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This paper investigates the thermal characteristics of typical Micro Electro-Mechanical
System (MEMS) Inertial Measurement Units (IMUs) with a reliable thermal test procedure.
Test results show that MEMS sensor errors, not only biases, but also scale factors and non-
orthogonalities, may vary significantly with temperature. Also, MEMS sensor errors can
have significant inconsistent curves under different temperature changing profiles. The exist-
ence of such inconsistencies posed a challenge to the following assumption of thermal calibra-
tion: the thermal drift of a sensor error is only related to the temperature of the sensor core. A
robust way to mitigate this issue is given by using the sensor data during both heat-and-stay
and cool-and-stay processes to establish the final thermal models. The performance of both
IMUs and inertial navigation systems improved significantly after compensation with the
established thermal models. Additionally, the variation of the IMU thermal parameters
with time was observed, which suggests that periodical thermal calibration is necessary for
MEMS IMUs.
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1. INTRODUCTION. Integrated Global Navigation Satellite Systems (GNSS)
and Inertial Navigation Systems (INS) have been widely used in various applications
in navigation. INS are self-contained systems which use gyros and accelerometers to
provide accurate navigation information (i.e., position, velocity, and attitude) over
the short term, while GNSS have bounded errors and can provide long-term accurate
position and velocity in ideal conditions (Titterton and Weston, 2004). These two
systems are integrated to provide accurate and reliable navigation information. In
such integration, the GNSS-derived position and velocity is often used to update infor-
mation through a Kalman Filter (KF) while the Inertial Measurement Unit (IMU)
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provides navigation information during GNSS signal outages and is used for quick
GNSS signal reacquisition (Niu et al., 2007).
Traditional INS devices are bulky, expensive and complex, and are not suitable

for general land navigation applications (Han and Wang, 2010). Recent advances in
the construction of Micro Electro-Mechanical Systems (MEMS) devices have
made the manufacture of small and light inertial navigation systems possible
(Woodman, 2007). MEMS inertial sensors are small and lightweight, and have low
power consumption, which makes them attractive candidates for INS/GNSS inte-
grated systems (Syed et al., 2007).
However, MEMS inertial sensors suffer from various errors including deterministic

and stochastic errors (Nassar, 2003). The impact of deterministic errors on navigation
is significant because any small acceleration or angular velocity errors can be inte-
grated into increasing attitude, velocity and position errors; therefore only when the
majority of deterministic errors are removed can the MEMS INS be used to provide
accurate and reliable navigation information.
Calibration is known as a fundamental way of removing the majority of deterministic

errors in inertial sensors and IMUs; however, for low-cost sensors such asMEMS, sensor
errors are highly dependent on environment factors such as temperature changes
(Aggarwal et al., 2008b). More explicitly, the actual values of sensor errors vary from
those obtained through the calibration process due to the difference between the oper-
ational and calibration temperatures (Naranjo, 2008). Such errors, if not compensated
for, will accumulate and lead to attitude and position drifts. Approximately, for 2-D navi-
gation, an uncompensated gyro bias will introduce an attitude error proportional to the
elapsed time, and a position error proportional to time cubed; also, the uncompensated
bias and scale factor error of an accelerometer will introduce a position error proportion-
al to time squared. To compensate for these errors, it is necessary to investigate the
thermal characteristics of sensor errors (Syed et al., 2007).
In this paper, a reliable thermal calibration procedure is designed and used to inves-

tigate the thermal characteristics of MEMS IMUs over the full operational tempera-
ture range. Test results reveal several key thermal characteristics of MEMS inertial
sensors, such as significant parameter drifts with temperature changes, the inconsisten-
cies under different temperature changing profiles, and the need for periodical recali-
bration of the thermal drift parameters. This paper also provides a balanced strategy
by using the sensor data during both heat-and-stay and cool-and-stay processes to ease
the inconsistency issue. With the proposed strategy, reliable thermal error models of
two typical MEMS IMUs were established and their contribution was further verified
by both the thermal compensation and navigation tests.
This paper is organised as follows: Section 2 reviews previous works and states the

problem; Section 3 introduces the proposed thermal calibration procedure; Section 4
describes the tests, including the thermal calibration tests, the compensation tests,
and the navigation tests as well as the results analysis; Section 5 provides conclusions.

