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PRODUCTS OF TRANSVECTIONS 

B. B. PHADKE 

1. Introduction. This paper is concerned with the presentation of certain 
elements of the group SL(n, K) as products of a minimal number of trans-
vections. To explain the terminology, let V be an n-dimensional left vector 
space over a (not necessarily commutative) field K. The group of all non-
singular linear transformations of V onto V (i.e. the group of all collineations 
of V) is the group GL(ny K). This group is generated by collineations leaving 
a hyperplane pointwise fixed. When n = 2 these collineations are called axial 
collineations and the invariant hyperplane (line) is then called an axis. 
Among the collineations leaving a hyperplane pointwise fixed are "trans-
vections" which move every vector by a vector lying in the invariant hyper
plane. Thus a transvection T whose invariant hyperplane is °U has the form 
Tx = x + uf(x) where u £ °tt and / is a linear map of V into K such that 
/ - 1 ( 0 ) = °tt. We say that the transvection T is parallel to °tt. The group 
generated by all the transvections is the group SL(n, K). Dieudonné [4, p. 152] 
states that every element A of the group SL(n, K) is a product of at most 
(r + 1) transvections where r is the rank of A — I, I being the identity 
transformation (i.e. r is the dimension of the path of A). This is false if the 
ground field K is not commutative. In this paper we show that certain elements 
of SL(n, K) are products of (r + 2) but not (r + 1) transvections. 

The reason why complications arise when K is not commutative can be 
explained as follows. Let D be a collineation which leaves a hyperplane °lt 
pointwise fixed. If D is neither the identity nor a transvection then there 
exists a unique 1-dimensional subspace (i.e. a line) say W = Kv such that 
W C\ °ll = {0} and such that D leaves W fixed (as a line, not pointwise). 
Such a collineation D can be given by Du = u for all u in °U and Dv = av, for 
a certain v not in %. Such a collineation is called a dilatation. If A is an element 
of GL(n,K) and r is the dimension of the path of A then Dieudonné [4, 
Theorem 1, p. 149] proves that A can be written as a product of at most r 
transvections and a single transvection or a single dilatation. Using Dieu-
donne's theory of determinants over a noncommutative field (see [2]), we 
find that SL(n, K) is the group of all collineations with determinant unity, 
see [1, Theorem 4.6, p. 163]. When K is commutative there are no proper 
dilatations in SL(n, K). In other words, if K is commutative the only collinea
tion in SL(n, K) which leaves a hyperplane pointwise fixed and which is not 
a proper transvection is the identity. On the other hand when K is not corn-
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muta t ive the dilatat ion D {Du = u for all u in °U and Dv = av for a v not in V) 
belongs to SL{n, K) whenever a belongs to the commuta tor subgroup of 
K* = K — {0} (see [1, Theorem 4.2, p . 155]). Among such di la ta t ions a re 
those belonging to commuta tors i.e. those for which a = ixvyrlv~l for some /*, 
v in K. This explains why complications enter when K is not commuta t ive . I t 
also shows t ha t the key to expressing elements of SL(n, K) as products of a 
minimal number of transvections lies in expressing the dilatat ions in SL{n, K) 
as products of a minimal number of transvections. In this paper we prove the 
following theorem. We assume tha t n ^ 2. 

T H E O R E M . A dilatation belonging to a commutator can always be expressed as 
a product of three transvections. Furthermore, given a hyperplane which does 
not contain the invariant line of the dilatation and which is distinct from the 
pointwise invariant hyperplane of the dilatation, we can choose one of the three 
transvections to be parallel to this given hyperplane. A non-identity dilatation 
is never a product of two transvections. 

2. T o make the writing of the proof easier we will restrict ourselves to the 
2-dimensional case in this and the next two sections. T h e transit ion to the 
^-dimensional case is then straightforward and is made in section 5. Greek 
letters and the letters a, b, c will denote elements of the field K. We identify 
a collineation with the matr ix representing it. T h u s taking the axis as a line 
spanned by a basis vector, a transvection can be represented by 

™ - C î ] - "<«-[iî]-
For a dilatat ion we take the axis and the invariant line to be spanned by 
basis vectors. T h e matr ix of a dilatation then takes the form 

Changing the basis amounts to changing the matr ix A to B~lAB where B is 
in GL{n, K). 

