables takes three arguments: a pattern,

a pattern of variables and an action. The macro produces a parser that matches the

pattern, binds the variables to the sub-forms of the input, and then performs the

action.

The expression (parse-pattern-variables P V A) evaluates to a parse func-

tion R. Calling (R env F) matches the form F to the pattern P and binds the

variable pattern V in the action A.
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• If P is a parser function, it is used to parse the term F; the result value is

bound to identifier V , unless V is _, the ‘don’t-care’ symbol. The action A

occurs in the scope of the V binding.

• If P is a symbol, then the pattern matches when the term F is the same

symbol. V should again be _, or an identifier that will be bound to F .

• If P is a list of sub-patterns (p1 p2 . . . pn), and V is a list of variable sub-

patterns (v1 v2 . . . vn), then a successful pattern-match requires that F be a list

of sub-forms (f1 f2 . . . fn), and for all 1 � i � n, pi matches fi and binds the

variable pattern vi.

If the pattern does not match the form, the parser function signals an error.

Once we have defined parse functions for the language primitives, we must define

an initial syntactic environment for the language containing those primitives. The

macro make-keyword-syntax-env instantiates an environment of a class previously

declared with define-keyword-syntax-class. Parsers are added to an environment

with the generic function add-keyword-parser!, e.g.:

(define initial-arith-env (make-keyword-syntax-env arith-env))

(add-keyword-parser! initial-arith-env ’+ parse-arith-add)

This is all of the low-level machinery necessary to define parsers in Ziggurat.

However, we can provide high-level machinery on top of this to make basic language

implementation easier.

8.2 Template environments

A macro needs to define two things: a parse function and a rewrite function. We

have mentioned that in Ziggurat, the rewrite function takes the form of the delegate-

instantiation method of the new syntax node. One way of designing these methods

is to completely instantiate the AST of the rewritten syntax. Doing this with the

arith-sqr syntax class looks like

(define-class arith-sqr (expr)

(λ ()

(let ((temp-var-name (gensym))) ; create fresh var

(object arith-let ‘(,(object arith-var temp-var-name))

‘(,expr)

(object arith-mul

(object arith-var temp-var-name)

(object arith-var temp-var-name))))))

We can simplify this process by using the fact that we already have a parse function

handy. Ziggurat’s parse-template-with-variables macro takes advantage of

this. When a parse-template-with-variables form is evaluated, it creates a

template environment. A template environment is a syntactic environment that

defines a number of meta-variables. The methods of a template environment are

all of the parse functions known to Ziggurat. These parse functions all behave
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the same way: if the form they are parsing is one of the meta-variables of

the template environment, they return the AST bound to it in the template

environment. Otherwise, they delegate to the higher level environment. Invoking

(parse-template-with-variables e p ((v1 f1) . . .) g) builds a template envi-

ronment in which the template variable v1 is bound to f1 and so forth. Like other

syntactic environments, template environments have enclosing environments; this

is the argument e to parse-template-with-variables. The form then parses g

with the parse function p in the context of this template environment. A simple

implementation of a template environment would be:

(define-class template-env (variables super)

(λ () super))

(define-method template-env parse-arith-expr

(λ (env form)

(if (symbol? form)

(let ((match (assq form variables)))

(if match (cdr match) (pass)))

(pass))))

This allows us to build delegate-instantiation functions out of templates,

rather than Ziggurat primitives. If we wished to rewrite the arith-sqr delegate-

instantiation method via templates, for example, we would write

(define-class arith-sqr (expr)

(λ ()

(parse-template-with-variables top-level-arith-env

parse-arith-expr

((’e expr))

’(let ((temp e)) (* temp temp)))))

This has the advantage of allowing us to write delegate-instantiation methods in

our target language, thereby abstracting away from Ziggurat primitives.

8.3 High-level macros

Now that we have the ability to write the rewrite function in the target language,

we need not use the Ziggurat language at all when designing macros. Instead, we

can have forms in our target language that define a macro. Ziggurat makes it

straightforward to introduce a let-syntax form and a define-syntax form to the

target language, similar to how Figure 5 extends the Arith language. These language

additions are a general template for high-level macros; they need not be the only

way high-level macros are added to a target language.

The let-syntax form defines new syntax keywords, and then parses an expression

in the context of those keywords. The define-syntax form behaves the same way,

but defines the new syntax at the top level, and does not yet parse a new form, e.g.,
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Fig. 5. A grammar for high-level macros.

(define-syntax square-five

(syntax-rules ()

((square-five) (* 5 5))))

This code defines a parse function and a rewrite function. The parse function will

create an object of class extended-syntax. Each extended-syntax object has three

fields.

• A field indicating which syntax-rules pattern was matched.

• A field indicating what variables were bound when the form was parsed.

• A rewrite function.

The actual delegate-instantiation method of an extended-syntax object merely

passes off to the field rewrite-function.

(define-class extended-syntax

(matched-pattern variables rewrite-function)

(λ () (rewrite-function matched-pattern variables)))

The field rewrite-function is a function defined by the transformer part of the

high-level-macro. For the square-five example, the value of this field would be:

(λ (matched-pattern variables)

(parse-template-with-variables top-level-arith-env

variables

’(* 5 5)))

The parse function for square-five is simple: it matches only (square-five),

parses no sub-expressions and binds no variables. However, usually we will need to

parse sub-forms. Thus, our high-level macro language allows us to parse patterns.

We allow only one kind of pattern: a list of sub-forms. Since there are several parse

functions one could use to parse a sub-form, we require the macro writer to specify

which one.

(define-syntax sqr

(syntax-rules ()

((sqr (x arith-expr)) (* x x))))

The macro sqr has one sub-form. When the parser encounters source code of the

form (sqr 3), it first parses 3 as an arith-expr, and then binds the parsed form

to the variable x in the variables field of the associated extended-syntax.
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The list of sub-forms can be made expandable, through the ... keyword.

(define-syntax mult

(syntax-rules ()

((mult (x arith-expr)) x)

((mult (x arith-expr) (y arith-expr) ...)

(let ((temp (mult y ...)))

(* x temp)))))

The variable y here is associated with the list of arith-exprs that begins with the

second sub-form of the mult statement, and ends at the end of the form.

The first subform of syntax-rules is the set of names we wish to capture. That

is a facet of the hygiene system: it means that, when we refer to these names in the

macro definition, we wish them to refer to the same things the names would refer to

in the context of the macro use. To explain how this works, first we need to explain

how hygiene works in Ziggurat.

8.4 Hygiene and referential transparency

Scheme’s macro system has a property that we’d like to ensure: we want to make

sure that the names introduced and used inside of a macro do not interfere with

those appearing where the macro is used.

Consider the arithmetic form (let ((temp 3)) (mult temp 6)). A näıve im-

plementation of the mult macro presented at the end of the last section would

simply rewrite the mult statement directly, resulting in the code (let ((temp 6))

(* temp temp)). The result of executing this is 36, instead of the expected 18. The

clear problem here is that the temp referred to by the macro writer is not the same

temp that the macro reader intended to use, but since they have the same name,

they are not distinguished. In other words, the macro captures the variable temp,

although we do not want it to.

Ziggurat employs a traditional solution (Dybvig et al., 1992) to this problem,

tailored to use lazy-delegation objects and to be language independent. We replace

simple Scheme data with annotated data, which maintains information about the

syntactic context in which it appears:

(define-class annotated-datum

(datum namespace start-location end-location))

The start-location and end-location fields contain source-file information and

are merely for informed error-reporting. The namespace field is what provides our

hygiene functionality. Hygiene comes from the annotated-datum-eq? predicate.

(define-generic (annotated-datum-eq? a b) #f)

(define-method annotated-datum annotated-datum-eq?

(λ (a b) (annotated-datum-namespace-eq? b datum namespace)))
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(define-generic (annotated-datum-namespace-eq? a dat ns) #f)

(define-method annotated-datum annotated-datum-namespace-eq?

(λ (a dat ns)

(and (eq? datum dat)

(eq? namespace ns))))

In the example given above, the two temp variables will not collide assuming

that the namespace fields of these symbols are set correctly. The namespace field

should properly refer to a lazy-delegation object of class namespace. Objects of

class namespace remember what names they define and are layered. Symbols can be

looked up in namespaces: if a namespace is questioned about a symbol it defines,

it returns itself, and if it is questioned about a symbol defined in a higher space, it

returns that space. We also have a role argument that reflects the syntactic category

of the name. This is so that we can maintain different namespaces for different types

of syntax nodes.

(define-class namespace (super table)

(λ () super))

(define (new-namespace super)

(object namespace super (make-hash-table)))

(define-generic (namespace-declare ns role name))

(define-method namespace namespace-declare

(λ (ns role name)

(hash-table-put! table role name ns)))

(define-generic (namespace-lookup ns role name) #f)

(define-method namespace namespace-lookup

(λ (ns role name)

(hash-table-get table role name pass)))

Now, all that needs to be done is to associate symbols with their proper namespace

information. Adding namespace information is a form of parsing: when we want to

parse a symbol in a particular context, we will want to maintain that context as part

of its semantic information. We therefore add a method get-current-namespace

to syntactic environments.

(define-class namespace-env (namespace super)

(λ () super))

(define-generic (get-current-namespace env) top-level-namespace)

(define-method namespace-env get-current-namespace

(λ (env) namespace))
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It’s now a simple matter to alter the definition of parse-template-with-variables

such that for each template environment, a new namespace is defined.

However, sometimes we want to have variable capture. For these instances, we

introduce a capture mechanism into syntax-rules.

(define-generic (namespace-declare-capture ns role

name captured-ns))

(define-method namespace namespace-declare-capture

(λ (ns role name captured-ns)

(hash-table-put! table role name captured-ns)))

Thus, when we use syntax-rules in a high-level macro, for each name in the

argument to syntax-rules, we first look it up in the context of the macro use, and

put that role into the namespace of the rewrite function.

8.5 Macro-defining macros

Like Scheme, Ziggurat enjoys the powerful feature of macros that define other

macros. In fact, since high-level macros utilise parse functions that may well already

contain a macro facility, macro-defining macros are included for free. However, in

some instances, some additional annotation is required.

Consider the arithmetic macro:

(define-syntax macro-with-a-macro

(syntax-rules ()

((macro-with-a-macro (exp arith-expr))

(let-syntax ((inner-syntax (syntax-rules ()

((_) 3))))

(+ exp (inner-syntax))))))

Despite the fact that this macro has a macro definition inside of it, it does not

require any special techniques to deal with, since it applies the parse function to

make a rewrite function. Ziggurat handles this sort of situation automatically.