2. PREVIOUS WORKS. To reduce or eliminate the impact of deterministic IMU
errors, various calibration approaches are designed according to the grade of IMUs
and applications (Shin and El-Sheimy, 2002; Syed et al., 2007; Fong et al., 2008;
Nieminen et al., 2010; Zhang et al., 2010; Li et al., 2012). However, in real-world mis-
sions, the IMUsmay be exposed to various conditions and sensor errors are susceptible
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to environmental factors, especially the temperature. To compensate for the thermal
drifts of sensor errors, thermal calibration methods are proposed. There are currently
two thermal calibration approaches: the Soak method and the Ramp method. The
Soak method works on the premise of stable sensor temperature while the Ramp
method is based on time-varying sensor temperature.
In the Ramp method, the IMU is controlled to continuously execute a sequence of

calibration actions under changing temperatures. The Ramp method is more efficient
in principle because it does not need the process of stabilising the sensor temperature
inside the IMUs (Berman, 2011; 2012) However, there are two main issues inherent in
the Ramp method, especially when it is used for the calibration of IMUs, instead of
sensors. One is that there are temperature differences between the inertial sensors
and temperature sensor inside the IMUs because they have different cores. Thus,
what we can get is the temperature at the core of temperature sensor, not that of inertial
sensors. The other issue is that the chamber temperature changes during the calibration
process will lead to changes in sensor errors, which in turn causes the calibration errors
because the raw sensor data is not collected at the same temperature. This also explains
why the temperature stabilisation process is needed in the Soak method.
In the Soak method, the temperature is controlled to be stable at several typical tem-

perature points. Compared to the Ramp method, the Soak method needs more time
since the temperature stabilisation process is time-consuming. Even so, the Soak
method is the most commonly used method and has shown effectiveness in both the
calibration of deterministic errors and the modelling of stochastic errors (Shcheglov
et al., 2000; Abdel-Hamid, 2004; El-Diasty et al., 2007; Aggarwal et al., 2008a; Niu
et al., 2013). This is because the Soak method can provide the most reliable values
of sensor errors at the chosen temperature points by stabilising the temperature.
Therefore, the choice of the thermal calibration method is a trade-off between accur-

acy and cost. Since both thermal calibration methods have been shown to be useful in
improving the performance of inertial sensors, one can choose an appropriate method
according to requirement and cost. As our purpose is to investigate the thermal char-
acterisation of inertial sensors, we need a more stable method to reduce the errors
introduced by the calibration method. Therefore, the Soak method is used. In this
paper, a whole thermal calibration procedure is designed to study the thermal drifts
of a full set of sensor errors within the entire operational range. The principles of
designing the calibration procedure, including the design of calibration scheme, the es-
timation of sensor errors, the establishment of thermal models, etc., are described in
detail. This calibration procedure is then used to establish the thermal models of
two typical MEMS IMUs.
It is found from these tests that the thermal drifts of MEMS sensor errors are related

to not only the current temperature but also the previous temperature changing
history. That is, with various temperature changing profiles, the thermal models for
the sensor errors can be different. Since our calibration procedure has been tested to
be reliable, such an inconsistency might come from the inherent property of the
MEMS inertial sensors. The existence of such inconsistency posed a challenge to the
following assumption of thermal calibration: the thermal drift of a sensor error is
only related to the temperature of the sensor core. In practical applications, there
are innumerable temperature scenarios; however, it is impossible to consider all the
possible temperature profiles during the in-lab thermal calibration stage. This paper
mitigates this issue by using a balanced strategy that makes comprehensive use of
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the sensor measurements during both heat-and-stay and cool-and-stay processes. The
thermal models established through this strategy have been proved to be robust to
enhance all sensors and navigation states (i.e., attitude, velocity, and position).

3. THERMAL CALIBRATION AND COMPENSATION PROCEDURE. In
this section, the procedure, including the design of the calibration scheme, the estima-
tion of sensor errors and the establishment of thermal models are described. The pro-
posed procedure is based on a dual-axis position turntable integrated with a thermal
chamber (as shown in Figure 1). The performance characteristics of both the turntable
and the thermal chamber are shown in Table 1. The turntable is accurate enough to
provide a reference for the calibration of low-grade IMUs. Also, there are high-preci-
sion locating pins on the mounting plate of the turntable to keep the IMUs’ axes
aligned with the turntable axes.