3. T h e m a t r i x of a t ransvec t ion . When the axis of a transvection is 
spanned by the transpose of the vector (1, 0) the matr ix is 7"*(/x) for some /x 
while the matr ix of a transvection whose axis is spanned by the transpose of 
(0, 1) is T(X) for some X. Since r _ 1 (X) = T( — \), the transformation 
T(\, M) = T(\)T*(ii)T( — \) is also a transvection. On computat ion we find 
tha t 

r(x.,).r(x)7«wr(-M.[i ;][; ;][_i Ï] 
= [~1 — j u \ ix "I 

L - X/xX 1 + X/iJ " 
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Hence the transvection T(X, /x) has its axis spanned by (1, X) and it takes the 
vector u — (0, 1) into u + (1, X)/z. We have thus proved the following lemma. 

LEMMA. The matrix of a transvection can always be expressed as either T(\) 
or T(\,n). 

It is easy to verify the following relations. 
(3.1) r-Kx) = r ( - x ) , r*-1^) = r*(- /0 
(3.2) T(\,fi)T(\,v) = T(\» + v) 
(3.3) r - ^ x , ^ = r ( \ , - / i ) . 

4. Proof of the theorem. Before proving the theorem we explain the 
method of proof. First note that D(a) and D(T) are conjugate in SL(2, K) 
when <i and r are conjugate in X* (see [3, p. 37]). Hence D{yii~lv~l) = 
RD{ix~1)R~1 where R G SL(2, K), i.e., i? is a product of transvections. Since 
(D(n))-1 = X)(/x-1) we have 

D{ixviTlv~l) = D^Diyirh'1) = Di^RDin-^R-1 = R*R-i 

where i£* = D(ii)RD(ix~l) is also a product of the same number of transvec
tions as is R. Our method of expressing D(ixvix~lv~l) as a product of 3 trans
vections consists in making a judicious choice for transvections which are 
factors of R so that several cancellations and contractions are possible in the 
product R*R~! = D(tiv»rlv-1). 

4.1. Construction of R. For any nonzero X in K define 

*<»-pT!]-
Then it can be verified that 

Divir1*-1) = i?(X)P(f t-
1)(i?(X))-1. 

On the other hand we have 

XK-JX-1 0] r l o T i x T 2 - Xvx-1 -Xel 

o KJ L - ( i - " ) 2 ^ - 1 IJI_O I J L ( I - ")2"_1X-1 K_T 

The last equation can be expressed as 

R(\) = T(-a)T*(\)T(\*,u.*) 

where a = (1 - v)*\-\ X* = (v'1 - l)\-\ /x* = -\v. 

4.2. LEMMA. The following identities hold. 
(4.21) T(a)D(a)T(b) = I\c)B(<r)T'(-c), wAere c = (1 - <r)~l{a + cb). 
(4.22) T*(a)D(<x)T*(b) = T*(c)D(c)T*(-c), where c = (6 + a«r)(l - <T)~\ 
(4.23) flWFWi)^-1) = r(«ro). 
(4.24) D(<r)r*(a)JD((r-1) = r * ^ - 1 ) . 
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The proofs can be obtained by straightforward computation. 

4.3. We write a = nvn~lv~l. a, X*, p* are as in § 4.1. Put 

Tx = z>Gi)r(x*. M * ) ^ - 1 ) , T2 = r-Hx*, M*). 

Then using § 4.1 and § 4.2 we have 

= £)(M)-i?(X).2?(M-1)-(i?(X))-i 

= (D(»)T(-a)T*(X)T(X*, /i*) • -DGu-1)) • I ^ X * . M*) ' 
T*-i(\)T-l(-a) 

= T(-^a)T*(Xu.-1)T1T2T*(-\)T(a). 

In the last equation we used 

r ( - j i a ) = D{tx)T{-a)D(yr') 

and 

r*(xM-x) = z?(M)r*(x)i>(M-1). 
Thus we have 

T(na)D(a)T(-a) = ^(X^^T^i-X). 

Using §4.21, T(na)D(<r)T(-a) = T(e)D(a)T(-e) where 

€ = (1 — <T)~1{IIM — era) = (1 — cr)_1(ju — c)a. 