However, a common use of macro-defining macros is to define a macro for use

by the user somewhere else. Let us alter the definition of the above macro slightly:

(define-syntax let-three-macro

(syntax-rules (three)

((let-three-macro (exp arith-expr))

(let-syntax ((three (syntax-rules ()

((_) 3))))

(exp)))))

Now, let’s use this new macro:

(let-three-macro (+ 7 (three)))
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Here, when we use the name three, we are using it as the keyword for a macro

that rewrites to 3. Ziggurat, as specified above, cannot handle this case, at least not

with high-level macros. When the expression (+ 7 (three)) is parsed, the macro

three is not yet defined, since that macro is only defined in the rewrite function of

let-three-macro. For the writer of a low-level macro, there are two options: either

we define the macro three earlier, or hold off the parsing of (+ 7 (three)) until

later.

We can build this later method into the high-level macro system directly by use

of the delay keyword.

(define-syntax let-foo-macro

(syntax-rules (foo)

((let-foo-macro (exp arith-expr delay))

(let-syntax ((foo (syntax-rules ()

((foo (y arith-expr)) y))))

exp))))

The delay keyword tells the parse function to delay parsing the exp sub-form until it

is needed by the rewrite function. Thus, parsing (let-foo-macro (foo (+ 7 5)))

will parse (foo (+ 7 5)) in a context where the foo macro is defined.

The delay macro combines in an interesting way with the namespace mechanism.

It is important that the names in the delayed sub-form be parsed in the namespace

they originally appear in. Thus, instead of parsing the sub-form, we reify it, and

force it when it appears in the rewrite function.

(define-class delayed-syntax (form namespace))

(define-generic (force-delayed-syntax ds env parse-function))

(define-method delayed-syntax force-delayed-syntax

(λ (ds env parse-function)

(parse-function (object namespace-env namespace env) form)))

9 An example: assembly language

Every tower must have a ground floor: for our running example, we start our

language tower with an assembly language. Our assembly language has a slight

twist: in order to make macro writing more convenient, code labels have nested,

lexical scope, based on elements we explored in a previous language design (Shivers,

2005).

9.1 Syntax and dynamic semantics

The grammar of our assembly language is shown in Figure 6. Implementing this in

Ziggurat is again a matter of directly transcribing the grammar, as seen in Figure 7.

Once again, in the AST node for let statements, we separate the labels and the

code points they bind.

https://doi.org/10.1017/S0956796808006928 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006928


Building language towers with Ziggurat 737

Fig. 6. A grammar for a sexp-based assembly language.

Fig. 7. Assembly language abstract syntax as Ziggurat class declarations.

Expressions specify values that are available without computation. We have three

forms of expression.

• Constants c are data values encoded directly in the program. Values in

assembly are fundamentally untyped; the only way to distinguish an integer

from a floating-point value from a data pointer from a code pointer is by

context.

• Registers i are the variables of this language level. Registers are not declared;

the value of a register is set via assignment, and the value of a register is

undefined before it is assigned for the first time. At this language level, we

have an unlimited number of registers.

• Labels (star i) represent program locations. As a convenience, the

S-expression reader interprets *i as (star foo), similar to the way Scheme

readers handle the ’foo form as (quote foo). Labels are bound to code

points by the let and letrec instructions, and are first-class values: they can

be assigned to registers, stored in memory and so forth.
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Statements manipulate registers, perform control transfers and manipulate the

store. We have eight forms of statement.

• (mv r e) moves the value specified by e into the register r , and then branches

to the label *next in the scope of the statement.

• (add r e1 e2) adds the value specified by e1 to e2, and stores the result in

register r . Then, it branches to the label *next.

• (ld r e) loads the value in the store at location e, and stores it in the register r .

Control then branches to *next.

• (st e1 e2) stores the value e2 at location e1 in the store, and then branches

to *next.

• (bez e1 e2) tests value e1. If it is equal to zero, then control branches to the

code at location e2. Otherwise, control branches to the label *next.

• (jmp e) always transfers control to e.

• (let ((l1 s1) (l2 s2) . . .) sb) sets up a context in which the label l1 is

bound to the statement s1, l2 to s2 and so forth, and then evaluates sb in this

context. These bindings for l1, l2, . . . are not available in s1, s2, . . . .

• (letrec ((l1 s1) (l2 s2) . . .) sb) works similarly to let, with the impor-

tant distinction that labels l1, l2, . . . are available in the scope of s1, s2, . . . .

Our assembly language also has segments. A segment represents a whole program.

• (code s) represents a block of code.

• (null-segment) is an empty segment of code.

The let and letrec instructions are the only way in this language to combine

and order instructions. This means that programs must be written, essentially, in

reverse, with later instructions occurring earlier in the program text. This can make

assembly language programs difficult to read. Here, for example, is a statement to

multiply 3 by 5:

(let ((*exit (jmp *next)))

(letrec ((*loop (let ((*next (jmp *loop)))

(let ((*next (add i i -1)))

(let ((*next (add y y x)))

(bez i *exit))))))

(let ((*next (jmp *loop)))

(let ((*next (mv y 0)))

(let ((*next (mv i 5)))

(mv x 3) )))))

Clearly, some syntax extensions to this core language are needed in order to make

it possible to write comprehensible programs.

9.2 Some simple macros

Writing code at this low level can be difficult. The core assembly language was

designed with two goals in mind:
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Fig. 8. A grammar for assembly macros.

• to have locally scoped labels, to aid in writing macros, and

• given this, to make the language as syntactically simple as possible.

There is no reason at the lowest assembly language for there to be any conve-

niences to the programmer to make code easier to write and to read, since these can

be easily added as macros.

To begin with, the way of sequencing instructions is awkward. What we would

like would be a way to put instructions in sequential order. Instead of writing

(let ((*next (add z x y)))

(let ((*next (mv y 5)))

(mv x 3)))

we would like to be able to write

(seq (mv x 3)

(mv y 5)

(add z x y))

In order to do this, we have two ways to define high-level macros: one global and

one local, as seen in Figure 8. This macro system is a default implementation of the

one presented in Section 8.

Using this macro system, we can define a seq macro:

(define-syntax seq

(syntax-rules ()

((seq (s1 asm-stm)) s1)

((seq (s1 asm-stm) (s2 asm-stm) ...)

(let ((*next (seq s2 ...)))

s1))))

Another kind of macro we might want to write would provide more advanced

control-flow. Writing a loop, as we see above, is very awkward in the base assembly

language. What we would like would be a simple loop keyword, written (loop

e s), that would execute the statement s for e iterations. This can be done with

high-level macros.
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(define-syntax loop

(syntax-rules ()

((loop (n asm-exp) (s asm-stm))

(letrec ((*loop (seq (bez loopvar *escape)

s

(add loopvar loopvar -1)

(jmp *loop)))

(*escape (jmp *next)))

(seq (mv loopvar n)

(jmp *loop))))))

With these macros, we can now rewrite the multiplication example in the previous

section:

(seq (mv x 0)

(loop 5

(add x x 3)))

9.2.1 High-level assembly macros and namespaces

The namespace mechanism described in the last section works well with the assembly

language. Labels work with it directly. When a label is declared, we merely need to

call namespace-declare on the current namespace, and when we parse a label, we

merely need to call namespace-lookup. There is only one exception to this rule and

that is next. The label next is always implicitly captured: it exists at the top-level

assembly namespace only. When let and letrec statements bind the label next,

the label is found in the top-level namespace.

Registers would seem to be incompatible with namespaces, since they are not

declared. However, we can introduce a rule: if a register is introduced via the

hygiene-capturing feature of syntax-rules, it is declared; otherwise, registers in

separate namespaces are always separate. Thus, in the statement

(let-syntax ((init-i (syntax-rules () ((init-i) (mv i 40))))

(dec-i (syntax-rules ()

((dec-i) (add i i -1)))))

(seq (init-i)

(loop i (dec-i))))

the occurrences of the name i in init-i, dec-i and the loop statement are implicitly

referring to separate registers, whereas in the statement

(let-syntax ((init-i (syntax-rules (i) ((init-i) (mv i 40))))

(dec-i (syntax-rules (i)

((dec-i) (add i i -1)))))

(seq (init-i)

(loop i (dec-i))))

the four occurrences of i are referring to the same register. It is interesting to note

that we have allowed separate hygiene rules for separate sorts of identifiers.
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10 Termination analysis

An observation we frequently would like to make on our code is whether it terminates

or not. This observation is often useful to know just for itself – we would often like

to ensure that code we write will not lock up under any circumstances. Additionally,

this observation is required for some optimisations, such as constant folding. We

provide this capability by implementing a basic analysis for the core language, and

permitting it to be extended for embedded languages that might have more restricted

semantics.

Our analysis takes the form of a generic function halts?. If halts? returns a true

value for a syntax node, then the analysis has determined that control will exit that

node in all environmental contexts. If there exists a context under which control will

never exit the specified syntax node, then the method will return #f. If the analysis

cannot determine whether or not the current node will terminate, it will return #f.

In this way, the analysis is conservative.

10.1 A simple algorithm for termination analysis

At the assembly language level, we would prefer not to do a complicated analysis;

most of our information will come from higher language levels. So, our algorithm

at this language level is very basic. The method halts? on letrec nodes always

returns #f. Additionally, jmp nodes always return #f, not because they do not

terminate, but instead because statements containing them are not guaranteed to

terminate, since it is difficult to track where control goes. Applying halts? to a

let node returns #t if and only if halts? produces true when applied to every

sub-expression of the let node. Here is the halts? method for let nodes:

(define-method asm-let halts?

(λ (s) (and (halts? stm)

(andmap halts? stms))))

Note that every assembly language statement containing a loop or a recursive call

will necessarily return #f.

10.2 Extending termination analysis

In its current incarnation, this algorithm is not very useful. The generic function

halts? will return #f for code of any significant complexity. As we move up

the language tower, we will have much more interesting things to say about

termination analysis. Currently, for example, calling halts? on the multiplication

example presented above will return #f, since the rewritten expression is a letrec

node.

With the language extensions we have introduced to the assembly language, we

already have a good opportunity for improving the analysis: the loop macro is a

good source of control information. In order to provide a more precise analysis for

loop nodes, we merely override the halts? method for loops:
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Fig. 9. A type system for the assembler language.

(define-method loop halts?

(λ (s) (and (asm-constant? n)

(<= 0 (asm-constant-value n))

(halts? s))))

The analysis is now more advanced. A loop node is now defined to halt whenever

its loop bound is a constant, the bound is at least 0 and the loop body halts. Now,

running halts? on the multiplication example will return #t.