3.1. Design of the calibration scheme. One basic principle for the calibration
scheme design is to install the IMUs only once. Moreover, the scheme should allow
every accelerometer axis to point up and down precisely and the IMU to be rotated
around every gyro axis both clockwise and counter-clockwise with known angles.
Considering both characteristics of the equipment and calibration efficiency, the fol-
lowing eight-step calibration scheme is designed (as shown in Figure 2).
There are eight static positions and eight rotations in one calibration scheme. The

IMU outputs at eight static positions are used to calibrate all accelerometer errors
and gyro biases, while those during the eight rotation processes are utilised to estimate
gyro scale factors and non-orthogonalities.
It is vital to reduce the impact of sensor noises. For static positions, the effect of

noises can be reduced through averaging the sensor outputs. Since there are eight
static positions, the gyro noises can cause calibration errors of gyro biases

Daccuracy b ¼ σRWffiffiffi
8

p � ffiffiffiffiffiffiffiffiffiffi
tstatic

p ð1Þ

Figure 1. Thermal calibration equipment.
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where σRW is the angular random walk (ARW) coefficient, Daccuracy b is the desired
gyro biases estimation accuracy, tstatic is the static time. Similarly, the accelerometer
calibration errors caused by noises can be computed.
To calibrate gyro scale factors and non-orthogonalities with the position turntable,

the gyros’ outputs are integrated to get the angles of rotation. This integration will
result in the accumulation of gyro noises. Therefore it is preferred to perform the
rotation at a higher rate to reduce the impact of noises. Since each axis experiences
at least two rotations in one calibration scheme, the calibration errors of gyro scale
factors or non-orthogonalities caused by gyro noises can be computed by Equation (2).

Daccuracy s ¼ σRW � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tdynamic

pffiffiffi
2

p � Lref
ð2Þ

where Lref is the true rotation angle and is 90° here, Daccuracy s is the desired gyro scale
factors and non-orthogonalities estimation accuracy, tdynamic is the dynamic time, and
σRW is the ARW coefficient.

3.2. Sensor Error Models and Estimation of Sensor Errors. The error models of
accelerometers and gyros can be written as

δf ¼ ba þ Saf þNaf þ va ð3Þ
δω ¼ bg þ SgωþNgωþ vg ð4Þ

where δf and δω are the error vectors of the accelerometer-derived specific forces and
the gyro-derived angular velocity, f and ω are the true specific forces and angular vel-
ocity, ba and bg are accelerometer and gyro biases, Sa and Sg are the diagonal matrices
containing the scale factor errors,Na andNa are the skew-symmetric matrices contain-
ing the non-orthogonalities and va and vg represent the noises.
The accelerometer errors are estimated with least-squares, while the gyro errors are

calculated through a two-step method (Li et al., 2011). The details of calibration com-
putations are shown in the Appendix.

3.3. Establishment of thermal models. To compensate for the thermal drifts of
sensor errors, continuous global compensation models must be developed. In real-
world tests with various MEMS sensors, we found that some sensor errors cannot
be fitted to polynomial models because of the sharp wiggles at certain temperatures.
Therefore the first-order piecewise function is introduced to establish the thermal
models

W ðTÞ ¼ WT0 þWT1 �WT0

T1 � T0
ðT � T0Þ ð5Þ

Table 1. Specifications of calibration equipment.

Turntable

Principal axis rotation range unlimited
Principal axis angular position Accuracy ±5 ″
Tilting axis rotation range ±95 °
Tilting axis angular position Accuracy ±5 ″
Thermal chamber
Temperature range −55~+100 °C
Temperature change rate ±0·1~±5 °C /min linearly
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where T is a temperature between T0 and T1. W(T) is the calculated sensor error at T,
WT0 and WT1 are the sensor errors at temperature T0 and T1. The established thermal
models can be used to calculate the sensor errors (or the thermal drifts) at each tem-
perature and then remove them from the IMU outputs.

4. TESTS AND RESULTS. This section describes the tests, including thermal
calibration tests, thermal compensation tests and navigation tests. The proposed pro-
cedure was first applied to build thermal models of two typical MEMS IMUs in the
thermal calibration tests. With the established thermal models, thermal compensation
tests were implemented to investigate the effect of thermal compensation on inertial
sensors. Then navigation tests with static IMU data were performed to study the
effect of the thermal compensation on the navigation solutions.

4.1. IMUs used in the tests. The two IMUs tested are Xsens MTi-G
(Xsens, 2014) and NV-IMU100 (NAV Technology, 2014). Their appearances and
related characteristics are illustrated in Figure 3 and Table 2. The raw output of
MTi-G (without factory compensation) was used. The NV-IMU100 has three
MEMS vibrating ring gyros, and its output data had been partly compensated after
factory calibration.