Hence 

D(a) = r(-€)r*(xA1-i)r1r2r*(-x)r(€) 
= r(-É)r*(xM-1)r1r2r*(-XM-1) • r(«)-

r(-e)r*(xM-1)r*(-x)r(6) 
= r3r4r5, 

where 

T3 = T(-t)T*(\iJ,-1)TiT*(-Xu,-1)T(e) 
r4 = r(-e)r*(XM-1)r2r*(-XM-1)r(€) 

and 

r6 = T(-e)T*(xix-i)T*(x)T(e) = r(-e)r*(xM-1 + x)r(«). 
Thus we have proved that D (nv^v-1) is always a product of 3 transvections. 

4.4. We now prove that we can choose X in such a way that T$ is parallel 
to any given direction other than the directions spanned by (1, 0) and (0, 1). 
To show this write y = Xju-1 + X and observe that 

T6 = T(-e)T*(y)T(e) = T(-e, y) by § 3. 

Hence T5 is parallel to the direction spanned by (1, — e). Since 

e = (1 — c ) - 1 ^ — <0a 

= (î-o-^-oa-x)2*-1, 
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X can be chosen in such a way that e is equal to any given nonzero element 
of K. This implies that T$ can be made to be parallel to any given direction 
other than those spanned by (1, 0) and (0, 1). 

4.5. Finally we prove that the dilatation D{yi) = D can never be a product 
of 2 transvections. Write u = (1, 0) so that Du = u. Hence if Tx and T2 are 
2 transvections such that D = T{T2 then Du = u = T{T2u so that T2u = 
Ti~lu. Therefore v = T2u — u = Ti~lu — u. Now T\ and T2 must have 
distinct axes, °U\ and °ll\ say, for if °ttx = °U\ then D = T{T2 would be a 
transvection also. But when °tt^ ^ %i we have, since °tt\ and °U\ are lines 
through the origin, °il ̂  C\ °ti 2 = 0 so that ^ ^ H ^ implies v = 0. This 
means T2u = u and Ti~lu = u, i.e., T\U = w; which implies that u spans 
the axes of both 7\ and T2 which is a contradiction to °ll\ ^ °U\. 

The results of § 4.3, § 4.4 and § 4.5 completely prove the theorem in two 
dimensions. 

5. The transition to ^-dimensions. All the matrix calculations in § 2, 
§ 3 and § 4 can be carried over to the n-dimensional case by replacing a 
2 X 2 matrix M by the n X n matrix M given by 

L 0 M] 

where In-2 is the identity matrix of order (n — 2) X (n — 2) and all other 
entries are zeros. Hence the calculations of § 4 show that every dilatation can 
be expressed as a product of three transvections. To get the complete result 
of the theorem let D be a dilatation with invariant hyperplane °tt and in
variant line spanned by v. Let W be any other hyperplane such that v (2 W. 
Then X = °tt C\ W is a subspace of dimension (n — 2). We can choose a 
basis {ei, . . . , en) in such a way that en = v, the set {e1} . . . , en^i) spans °tt 
and {ei, . . . , ew_2, w) spans W, where w ^ en-i, w ^ v = en. Then the results 
of § 4 show that D can be expressed as a product of 3 transvections each of 
which keeps X pointwise fixed and one of which fixes w. Thus we have proved 
that one of the transvections can be chosen to be parallel to any given hyper
plane which is distinct from the invariant hyperplane of the dilatation and 
which does not contain the invariant line of the dilatation. 

It remains to show that a dilatation cannot be expressed as a product of 
two transvections. To prove this let °tt, °tt\, °U\ be respectively the pointwise 
invariant hyperplanes of a dilatation D and transvections T\ and T2 and 
assume that D = T{T2. Then for every u Ç °lé C\ °tt2 we have u = Du — 
T{T2u = Tiu, showing that u is kept fixed by 7\ also. Thus °tt\ Z) °tt C\ °tt2 

so that °tt C\ °tt\ C\ °tt2 = W is a subspace of dimension at least (n — 2). 
Hence we can choose a basis {eu . . . , en) of V such that the set {#i, . . . , en-i] 
spans °tt, en spans the invariant line of D and ely . . . , en_2 are in tfti C\ %\. 
Thus we are back in the case of § 4.5 and from the proof given there we con-
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elude that a proper dilatation can never be expressed as a product of two 
transvections. This completes the proof of the theorem in w-dimensions. 

I am grateful to Professor Peter Scherk for helpful discussions. 
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