11 A type system for assembly language

An analysis we would like to be able to do at the assembly language level is type

analysis. There are several purposes that a typed assembly language such as the one

developed by Morrisett et al. (1999) can fulfill, but our main focus here will be on

debugging: we would like our type system to catch errors arising from misuse of

data. It would be possible for such a type system to make stronger guarantees about

the code it is used to analyse, and to implement this system in Ziggurat; however,

such a system would require a radically different design than is presented here.

For the assembly language, both statements and expressions are typed. The type of

an expression represents the kind of value it produces, while the type of a statement

represents requirements on registers on entry to that statement. In order for this to

work, we need parametric polymorphism: although (add z x y) requires x and y

to be numbers, z can have any type on entry, since its value will be overwritten. We

refer to the types of statements as code types. Since labels are bound to statements,

and labels can be used as expressions, expressions can have code types, as can

registers: this reflects the fact that registers can hold code pointers.

At this language level, we have only one base data type: word. A word can

be an integer, a character, or a pointer to structured data. This part of the type

system is deliberately kept open, with the expectation that higher language levels

will elaborate on it.

A monomorphic code type is a mapping from all possible registers to types.

Since this would be impractical to represent, and also too restrictive, we employ

polymorphism by means of the type system in Figure 9. Using this type system,

we can specify the code type that only requires the register r to have type word as

∀α.(r :word; α).

Using this basic system, we can define three typing relations: one for segments,

one for statements and one for expressions. For segments, the relation g⊥ indicates

that the segment g has a correct typing. For statements, the relation E � s : ct

specifies that in label environment E, statement s has type ct . A label environment
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Fig. 10. Typing relations for the assembly language.

is a partial mapping from labels to type schemas. For expressions, the relation

E � e : t in ct specifies that in label environment E, inside of a statement of type ct ,

an expression e has type t. For example, we might conclude that {next �→ ∀α.(r2 :

word; α)} � [[(mv r2 r1)]] : (r1 :word; β) holds. The mutually recursive definitions of

these relations are shown in Figure 10.

Consider, for example, the MvType rule. We wish to show that E � [[(mv r e)]] :

ct . First, we look up the type of the expression e in ct . This corresponds to the

precondition E � e : t in ct , which can be derived from one of the three expression

type rules. Next, we require that the destination register have the same type, which

corresponds to the precondition E � r : t in inst(E[next]). Since we require that

the destination register have this type after the instruction has completed, this is a

precondition on the type of the next label, which can be found by looking up next in

the current label environment: E[next]. Finally, we require that registers not altered
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by the mv instruction retain their type. This corresponds to inst(E[next])/r = ct/r.

The rules for add, ld and st are analogous.

A word about the ‘function’ inst(): this is the instantiation relation – it is not

technically a function, despite the fact that we use function notation. When we

write inst(τ) = ct , we mean that the pair (τ, ct) is in the inst relation, i.e., that ct

instantiates type schema τ. When we write that inst(τ)/r = ct/r, we mean that the

condition on inst(τ) is satisfied by some ct ′ that instantiates τ. In more mathematical

terms, ∃ct ′ . ct ′ instantiates τ and ct ′/r = ct/r.

The rules for jmp and bez are not complex, despite their control effects. If we

have an instruction (jmp e), we merely check that the type of the expression e is

compatible with the type of the entire statement. The rule for bez is analogous.

The rules for let and letrec rely on the generalisation function gen(), which

takes a type and returns a type schema. It does this by finding all of the type

variables in the type, replacing them with fresh type variables and quantifying

over those variables. The gen() function takes an extra argument, which we have

elided for brevity’s sake. Although its behaviour is predictable, it requires fresh type

variables, which must be different for each invocation. Some additional machinery

is necessary to make this happen, for example, by threading a state through the type

computation, but the specifics are not important to this paper.

11.1 Type reconstruction via Kanren

For our type system to act as a debugger, we need some way to assign types to syntax

nodes. Ziggurat gives us an opportunity to build an extensible algorithm for this. For

each syntax node, we generate a constraint. Then, we solve the resulting system of

constraints in order to come up with a correct type assignment. When we generate

new classes of syntax object, we (optionally!) override the constraint-generating

function as needed. This is how we allow global analyses in an environment where

methods can only manipulate local data. In order to solve these constraints, we

employ a unification-based constraint solver called Kanren (Byrd & Friedman,

2006), modified to employ lazy delegation.

Kanren works by solving goals. A Kanren goal is a statement of relations between

structures, either of which may contain variables. Solving the goal consists of either

finding a mapping of variables to values that makes the relations true, or discovering

that no such mapping exists. The basic goal in Kanren is unification. By specifying

(== a b), we assert that the structures a and b are the same. In the original Kanren,

a and b are Scheme data, but for our purposes, we will need a bit more complex

structure. We require that a and b be lazy-delegation objects.

Just as we have three varieties of type in the type system, we have three classes

of type in the Kanren implementation. Our three classes are variables, the word

type and label types. However, we differentiate between label types and partially

instantiated row types, and represent the latter as its own class:

(define-class word-type ())

(define-class label-type (row))

(define-class row-type (name type rest))
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Type variables are special. We use Kanren’s built-in variables for these. They are

introduced by the fresh macro:

(fresh (alpha beta) . . .)

In addition, we have a class to represent type schemas:

(define-class forall-type-schema (vars type))

The purpose of representing these as lazy-delegation objects is to allow us to

write specialised unification methods. In the basic Kanren, since we are unifying

basic Scheme list structure, when we assert that (== ’(a . b) ’(c . d)), it is

assumed that this implies (== a c) and (== b d). However, this does not apply

to row types. If we have the row type (x : α; β) and we wish to unify it with the

row type (x : γ; δ), we unify, as sub-goals, α with γ and β with δ. To unify (x :α; β)

and (y : γ; δ), the process is only slightly more complex: we generate a fresh logic

variable ε, and unify β with (y :γ; ε) and δ with (x :α; ε). We can accomplish this by

making unify a generic function on type objects, and directly encoding these rules

as Kanren goals.

(define-method row-type unify

(λ (v w) (unify-row w name type rest)))

(define-generic (unify-row v name-prime type-prime

rest-prime))

(define-method row-type (unify-row v name-prime type-prime

rest-prime)

(if (eq? name name-prime)

(all (== type type-prime)

(== rest rest-prime))

(fresh (new-row-var)

(== rest (object row-type name-prime

type-prime new-row-var))

(== rest-prime (object row-type name

type new-row-var))))))

Now that we have types representable in Kanren, it’s a fairly simple matter to

encode the type rules as unification constraints. For each syntax class, we write

a method (make-stm-type-goal s ct e) that returns a goal asserting that a

statement s has type ct in label environment e.

For example, take the MvType rule.

E � e : t in ct

E � r : t in inst(E[next])

inst(E[next])/r = ct/r
MvType

E � [[(mv r e)]] : ct
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The generic function (make-stm-type-goal s ct e) is the implementation of

E � s : ct . Therefore, the goal that make-stm-type-goal returns must reflect each

of the preconditions of this type rule. The make-stm-type-goal method for a mv

syntax object is:

(define-method asm-mv make-stm-type-goal

(λ (s ct e)

(let* ((next-type (instantiate-type

(type-env-lookup e ’next))))

(fresh (after-dst-type before-dst-type rest-type)

(make-exp-type-goal src after-dst-type e ct)

(fresh (rest)

(== ct (object label-type

(object row-type (asm-var-name dst)

before-dst-type

rest-type)))

(== next-type

(object label-type

(object row-type (asm-var-name dst)

after-dst-type

rest-type)))

To understand how this method works, we take it line by line. First, we must

define a type to represent the type of the label next. This is done by locally

binding next-type to the result of a call to instantiate-type. The function

instantiate-type takes a type schema, and replaces each of its type variables with

fresh Kanren logic variables. This corresponds to inst() in our type system. Thus,

the local variable next-type holds the type of the label next.

Next, we create three fresh logic variables with the fresh form: after-dst-type,

before-dst-type and rest-type. If the mv statement is of the form (mv dst src),

then after-dst-type is the type of dst after the move instruction, before-dst-type

is its type before and rest-type represents the types of all registers not affected by

the move.

We need to assert that the type of the source expression is the same as

the destination register’s type, dst-type. This corresponds to the precondition

E � e : t in ct . This is accomplished by the goal constructed by the generic func-

tion (make-exp-type-goal e t E ct). The make-stm-type-goal method next

performs two unifications, which form the meat of the type rule’s implementation:

• The first unification asserts that the statement’s type maps the destination

register to before-dst-type and the rest to rest-type; i.e., that its type (in

the syntax of the type system) is (name :before-dst-type; rest-type).
• The second unification asserts that the type of the next instruction to be

executed is (name :after-dst-type; rest-type).

The rules for add, jmp and bez are similar. However, with let and letrec, the

story is a bit more complicated. In this case, we have to gather up the constraints
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for each of the sub-expressions, solve them and assign them to variables in order

to build a new label environment. In order to do this, we need a generalisation

function.

(define (generalize-type t)

(object forall-type-schema (find-variables t) t))

The generalisation function takes a type, and returns a type schema, quantified

over the variables found therein. In other type-reconstruction algorithms, the

generalisation function must take another argument, representing variables not

to generalise; however, in our system, we do not have function definitions or let-

bound variables, so this is not an issue. In Kanren, we run (that is, solve) goals

with the run macro. Therefore, our make-stm-type-goal for asm-let looks like

this:

(define-method asm-let make-stm-type-goal

(λ (s ct e)

(let ((new-env

(let loop ((labels labels) (stms stms) (env e))

(if (pair? labels)

(loop (cdr labels) (cdr stms)

(extend-environment

env

(asm-label-name (car labels))

(generalize-type

(run 1 (t)

(make-stm-type-goal

(car stm) ct e))))))

env)))

(make-stm-type-goal stm t new-env))))

The argument 1 to run specifies that we want at most one solution.

11.2 Extending type judgements for new syntax

Since type goals are generic functions on syntax nodes, they interact transparently

with macros. For example, if we were to type-check the loop macro introduced

above, it would work with our type system with no extension. If we were to type-

check the erroneous statement

(loop *next (add x x 1))

because there is no make-stm-type-goal method defined on loop, Ziggurat would

apply the delegation method and rewrite the statement to

(letrec ((*loop (seq (bez loopvar *escape)

(add x x 1)
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(add loopvar loopvar -1)

(jmp *loop)))

(*escape (jmp *next)))

(seq (mv loopvar *next)

(jmp *loop))))))

This would cause a type error, as expected. However, there is a problem with this:

although this code generates an error, the statement that is actually causing the

problem and thus would be reported by the type-checker is (mv loopvar *next),

which does not appear in the original code at all.

For better error-reporting, then, we might want to have a specialised method for

invoking make-stm-type-goal on loop statements. The type judgement for loop

statements is simple: it merely needs to verify that the loop variable is a word type,

and that the inner statement type-checks.

(define-method asm-loop make-stm-type-goal

(λ (s ct e)

(all

(make-exp-type-goal loop-bound (object word-type) e ct)

(make-stm-type-goal loop-stm ct e))))

Upon defining this, the type-checker will correctly report that the problem is with

the loop bound.

11.3 Sum and product types

Our type system has a flaw: it has nothing to say about the state of memory.

Therefore, our type goals for ld and st instructions necessarily require a loss of

information. When loading from memory, the type of the loaded value is allowed to

have any type.

(define-method asm-ld make-stm-type-goal

(λ (s ct e)

(let* ((next-type

(instantiate-type (type-env-lookup e ’next))))

(fresh (dst-type mirror-dst-type rest-type)

(make-exp-type-goal src reference-word-type e ct)

(== ct (object label-type

(object row-type (asm-var-name dst)

mirror-dst-type

rest-type)))

(== next-type

(object label-type

(object row-type (asm-var-name dst)

dst-type

rest-type))))))
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Fig. 11. Extending the assembler syntax to provide sum and product datatypes.

Because of this permissive type system, it is possible to store a word value to

memory, and read it back as a code pointer. However, if we implement structured

data with macros, we can extend our implementation of the type system to better

aid us in debugging.

At the next level above our core assembly language, we add only three kinds of

structured data: sum types, product types and named recursive types. We will defer

discussing named types for the moment. We define the rest of the new grammar in

Figure 11.

• kons, kar and kdr define product types. The (kons r x y) form builds a

two-place data structure (or pair) containing the values of x and y, and places

the address of the pair in r. A (kar r x) form extracts the first value of pair

x and places the result in r; likewise, (kdr r x) extracts the second value.

The macro for kons expands into code that performs a system call to a malloc

procedure to allocate a new two-word block of storage; this keeps the macro

simple and the extraneous details of memory management off-stage so that

we may focus on our static semantics. Figure 12 shows the implementation of

the pair operations.

• left, right and branch produce and consume values with sum types. A (left

r e) form builds a two-way sum object by injecting the value of e into its

left side; likewise, (right r e) injects e into the right side of the sum. A

(branch r l1 l2) performs a conditional branch based on the value of r: if it

was constructed with left, then control transfers to l1, otherwise, it jumps to

l2. In both cases, r is overwritten with the injected value.

Providing advanced type constructors is not adequate to introduce an advanced

type system. Despite the fact that we have built macros for structured data, the core

type system lacks the type structure permitting it to discriminate correct uses of

structured data from incorrect ones. Code such as

(seq (kons x 1 2) (kdr y x) (kdr z y))

will not signal an error, as it still delegates handling for type checking to the

underlying expanded code. However, we are now in a position to add extension-

specific static semantics to the new forms, as shown in Figure 13.

The problem with our type system is that it has no sum types, product types or

named types: all of these are represented by the universal word type. So, we begin

by defining these as lazy-delegation object classes. There is very little functionality in
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Fig. 12. Macros for structured data. Note that the identifiers rv, rp and arg1 are globally

defined at top level as fixed registers.

the basic definition of the classes: at a lower language level, structured data simply

looks like a pointer, and the rewrite function reflects that.

To implement the type rules in Figure 13, we must first define our new types.

(define-class pair-type kar kdr

(λ () reference-word-type))

(define-method pair-type unify

(λ (u v) (unify-kar-kdr v kar kdr)))

(declare-generic (unify-kar-kdr v kar kdr)

(λ (v kar kdr) (type-error "not a pair type" v)))

(define-method pair-type unify-kar-kdr

(λ (v kkar kkdr)

(all (== kar kkar)

(== kdr kkdr))))

We want product types to unify with other product types, and not with any

other structured types. Product type s unifies with product type t iff the kar of s

unifies with the kar of t, and the kdr of s unifies with the kdr of t. This is directly

represented in the code that implements the type rule (Figure 14).
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Fig. 13. Type relations for structured types.

11.4 Adding named types

Now that we have types for structured data, the next language feature we’d like to

add is the ability to name types, which is useful, e.g., for recursively defined type

structures such as lists and trees. In order to associate a named type with a form, we

must create an additional class of syntax node to represent a structured type, and

insert these nodes into the language as extensions. This is reflected in the fact that

the grammar now requires new syntax categories. The new additions are shown in

Figure 15.

• typedef introduces named types. The (typedef ((n t)) s) form introduces

one named type n in the statement s. The type t describes the internal format

of objects of type n. The name n is visible in t; this allows the language user

to define a recursive type.
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Fig. 14. Extending the type system for tuple construction.

Fig. 15. Extending the assembler syntax to provide named types.

• name and unname construct and deconstruct named types. The (name r n e)

form introduces into register r data of form e, with the named type n; e must

have the same type as the form of n. Likewise, (unname r n e) takes data of

named type n from e, strips off the name and puts the result in r.

This is easily implemented in Ziggurat. First, we must have a class for named

types. A named type compiles into its internal form. For example, if named type

inflist is declared to be (x word inflist), then the object representing the type

inflist rewrites to a pair-type object containing a word and an inflist.

(define-class named-type (name form)

(λ () form))

Unification for a named-type is simple: a named type only unifies with itself.

We still need to define type goals in this augmented type system. The goals we

will implement are shown in Figure 16. We introduce the notion of a type-name

environment. A type-name environment is a mapping from type names to types. A

type goal is now of the form E, F � s : ct , meaning that in variable environment

E and type-name environment F , the statement s has type ct . Implementing this
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Fig. 16. Type rules for named types.

would seem to present a complication: the object-oriented methods we use to create

type goals take only one environment as an argument. In actuality, this is not a

problem: since the environment is a lazy-delegation object, we can layer different

forms of type environment in the same way we layer different forms of syntactic

environment. By building a named-type environment that delegates to a raw type

environment, this environment can serve double duty.

With this addition, defining type goals is straightforward. Notably, there are no

type goals generated by the typedef syntax; it merely uses the type goals from

its inner statement, after augmenting the type-name environment. The name and

unname statements merely enforce that uses of a named type match the form of that

named type, as found in the type-name environment.

(define-class asm-name (dst src type)

(λ () (object asm-mv dst src)))

(define-method asm-name make-stm-type-goal

(λ (s ct e)

(let* ((next-type (instantiate-type

(type-env-lookup e ’next))))

(fresh (mirror-dst-type rest-type)

(make-exp-type-goal dst type e ct)

(== ct (object label-type

(object row-type (asm-var-name dst)

mirror-dst-type rest-type)))

(== next-type

(object label-type

(object row-type (asm-var-name dst)

type rest-type))))))

Named types require us to write new parsing methods. We now have a new kind of

syntax for type forms, which means we need new syntax classes, syntax environments

and parse methods. This can be handled by define-keyword-syntax-class.

12 Adding function calls

Up until now, the language extensions we have built have been minor additions to

the languages, mostly for convenience. To start building towards a much higher level
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Fig. 17. Extending the assembler syntax to add one-way function calls.

language, we build a language with simple function calls. We can additionally aug-

ment the type system. We begin by adding a simple facility that permits us to marshal

and transmit values across one-way control transfers. Much more sophisticated sys-

tems have been designed for describing function-call protocols (Olinsky et al., 2006);

the system we develop here could certainly be extended and made more powerful.

At this new language level, we define a ‘function’ to be a special label defined at

the top level. Functions are defined by using the fundef form, and called using the

funcall form. Functions are called with an arbitrary number of arguments, and

never return. Functions that return will be introduced at a higher language level.

If we assume a new syntactic form putchar that calls a system routine to print a

character, we can write code to print the characters ab:

(fundef ((foo (x y) (seq (arg2reg z x)

(putchar z)

(funcall y)))

(bar () (putchar #\b)))
(seq (exp2arg char1 #\a)

(funcall foo char1 bar))

Arguments, both formal and actual, are a type of syntax node separate from

ordinary registers. This is mostly convenient for semantic analysis: keeping registers

that are only used in function calls separate from those that can be arbitrarily

manipulated will help us in later analyses, particularly in calculating control-flow. In

order to use arguments outside of the realm of a function call, they must be accessed

by using the arg2reg and exp2arg forms. The arg2reg transfers an argument into

a register, while exp2arg performs the reverse transfer. These forms translate into

register moves, which will either be eliminated during register allocation, or will lessen

register pressure. The grammar of this new language is presented in Figure 17.

Function arguments are implemented as assembly registers and labels. Their

implementation takes the form of a lazy-delegation object that delegates to an

expression.

(define-class funarg (name register?)

(λ () (if register?

(object asm-register name)

(object asm-label name))))
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Likewise, arg2reg and exp2arg translate into mv instructions.

(define-class arg2reg (dst src)

(λ () (object asm-mv dst src)))

(define-class exp2arg (dst src)

(λ () (object asm-mv dst src)))

The Ziggurat definition of the function form is fairly simple: for each function call,

we allocate a heap frame containing the arguments to the function. At a function

call, we allocate the frame and store the actual arguments, and at the function site,

we unload the arguments from the arguments frame. While it is not practical to

define these as high-level macros, the use of templates simplifies it quite a bit.

(define-class fundef (label formals body)

(λ ()

(let loop ((formals formals) (num 0))

(if (pair? formals)

(parse-template-with-variables

top-level-asm-env source

((’fnext (loop (cdr formals) (+ num 1)))

(’temp-reg (generate-arg-register-object))

(’formal-reg (car formals)))

‘(seq (add temp-reg arg-reg ,num)

(ld formal-reg temp-reg)

fnext))

body))))

This code specifically captures an external arg-reg; we do this so that we have one

register common to all function calls and returns that contains the location of the

current argument frame.

12.1 Types for continuation-passing style

In order to add types to our functions, we must alter the syntax a little bit. We now

put types on the formal parameters of our functions:

f ∈ FunDef ::= (a ((a t) . . .) s)

Next, we must define a function type:

t ∈ Type ::= . . . | (t1 . . . → ⊥)

(define-class function-type (args))

We could have our function type delegate to a code type, but we do not, for two

reasons:

• We do not wish to bake our function-call mechanism into the type system, as

would be necessary to do inside the delegation function.
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Fig. 18. Adding types for continuation-passing style functions.

• It is not necessary, since we wish to enforce that functions are only called in

the context of a function-call instruction.

Since argument registers are separate from ordinary registers, we must aug-

ment the definition of code types to be not a Reg → Type map, but rather a

Reg ∪ FunArg → Type map. Now, we can easily specify the new type rules in

Figure 18.

Encoding these is once again simply a matter of encoding the type rules.

(define-method funcall make-stm-type-goal

(λ (s ct e)

(let loop ((args actuals) (arg-types ’()))

(if (pair? args)

(fresh (new-arg-type)

(make-exp-type-goal (car args)

new-arg-type e ct)

(loop (cdr args)

(cons new-arg-type arg-types)))

(make-exp-type-goal fun (object function-type

(reverse arg-types))

e t)))))
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13 Control-flow analysis

In addition to providing a nice link to the type system, the function-call abstraction

allows us to do some more complicated analysis. Something we will need later

on for compilation, as well as for simple debugging, is a notion of control-flow:

we wish to answer the question, ‘from a particular instruction, where might control

go next?’ Naturally, we want a conservative analysis: while we can tolerate

control never going to a position we thought it might, we may have problems

if control does go to a position we never anticipated. Thus, our low-level analysis

might be somewhat broad, while we use the extensibility of Ziggurat to make it

more precise when we extend the syntax.

13.1 Fixed-point analysis with Tsuriai

In order to perform global control-flow analysis, we employ a constraint solver

called Tsuriai, which we developed specifically for Ziggurat, designed much in the

same vein as Kanren. Unlike Kanren, however, goals are based on set inclusion

rather than unification, and are run until a fixed point is reached.

The basic goal in Tsuriai is an assignment of a set to a variable. For example, if

we have two variables x and y, where x is defined by x = y ∪ {3} and y is defined

by y = x ∪ {4}, and we wish to find the least fixed point of these mutually recursive

definitions, we would write

(fresh (x y)

(<- x (U y (set 3)))

(<- y (U x (set 4))))

Solving the goal with a run command tells us that x = y = {3, 4}.
We need one more thing in order to start building control-flow analyses. The

fresh keyword will not suffice in order to introduce logic variables; we will need a

logic variable for each statement, since we will need a mapping from each statement

to a set of statements. Therefore, Tsuriai provides a function ! that is a simple

mapping from lazy-delegation objects to variables.

Now we can define Tsuriai goals for control-flow problems. These are created

by the generic function (make-stm-flow-goal s e), where s is the statement in

question and e is the label environment. Most of these will be quite simple. For

example, since a mv statement always branches to the statement labeled next, its

associated goal is:

(define-method asm-mv make-stm-flow-goal

(λ (s e)

(<- (! s) (label-flow-lookup e ’next))))

The methods for add, ld and st are analogous. Flow analysis for let and letrec

simply extends the label environment and calls make-stm-flow-goal recursively.
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(define-method asm-let make-stm-flow-goal

(λ (s e)

(let ((new-env (let loop ((labels labels) (stms stms))

(if (pair? labels)

(extend-label-flow-environment

(loop (cdr labels) (cdr stms))

(car labels)

(car stms))

e))))

(fold (λ (s g) (all (make-stm-flow-goal s e)

g))

(make-stm-flow-goal stm new-env)

stms))))

However, jmp and bez do present a challenge – in fact, the main challenge –

of control-flow analysis: what if we branch to a register? At the base assembly

language level, we give the most conservative answer possible, and use a special

value ⊥, which in this context is our ‘don’t-know’ value: that is, if the set of

statements that a statement may go to is ⊥, then control may go anywhere.2 The

rule for jmp is thus dependent on the kind of expression of the destination expression.

So, we call a generic function on the relevant expression.

(define-method asm-jmp make-stm-flow-goal

(λ (s e) (make-exp-flow-goal dst s e)))

The generic function make-exp-flow-goal returns a goal corresponding to the

statement s branching to the proper target. For example, the make-exp-flow-goal

on labels is

(define-method asm-label make-exp-flow-goal

(λ (ex s e)

(<- (! s) (U (! s) (label-flow-lookup e name)))))

The generic function make-exp-flow-goal on registers then simply gives us ⊥.

(define-method asm-register make-exp-flow-goal

(λ (ex s e) (<- (! s) bottom)))

Using this, we can analyse

(seq (add x x 1)

(jmp x))

and discover that the only next statement for (add x x 1) is (jmp x), and the set

of possible statements for (jmp x) is ⊥.

2 In actual practice, control cannot go absolutely anywhere; it can only go to labels that have been
stored into registers or memory. Therefore, we maintain a flow variable bottom, and every time we
store a label l, we add a goal that bottom may contain l.
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13.2 Control-flow analysis for functions

The fact that we give up on control-flow analysis whenever a statement jumps

through a register greatly restricts the kinds of programs we can effectively analyse.

For example, the function calls presented above will be completely unanalysable,

since every function call involves a jump to a register. However, control-flow analyses

for higher order languages do exist, and we would very much like to take advantage

of them.

Using Tsuriai, we can implement a constraint-based version of 0CFA (Shivers,

1991), a basic control-flow algorithm for higher order languages. But first, we’ll need

to add an additional function to Tsuriai, maps. The function maps takes an accessor

and a function from one argument to a Tsuriai goal. This function then returns a

Tsuriai goal. Running maps on an accessor a and a function f applies f to each

value returned by a . So, in order to compute the set S defined by

1 ∈ S

∀n ∈ S . 3 − n ∈ S

we write the Tsuriai goal:

(fresh (S)

(<- S (U S (set 1)))

(maps S (λ (n) (<- S (U S (- 3 n))))))

Tsuriai does not give us the computational power we would need for true abstract

interpretation, but we can run a constraint-based algorithm. We use Tsuriai to

find a set of possible values for each funarg. At this language level, control-flow is

manipulated through higher order functions, and our algorithm is explicitly designed

to take this into account: we only consider mappings of funargs to sets of fundefs;

all other possible assignments, for example, through the use of exp2arg, cause the

funarg to be mapped to a conservative ⊥ value.

The algorithm is implemented as the generic function make-stm-flow-goal for

fundefs and funcalls. For fundefs, all we need to do is map the function name to its

definition.

(define-method fundef make-stm-flow-goal

(λ (s e)

(all (<- (! (funarg-name label))

(U (set s) (! (funarg-name label))))

(make-stm-flow-goal body e))))

The reason we have the goal

(<- (! (funarg-name label))

(U (set s) (! (funarg-name label))))

instead of the apparently equivalent (<- (! (funarg-name label)) (set s)) is

that the former allows for the possibility that the funarg that represents the current
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Fig. 19. Extending the assembler syntax to provide lexically scoped function declarations.

function might be overwritten with an exp2arg instruction. Now, for each function

call, we map the formal arguments to the actual arguments.

(define-method funcall make-stm-flow-goal

(λ (s e)

(maps (! (funarg-name fun))

(λ (fundef)

(map-formals-to-actuals fundef actuals)))))

(define-method fundef map-formals-to-actuals

(λ (fundef actuals)

(let loop ((formals formals) (actuals actuals))

(if (and (pair? formals) (pair? actuals))

(all (<- (! (funarg-name (car formals)))

(! (funarg-name (car actuals))))

(loop (cdr formals) (cdr actuals)))

succeed))))

The rules for exp2arg returns ⊥, which is pre-assigned to the set of all functions.3

The succeed goal succeeds automatically, without binding any variables.

14 Closure conversion

While now we have functions, we are still missing many of the features of a high-

level programming language. In the next step, we attempt to start using lexically

scoped variables as opposed to the registers available lower than this point. In order

to make this conversion, we have to start using closures.

14.1 Function flattening

At the simple function-call language level, all of our functions are introduced at the

top level. At higher language levels, we will need the ability to introduce functions

in the middle of the program. So, we introduce a let-fun form, as in Figure 19.

The function-language form indicates that the program may contain local

functions. It acts as a wrapper, allowing us to embed source written in the language

that provides lexically scoped function declarations into the language context of

the lower level language, which only permits top-level, globally scoped function

3 Once again, in actuality, ⊥ need not map to every function, merely the ones that escape via arg2reg.
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declarations. The wrapper is, of course, a macro that compiles its body into a

fundef form.

(define-class cl-function-language (stm)

(λ () (syntax-object fundefs source

(local-fundefs stm)

start)))

The function definitions of the rewritten fundef form are discovered as a result

of invoking the local-fundefs generic function on the enclosed statement. The

generic function local-fundefs returns all of the function definitions made inside

an assembly statement. We need to define this method for all assembly language

statements. For let and letrec statements, it will combine the local function

definitions of all of the statements inside that statement. For all other base-assembler

forms, it will return the empty set.

(define-generic (local-fundefs stm) ’()))

(define-method asm-let local-fundefs

(λ (this)

(append (local-fundefs stm)

(foldl append ’()

(map local-fundefs stms)))))

Local let-fun forms will return the functions defined.

(define-method let-fun local-fundefs

(λ (this) (append fundefs

(foldl append ’()

(map local-fundefs fundefs))

(local-fundefs start))))

Since function definitions are lifted to the top level, the let-fun form, when it is

compiled, simply removes the function definitions.

(define-class let-fun (fundefs start)

(λ () start))

This will allow us to define functions locally.

14.2 Defining closures

The argument registers introduced in the previous section have different scoping

rules from ordinary registers. They are declared in the function header, and are

accessible within the scope of the function definition. With locally defined functions,

this presents us with a potential problem: argument registers defined in one function

may be used in another. Therefore, we need closures.
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The purpose of a closure is to store the values bound to the free variables in

a function, thereby ‘closing’ it. Therefore, in order to create closures, we need to

know the free variables contained in a function. We do this via a lazy-delegation

method, free-variables, that, when called on an AST node, returns an object of

class arg-set. An arg-set represents an unordered collection of funargs, and has

the usual set operations, arg-set-union, arg-set-remove and so forth, defined as

generic functions.

For the base assembler types, the implementation of free-variables is trivial.

For asm-let and asm-letrec, free-variables merely calls itself recursively on

the sub-forms.

(define-method asm-let free-variables

(λ (this)

(arg-set-union

(foldl arg-set-union (object arg-set ’())

(map free-variables stms))

(free-variables stm))))

For all other base forms, free-variables merely returns the empty set.

(define-method asm-jmp free-variables

(λ (this) (object arg-set ’())))

It’s up to the higher language level to actually generate free variables. Both

funcall and arg2reg introduce free variables.

(define-method arg2reg free-variables

(λ (this) (object arg-set ‘(,src))))

(define-method funcall free-variables

(λ (this)

(arg-set-union (object arg-set ‘(,funref))

(foldl arg-set-union (object arg-set ’())

(map (λ (x) (object arg-set ‘(,x)))

actuals)))))

Function definitions can bind variables, and thus remove free variables from a

statement.

(define-method fundef free-variables

(λ (this)

(arg-set-subtract (free-variables stm)

(object arg-set formals))))

Mutually recursive function definitions via let-fun are a little more complicated.

Since such a definition binds a set of funargs to function definitions, it removes

those funargs from the set of free variables inside those functions.
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(define-method let-fun free-variables

(λ (this)

(arg-set-subtract (arg-set-union

(free-variables stm)

(foldl arg-set-union (arg-set ’())

(map free-variables fundefs)))

(object arg-set

(map fundef-arg-reg fundefs)))))

Now that we know the free variables found in a function, we can build closures.

At the closure-language level, references to functions as values are closures, rather

than simple code pointers. A closure is a block in memory, containing first the

pointer to the function code, followed by the value of each of the free variables

of that function. In addition, all functions will take an additional argument, the

closure of the function being called. Because of that, we will need new definitions

for let-fun, funcall and fundef.

At this language level, funcall merely extracts the code pointer and calls it, with

the additional argument.

(define-class cl-funcall (funref actuals)

(λ ()

(let ((temp-reg (generate-temp-register-object)))

(parse-template-with-variables top-level-asm-env source

((’temp-reg temp-reg)

(’funref funref)

(’fcall (object funcall source temp-reg

(cons funref actuals))))

‘(seq (ld temp-reg funref)

fcall)))))

The job of a closure is to bind all of the free variables of a function. Thus, when

a function is called, the first thing it does is to take all of the values from the closure

and put them back into their respective values.

(define-class cl-fundef (name label first-formal

formals body)

(λ ()

(object fundef source label

(cons first-formal formals)

(let loop ((closure-vars

(arg-set->list

(arg-set-subtract

(free-variables body)

(object register-set formals))))

(num 1))

https://doi.org/10.1017/S0956796808006928 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006928


764 David Fisher and Olin Shivers

(if (pair? closure-vars)

(parse-template-with-variables

top-level-asm-env source

((’fnext (loop (cdr closure-vars) (+ num 1)))

(’free-reg (car closure-vars))

(’first-formal first-formal))

‘(seq (add temp-reg first-formal ,num)

(ld free-reg temp-reg)

fnext))

body)))))

Closures are generated when the function is declared. Closures are blocks of

memory that contain the free variables of a function.

(define-method cl-fundef cl-fundef-make-closure

(λ (this)

(let ((interior

(let loop ((closure-vars (arg-fun-set->list

(free-variables this)))

(num 1))

(if (pair? closure-vars)

(parse-template-with-variables

top-level-asm-env source

((’fnext (loop (cdr closure-vars)

(+ num 1)))

(’free-reg (car closure-vars))

(’reg name))

‘(seq (add temp-reg reg ,num)

(st temp-reg free-reg)

fnext))

(parse-template-with-variables

top-level-asm-env source ()

’(jmp (star next)))))))

(closure-size (+ 1

(length (register-set->list

(free-variables body)))))

(parse-template-with-variables top-level-asm-env source

((’interior interior)

(’register name)

(’label label))

‘(seq (malloc register ,closure-size)

(st name label)

interior)))))
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Fig. 20. Extending the assembler syntax to provide CPS functions.

(define-class cl-let-fun (fundefs stm)

(λ ()

(object let-fun fundefs

(let loop ((fundefs fundefs))

(if (pair? fundefs)

(parse-template-with-variables

top-level-asm-env source

((’fnext (loop (cdr fundefs)))

(’build-closure

(cl-fundef-make-closure (car fundefs))))

‘(seq build-closure fnext))

stm)))))

One side effect of this structure is that, since we use funargs that are available at

lower language levels, we do not need to alter our control-flow algorithm at all to

incorporate this new functionality.

15 Full function calls via CPS conversion

Up until now, the functions we use never return. In order to have a true conventional

high-level language, we need to rectify this. We do this by using our one-way

functions to represent continuations, which package up the computation that needs

to take place after a function call completes as a functional value that may be passed

as an extra argument to the call.

In order to do this, we cannot use the control primitives presented above, but we

can use basic assembly language. Our function language thus resembles a function-

call wrapper on top of assembly language, as seen in Figure 20.

The CPS language has a small set of primitives that perform all of the control

manipulation we need.

• let-fun defines one or more functions, similar to let-fun in the closure

language. Similarly to the closure language, we use funargs as arguments, not

ordinary registers.

• cont sequences instructions. The CPS form (cont s c) executes the statement

s followed by the CPS expression c. This is the only way to use an assembly

language instruction directly in the CPS language.

• app calls a function. The form (app ad (af a1 . . .) c) calls the function af

with the arguments a1, . . . , and puts the result in ad before continuing to c.
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• return returns from a function. The form (return a) returns the value a

from the current function.

• if performs branching. The form (if a ct cf) evaluates a; if its value is 0,

control moves to ct, otherwise to cf .

These control primitives can be directly expressed in the closure language. The major

change that we make is that we add an argument to every function, to represent the

return continuation.

(define-class cps-cont (stm cont)

(λ ()

(parse-template-with-variables top-level-asm-env

‘((stm ,stm)

(cont ,cont))

(let ((*next cont)) stm))))

(define-class cps-app (dst fun args cont)

(λ ()

(parse-template-with-variables top-level-asm-env

‘((dst ,dst)

(fun ,fun)

(args ,args)

(cont ,cont)

(cont-var ,(generate-temp-register)))

(let-fun ((cont-var (dst) cont))

(funcall fun cont-var . args)))))

(define-class cps-fundef (name args exp return-funarg)

(λ () (object cl-fundef name (cons return-funarg args) stm)))

(define-class cps-let-fun (fundefs stm)

(λ () (object cl-let-fun fundefs stm)))

(define-class cps-return (val return-funarg)

(λ () (object cl-funcall return-funarg val)))

Note that cps-fundef and cps-return have an extra field: return-funarg.

This field contains the funarg with the current return continuation. We determine

this when the CPS expression is parsed; therefore, we need a new sort of static

environment, to contain the current return-funarg.

(define-class return-funarg-env (return-funarg super)

(λ () super))

(define-generic (current-return-funarg env))

(define-method return-funarg-env current-return-funarg

(λ (this) return-funarg))
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The parsing functions thus need a minor change, in order to incorporate the cur-

rent return-funarg. The function definition needs to build a new return-funarg-

env in order to introduce a new return-funarg.

(define (parse-cps-fundef env form)

(let ((return-funarg (object funarg (gensym)))) ; fresh var

((parse-pattern-variables

‘(,parse-funarg ,(parse-list-pattern parse-funarg)

parse-cps-exp)

(name args exp)

(object cps-fundef name args exp return-funarg))

(object return-funarg-env return-funarg env) form)))

(define parse-cps-return

(parse-pattern-variables env

‘(return ,parse-funarg)

(_ val)

(object cps-return val (current-return-funarg env))))

Thus, we have built a compiler for functions out of macro primitives.

16 Macros on a higher level language

Now that we have closures and continuations, we have something that at least

resembles a higher level language. But just because we’ve reached the top of the

tower is no excuse to stop building! We can very easily put a new macro system on

our language, and permit a whole new breed of semantic conveniences. But what

do we do with these macros? What do they look like?

We can add high-level macros with the same facility as at lower level languages.

We start by creating a new control primitive.

(define-syntax seq

(syntax-rules ()

((seq (x cps-exp)) x)

((seq (x asm-stm) (y asm-stm) ...)

(cont x (seq y ...)))))

We should note here that we have two definitions of seq: one for an assembler

context and one for a CPS context. It is perfectly allowable to use them both at the

same time; since we have different parsers for different syntax types, we will parse

the keyword seq as an assembler statement when in an assembly context, and a

CPS expression when in a CPS context (Figure 21).

Now that we have higher order functions, we can build more advanced macros,

such as macros that take functions as arguments.
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Fig. 21. Extending the assembler syntax to provided CPS macros.

(define-syntax box-function

(syntax-rules ()

((box-function (f funarg))

(seq (arg2reg v f)

(malloc mem 1)

(st mem v)

(exp2arg ret v)

(return ret)))))

This takes a funarg, allocates it in its own cell in memory and returns the location

of that cell.

17 Variations on the design of Ziggurat

It’s worthwhile to consider variations on the specifics of Ziggurat’s design. Two such

variations are (1) extending the system to work with more general grammars and

(2) providing the Ziggurat meta-language with a static type system to guarantee

Ziggurat code constructs well-formed source terms.

17.1 From S-expressions to general grammars

The current Ziggurat technology commits to representing all languages within the

general framework of S-expressions. This is a reasonably universal framework:

any context-free grammar (CFG) can be mapped to an S-expression grammar in

a straightforward way.4 It’s possible to think of S-expression grammars as the

ultimate LL(1) ‘predictive’ syntax: a form is introduced by left-parenthesis/keyword.

Once we’ve seen this prefix, we know what production of our grammar has been

selected. Predictive, or LL, grammars have the pleasant property that they are easy

for humans to read in sequential, left-to-right order: the reader never has to read

and ‘buffer up’ an arbitrary amount of text before being able to determine its

grammatical structure.

However, while S-expression notations may have universal scope, they are not

universally adored. It’s reasonable to wonder if we could adapt Ziggurat to work

with notations based on more general CFGs, e.g., LL(k) or LALR(k) grammars. If

4 To see this, simply assign each production in the original grammar a unique keyword for its S-expression
analog.
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we were to attempt to do so, there would be a new set of technical challenges to be

overcome, distinct from the ones we have addressed in this article.

First, note that LL(k) and LR(k) grammars do not compose. Suppose, for example,

we have an LALR(1) grammar for Java, and we design a second LALR(1) grammar

for regular expressions. If we mix these two grammars together to produce an

extended Java that has a regexp form, the union of the two grammars is not

necessarily LALR(1). Suppose we abandon modularity and tune our regexp grammar

so that, when added to the core Java grammar, the result remains LALR(1). Now

suppose that some other programmer does the same for an SQL grammar, intended

to extend Java for database queries. Even given that these two language extensions

are LALR(1), we still have no guarantee that the union of the two will preserve

LALR(1).

Second, recall that a lexically scoped macro facility requires parsing and static

analysis to be intertwined (as discussed in Section 4.3). An attractive feature of

S-expressions is that they are a form of ‘pre-grammar’ (in the same sense that the

XML community refers to XML terms as ‘semi-structured’ data). S-expressions have

a limited amount of structure – the tree structure of the sexp – that has an important

interaction with our interleaved parsing/analysis task. Consider, for example, what

happens when a Scheme compiler encounters a form such as

(q (a b) 3 "dog")

Even before the compiler has determined what the form is (e.g., is it a macro? a
function call? a core-language special form?), it is able to bound the form’s syntactic

extent: it ends at the right parenthesis that matches the ‘(q’ introduction. So, if q

is a macro keyword, the compiler knows exactly how much source text (or, more

accurately, how much of the pre-grammar tree) to pass to its transformer: the

material within the parentheses.

One possible avenue one could explore in order to move beyond S-expression

syntax is to employ parsers capable of parsing general CFGs, such as Packrat (Ford,

2002) or other GLR techniques. We lose the ability to parse input with linear

time and memory, but this is not of critical importance for many applications.

While general CFGs compose, of course, this does not resolve the issue of am-

biguous parses, so this avenue does not provide the kind of modularity we really

want.

The ambiguity issue of GLR parsing carries with it a design message. GLR

parsers work, roughly, by carrying forward multiple parses in a nondeterministic

fashion; hopefully, later information encountered during the parse will winnow

the multiple possibilities down to a single unambiguous parse. The fact that GLR

parsing requires super-linear computational resources is a sign that we are asking

too much of the parser – in particular, when the parsing engine happens to be a

human. Notations should be easy to read. Asking a human to hunt around a large

string playing detective to resolve local syntactic ambiguity is forcing the human to

burn time and effort on the wrong task. One is jerked from the semantic level of
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processing the text up to shallow issues of syntax; the interruption of one’s train of

thought is annoying and counterproductive. This is bad design.5

A more promising approach is to restrict our grammars instead of enriching

them, relative to LR(k). The ‘parsing expression grammars’ of Grimm’s Rats!

system (Grimm, 2006) for syntax extension are truly composable. It might be

possible to attach a Rats!-like parser-generator to a Ziggurat-like macro system,

such that language extensions consist of additions to the concrete syntax of the

language, to form a composite syntax for each extension. Coming from a Scheme-

macro background, however, we still would like a technology that permits syntax,

itself, to be bound with lexical scope, as described above.

Again, could one figure out some way to beat these problems in a setting that

permits more general grammars? Perhaps. However, we do not believe that this is

the deep problem with the large payoff. The expressiveness gained when moving

from an S-expression framework to a general CFG framework is, to our way of

thinking, simply a ‘constant factor’ in notational overhead. An aphorism of the

Lisp/Scheme community states that after a few weeks of programming in these

languages, ‘the parentheses disappear’. That is, programmers no longer perceive the

program in terms of the pre-grammar; they perceive, rather, the actual syntactic

structure of the terms, which is as rich in the S-expression world as it is in the

general CFG world. The true payoff comes in having a general framework in which

we can express different notations with distinct static and dynamic semantics. This

is the theme we have explored with our work here.

Scheme programmers can, and do, routinely write code where they shift between

multiple languages in the space of a few lines of code. In the space of ten lines

of code, a Scheme program can shift between core Scheme syntax, specialised

process notation for executing Unix processes, regular expressions for searching

strings and an HTML notation for scripting web interactions. The syntactic cost to

shifting between these languages is nothing more than a left parenthesis and a single

5 An illuminating design case is the syntax of APL. Because the language has so many primitive
operators, one would expect APL’s precedence rules to be a nightmare – significantly worse than
the rules for C’s modest set of operators (which are already too complex for most programmers to
remember and use correctly). However, APL’s solution to this Gordian knot is elegant and simple:
APL resolves operator application right to left. At first, it seems odd that ‘a × b + c’ means ‘add b
and c, then multiply this sum times a’, but after a week of programming, it becomes a great relief that
the programmer never has to interrupt his train of thought to resolve operator precedence: a single
universal rule handles every situation.
Note that S-expression frameworks, like APL syntax, have no precedence issues, for a similar reason:
they are too simple to have problems. Scheme programmers never, ever spend time wondering about
the precedence of operations in the string ‘(* a (+ b c))’.
A second design heuristic that is related here is the notational mantra, ‘Always use a tool small enough
for the job’. We believe that the clarity of a notation (to a human) and the degree to which terms in that
notation can be analysed (by a computer algorithm) are related: if a term is difficult for a computer
to understand, it is quite likely going to be difficult for a human to understand. Thus, expressing
a computation with a regular expression (when we can do so) is likely clearer than expressing that
computation in C code.
This applies to parsing, as well: ceteris paribus, it seems reasonable to suppose that a notation that can
be expressed with an LL(1) grammar, which can be parsed with a linear-time/linear-space algorithm,
is going to be easier for a human to read and parse than a notation whose grammar requires a
super-linear parsing algorithm.
Notations are designed artifacts; there is benefit to lightweight designs.
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keyword; the specialised-language term extends to the matching right parenthesis.

Until we can see how one could achieve this kind of syntactic modularity and

composability in a more general CFG framework, we will have a difficult time

working up much interest in this larger setting. As programmers, we are being too

richly rewarded for staying within the S-expression paradigm.

17.2 Static semantics in Ziggurat

Ziggurat provides no form of static constraint (at the Ziggurat, or meta, level) to

guarantee that source terms constructed by Ziggurat code are even syntactically

well-formed trees. Ziggurat code is able to build a syntax tree that has, e.g., a

‘declaration’ or ‘statement’ node where an ‘expression’ node should go. It is up to

the designer of a given language to implement code that walks syntax trees to check

them for correctness. Could we extend Ziggurat with, say, a static type system that

would guarantee that the syntax trees it constructs are correct?

We believe it would be possible to do so, and that such a type system would

provide a useful capability to language designers working in Ziggurat. The recent

work of Herman and Wand (2008), for example, is one promising approach towards

addressing this issue. We did not explore such a type system simply in order to

simplify the task of designing and implementing Ziggurat; it would have delayed or

halted development and evaluation of the system we currently have.

Note, also, that syntactic correctness is just the beginning. Simply guaranteeing

that a term is grammatically well-formed (which is what a type system would provide,

at the Ziggurat, abstract-syntax meta-level) does not guarantee that the term will

pass more sophisticated tests associated with its language’s static semantics. So

having a type system in the meta language does not save us from the necessity of

doing static correctness checks with Ziggurat code.

18 Related work

The subject of language extension has recently been of interest to a number of

projects, due in part to the proliferation of domain-specific languages for Web

services. Ziggurat’s design has been influenced by several of these related projects.

18.1 Metaprogramming

Some recent work in domain-specific macros has been in ‘metaprogramming’, the

development of tools related to source-to-source program translation. A successful

metaprogramming tool in wide use today is Stratego (Visser, 2004), a program-to-

program source code translation toolkit based on term-rewriting systems.

Stratego allows one to design a domain-specific language, and specify its dynamic

semantics by rewriting programs into an underlying language, such as Java. Thus,

Stratego makes it easy to write source-to-source compilers, which is similar to the

functionality presented by macro systems. An advantage of Stratego over Ziggurat

and other Scheme-like macro systems is that Stratego allows for non S-expression-

based grammars. However, Stratego does not provide tools for semantic extension.
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In order to implement a type system for a domain-specific language designed with

Stratego, the source-to-source compiler would first check the types of the source

program, translate the program text, and then allow the compiler of the underlying

language to perform its own type checking. It is not possible to link the static

semantics of the domain-specific language to that of the underlying language, as

in Ziggurat. This complete separation of language semantics is good for translating

languages that have dissimilar semantics, such as translating from a database-query

language to a high-level language, but does not work as well for finer-grain language

extension, such as the seq and kons language extensions presented earlier in this

paper.

Another difference between Stratego and Ziggurat is that Stratego is a tool for

full-program transformation, and does not allow languages to be embedded, as in

macro systems. However, the MetaBorg tool (Bravenboer & Visser, 2004), which

is built on top of Stratego, does allow languages to be embedded. For example,

one could implement a regular-expression language or a GUI-specification language

inside of Java in MetaBorg – tasks one might accomplish with a macro system.

However, language embedding is still coarser grained than syntactic extensions

such as seq and kons, which are possible with macro systems. In MetaBorg, it is

not possible for source-language terms to appear in the same syntactic context as

embedded terms. Ziggurat aims to augment the syntactic extensions provided by

macro systems with corresponding semantic extensions, whereas MetaBorg aims to

allow languages with dissimilar static semantics to be embedded.

A system with a similar approach to Stratego’s is Metafront (Brabrand et al.,

2003), a tool for specifying languages with the goal of making them extensible.

Metafront allows a language extension to specify how it adds to the grammar of a

language, and then to provide rules to transform programs in the extended language

to the base language. Metafront, like Stratego, is a full-program transformation

toolkit, without semantic extensibility. In addition, the transformation rules are not

Turing-complete, which guarantees that the compiler will terminate, but does not

allow the power of full low-level macros.

An alternate approach to metaprogramming is multi-stage programming, im-

plemented in MetaML (Taha & Sheard, 1997). MetaML takes many ideas from

macro technology. In MetaML, syntax is manipulatable data, similar to the way

macros translate syntax. Programs thus can output programs, which, in turn, can

output other programs, providing staged compilation similar to macros. Semantic

analysis is possible through a form of reflection: variables defined in one compilation

stage are available in later stages. However, as in Stratego, the focus is on full-

program transformation, unlike the local syntactic extensions available with macro

systems.

Nanavati (2000) also provides a system for extensible analysis. However, Nanavati

does not provide an object-oriented interface to his syntax. In order to implement

significant syntactic extensions in his system, the programmer is forced essentially

to simulate an object-oriented architecture programmatically, which makes for a

fairly awkward, tortured coding style. Ziggurat captures this structure directly in the

linguistic mechanisms of the meta-language.
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18.2 Macro systems

The implementation of syntax as objects, first introduced by Dybvig et al. (1992),

opens up numerous possibilities.

The analysis of macros themselves is an important related topic. Programs

containing macros can complicate tasks that are simple in languages that do not

contain them. For example, macros complicate separate compilation: if one module

depends on another module, it may depend on macros found within that module,

meaning that compilation of the first module will require including the source of the

second. Flatt (2002) has developed a method of mixing the specification of macros

with the specification of modules, allowing modules to be partially imported at

compile-time, as necessary for macros, and thus allowing for separate compilation.

The analysis of the interaction of macros and modules is an important step in

applying macro technology to a language with a module system, one that is not

covered by this work.

These compilable macros are implemented in the macro system currently em-

ployed in MzScheme. MzScheme uses syntax objects; an earlier version of the

macro system, called McMicMac (Krishnamurthi et al., 1999), performed semantic

analyses on syntax. Ziggurat draws many ideas from McMicMac. However, while

Ziggurat attempts to be a general-purpose language toolkit, McMicMac is designed

exclusively for Scheme, only dealing with the limited static semantics available in

Scheme.

Others have mixed hygienic macros with languages with static semantics, without

providing an explicit method of accessing those semantics. The language Dylan

(Shalit, 1996) contains a hygienic macro facility, without such a mechanism. The Java

Syntax Extender (Bachrach & Playford, 2001) adds a hygienic macro mechanism

to Java, again with no means to access the static semantics of the language. Even

without such a mechanism, these systems are adequate for many sorts of language

extensions.

The Maya macro system (Baker & Hsieh, 2002), on the other hand, allows macros

to access the types of sub-expressions. It does this by performing macro expansion

in stages, delaying expansion until the types of sub-expressions are available. This

is similar to the laziness of lazy delegation, but it does not allow macro writers to

specify their own static semantics.

18.3 Attribute-grammar approaches

A popular method of specifying static semantics is via attribute grammars. Another

approach to mixing language extension and static semantics is to augment semantics

specified via attribute grammars with metaprogramming facilities.

The JastAdd extensible Java compiler (Ekman & Hedin, 2004; Ekman & Hedin,

2007) uses attribute grammars to enable tree rewriting, similar to the Stratego

language-extension tool. Like Stratego and other metaprogramming tools, JastAdd

is based on rewriting one full language to another, making it ideal for incrementally

building a compiler.
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Silver AG (van Wyk et al., 2007) is a language for describing programming-

language grammars and their associated static semantics with the goal of making

these languages extensible. An application of this system is the Java Language

Extender framework, a tool for writing extensions to the Java language, both

fine-grained, such as new loop constructs, and coarse-grained, such as embedding

domain-specific languages.

Silver is based on an attribute-grammar framework. A language is described as a

number of syntax productions. Each production defines a number of attributes,

compile-time values which are calculated from the attributes of its ancestors

in the abstract syntax tree (‘inherited’ attributes) and its children (‘synthesized’

attributes). Each non-terminal defines a fixed set of attributes to be calculated for

each production of that non-terminal.

In Silver AG, the language extender is only required to provide definitions for a

subset of the attributes defined on a production. This is enabled by a feature called

forwarding (van Wyk et al., 2002). Productions can have a special attribute, called

its forwards-to attribute, which is similar to the delegate in Ziggurat. To calculate

the value of any attribute not defined on a production, Silver AG calculates the

production’s forwards-to attribute, which should return a syntactic node, and then

delegates to this node, similar to how lazy delegation deals with generic functions

on objects with undefined methods.

The difference between Silver and Ziggurat involves how they deal with the

interleaving of parsing and analysis. Both allow this, quite explicitly. In Silver, the

forwards-to attribute is an attribute like any other, and thus can be calculated from

the attributes of the node’s ancestors and descendants. Since attributes are calculated

based on the values of other attributes, the order of evaluation of attributes is very

important, and is determined via data dependence; the attribute specification is

purely functional, and thus expansion can be delayed until it is required. Thus,

if the forwards-to attribute depends on other attribute values, Silver will perform

expansion after other semantic analyses.

Ziggurat allows this behaviour by means of the laziness in lazy delegation. Ziggurat

uses only simple data flow to order the computations defined in the meta-language:

it does not perform expansion until it is needed by a generic function being

applied to a syntactic node lacking a method for that function. This puts the

burden on the language designer to prevent expansion from taking place until the

information necessary for it is available, but allows expansion in cases where it may

be difficult to automatically determine the order in which things should be evaluated.

We have found this linguistic on-demand mechanism fairly natural and intuitive

to use.

Ziggurat’s ability to delay expansion using lazy delegation is an important design

element of the system. Sophisticated macros that mediate shifts between language

levels can be written to exploit static-semantics computations performed at the

higher language level to drive the rewrite into the lower language level. For

example, the expander (i.e., the delegation method) can perform type-dependent

translation, or use the results of a flow analysis to select between translation

strategies.
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Consider implementing named, static memory locations in our assembly language.

We would like to allocate a block of memory at an early point in the program, and

then refer to offsets into this block of memory. We would like to write:

(with-static-data

...

(ld-static x speed)

(ld-static y speed-increment)

(+ z x y)

(st-static speed z))

and have this expand into:

(seq

...

(malloc global-table-location 2) ;number of data slots = 2

(+ tmp global-table-location 1) ;speed offset = 1

(ld x tmp)

(+ tmp global-table-location 2) ;speed-increment offset = 2

(ld y tmp)

(+ z x y)

(+ tmp global-table-location 1) ;speed offset = 1

(st tmp z))

Here, malloc is a macro that expands into a branch to a system routine. There are

two pieces of data that must be calculated in order to allow expansion to take place.

• The expansion of with-static-data needs to know how many static locations

are being used by the program, in order to calculate how large a block of

memory to allocate.

• Each use of a static location must know what numerical offset into the static

block is associated with that variable name.

In Ziggurat, we implement this information as a field in the with-static-data

node. Each time the parser encounters a ld-static or st-static node, it finds the

offset associated with the variable name. If there is no offset yet defined, it defines

it and adds it to the mapping. If this mapping were implemented as an attribute, it

would create a circular dependency: calculating the offsets requires the table, and

the table is generated by calculating the offsets. This would be difficult to implement

in Silver AG in such a way that it did not result in a set of attributes without a

valid ordering.

Forwarding is based on an earlier language-extension tool, called XL (Maddox,

1989). In XL, syntax nodes are parsed into records containing the attributes of that

node. New static semantics are defined by extending these records, using a subtype-

based extensible record facility built into the language. However, these records

are not composable, limiting the macro designer to a linear tower of languages;

macro packages cannot be combined in the same program. These extensible records

have associated with them a subtyping relation on sets of attributes, similar to the

attribute-grammar inheritance systems found in the LISA tool (Mernik et al., 1999).
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18.4 Semantic extension

An important related field of research is projects that have looked into semantic

extension of languages, independent of macros. The JavaCOP project (Andreae et al.,

2006), for example, looks at extending Java’s type system with type constraints.

However, JavaCOP’s syntactic mechanism only allows programmers to annotate

their programs, instead of providing new type constructs. An interesting piece of

future work for Ziggurat would be to see if lazy delegation could provide better

syntax for JavaCOP’s type annotations.

The J& project (Nystrom et al., 2006) establishes a language feature called ‘nested

intersection’. Not only is nested intersection an interesting language feature to

implement via macros, but an application of their work is in providing fine-grain

compiler extensibility through method inheritance. It is a possible future direction

for Ziggurat research to explore combining nested intersection with lazy delegation

to provide better, more terse descriptions of static semantics.

19 Future work

The potential scope of Ziggurat is wide, and there are many possible avenues one

could explore going forward. Our focus is currently on the following.

• Certification: Ziggurat permits syntax implementors to intercept and override

analysis requests with their own methods. This is a key source of power for

the system, but it is a two-edged sword: overloaded analyses, if they are buggy

or malicious, can give wrong results, possibly leading to unsafe compilation.

Since Ziggurat is intended as a general language-extension toolkit, this is

unavoidable in the general case. A possible solution, though, is to require that

certain analyses provide a certificate that their result obeys certain properties,

e.g., that they give a correct answer (of possibly varying precision), or that they

do not violate safety rules. Certification in this scheme becomes just another

analysis.

In general, if a lower level language includes checkoff sound annotations

expressing the support for a given assertion, then an analysis performed at a

higher level in the tower can be expressed by expanding into annotated code

in the lower level language. Since these annotations will be checked by the

static-semantics elements of the lower level language implementation, there is

no possibility of a buggy or malicious macro asserting a false claim undetected.

• Further analyses: The basic analyses presented here show the feasibility of

Ziggurat for implementing important code analyses. We intend to implement

more in Ziggurat. For example, we have implemented only a constraint-

based version of 0CFA. We intend to implement a CFA based on abstract

interpretation, allowing for more precise higher order flow analyses, such as

1CFA and ΓCFA (Might & Shivers, 2006).

• Further languages: We do not have enough experience with Ziggurat to

understand the limits to its general ‘language tower’ approach to design.
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A better sense of the technology’s strengths and weaknesses will only come

with time.

The most ambitious example we are attempting is a LALR parser generator,

whose exported language is a notation for writing down a CFG with associated

semantic actions. Parser generators are an interesting application of Ziggurat

technology. First, they have a great deal of static semantics that is completely

independent of the underlying target language to which the parser is compiled.

The vocabulary of grammar analysis – first and follow sets, LALR(k), SLR

and so on – constitute a static semantics, one where the language’s identifiers

are not variables, but non-terminals, which are defined and referenced by the

various productions of the grammar.

This leads to the second interesting issue: how will it affect the parser-definition

task to permit grammar macros, that is, macros that occur in production right-

hand sides, and expand into terminal/non-terminal sequences?

Third, the translation between a CFG and the source code that parses strings

from that grammar is a sophisticated and complex one: the Deremer–Pennello

algorithm (DeRemer & Pennello, 1982) is not simple code. Thus, we push the

boundaries of what has traditionally been accomplished via macros – it makes

a good example of an arena where there is no hope of statically analysing

macro-using code unless the macro itself explicitly provides static semantics,

as in Ziggurat.

Fourth, a parser tool is naturally defined by means of multiple layers in a

language tower: a CFG is translated (e.g., by the Deremer–Pennello algorithm)

to a specification of a push-down automaton (PDA). Given a language for

describing PDAs (e.g., one with ‘shift’, ‘reduce’ and ‘goto’ as basic forms), we

can then provide multiple translations from the PDA language to implementing

languages: we can compile the PDA directly to control constructs in the

lower language (Pennello, 1986), or translate the PDA to a data structure

which is then fed to an interpreter (as the tools Yacc and Bison do (Johnson,

1979)); additionally, we can consider performing analysis and source-to-source

translations on the PDA program to improve the performance of the parser.

The PDA language has its own interesting static semantics: for example, Pottier

has recently shown how important safety invariants on the PDA’s stack usage

can be statically captured by type systems (Pottier & Régis-Gianas, 2005).

We are basing our Ziggurat implementation on an existing LALR tool we

have previously designed and implemented in Scheme (Flatt et al., 2004).

• Analysis-driven translation: One of the benefits of lazy delegation is that it

allows translation to be delayed until after analysis takes place. Currently,

this is used in register allocation, although the framework would allow type-

directed translation, for example.
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