4.2. Thermal calibration tests and results. The thermal calibration process
followed the procedure described in Section 3. Both the heat-and-stay and the cool-
and-stay temperature profiles were implemented to investigate the thermal character-
istics of inertial sensors under different temperature changing conditions. The chamber
temperature was controlled to increase from −10 °C to +70 °C with 20 °C steps (heat-
and-stay) and then decrease from +70 °C to −10 °C with −20 °C steps (cool-and-stay).
At each step, the temperature was kept stable for an hour. Also, to test the proposed

Figure 2. IMU actions in an eight-step calibration scheme.
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calibration procedure and the repeatability of sensor errors under the same tempera-
ture changing condition, both the heat-and-stay and the cool-and-stay temperature
profiles were repeated three times.

4.2.1. Thermal calibration Results of MTi-G. The results of MTi-G are shown in
Figure 4. The sensor errors at the chosen temperature steps were shown as the nodes on
the curves, while those at other temperature points were obtained with linear interpol-
ation and illustrated by lines. The dashed and solid lines represent the results with the
cool-and-stay profile and those with the heat-and-stay profile, respectively. We found
that all the sensor errors had repeatable curves during the three tests with the same tem-
perature conditions. Therefore we only show all the results of biases to illustrate the
repeatability. Only one set of results is shown for the scale factor errors and non-ortho-
ganility errors to make the figures clear.
As shown in Figure 4, sensor errors, not only biases, but also scale factor errors and

non-orthogonalities, varied significantly with temperature. The change of gyro biases
reached approximately 1500 °/h for z-axis and several hundred °/h for both x- and y-
axis. Meanwhile, the change of accelerometer biases reached 3000 µg over the entire
temperature range. The changes of the scale factors and non-orthogonalities could
also be several thousand parts per million (ppm). These changes reveal the temperature
sensitive characteristic of MEMS sensors.
Moreover, it is notable that the MEMS sensor errors had repeatable values at the

same temperature points during tests with the same temperature profile, which also
indicates the reliability of the thermal calibration procedure. However, some sensor
errors showed significant inconsistencies under different temperature profiles. For

Figure 3. Two MEMS IMUs Tested (mounted on table top inside thermal chamber).

Table 2. Specifications of tested IMUs.

Characteristics MTi-G NV-IMU100

Data Rate 100 Hz 166 Hz
Operating Range −40∼85°C −40∼80°C
Gyro Bias (1σ) 3600 deg/h 4000 deg/h
Gyro White Noise (ARW) 3·0 deg/√h 1·8 deg/√h
Gyro Scale factor error (1σ) − 7000 ppm
Accel. Bias (1σ) 2000 μg 9000 μg
Accel. White Noise (VRW) 0·002 m/s2/√Hz 0·01 m/s2/√Hz
Accel. Scale factor error (1σ) 3000 ppm 2000 ppm
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example, the y-axis gyro bias and the x-axis accelerometer bias had an inconsistency of
1000 °/h and 3000 µg, respectively. As the Soak method can provide very reliable
thermal calibration results (which can also be verified by the results with the same tem-
perature profile), the inconsistencies under different temperature conditions are prob-
ably an issue inherent in MEMS sensors.

4.2.2. Thermal calibration results of NV-IMU100. The calibration results of NV-
IMU100 are shown in Figure 5. The gyro biases were small (less than 10 °/h) due to the
symmetry of vibrating ring gyros and the factory compensation. However, the change
of gyro scale factors (e.g., y-axis) exceeded 10000 ppm. These characteristics matched
the inherent feature of the vibrating ring gyros. For accelerometers, the changes
reached 13000 µg for biases, and 4000 ppm for scale factors. There were also inconsist-
encies between the curves of some sensor errors under different temperature profiles.
For example, both the x- and z-axis accelerometer biases had an inconsistency of
almost 10000 µg, while the y-axis gyro had a difference of 5000 ppm.
Results of the thermal calibration tests indicated that MEMS sensor errors varied

significantly with temperature. Furthermore, sensor errors might have significant

Figure 4. Calibration results of MTi-G. In each figure, the dashed lines are the results with the cool-
and-stay temperature changing profile and the solid lines are the results with the heat-and-stay
temperature changing profile.
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inconsistent curves under different temperature changing profiles. To mitigate the issue
of inconsistencies and get a reliable thermal model, the results from the heat-and-stay
and cool-and-stay processes at the same temperature points were averaged to provide
the final results. The established thermal models were utilised to compensate for the
thermal drifts in both the thermal compensation and the navigation tests.

4.3. Thermal compensation tests and results. The impact of thermal compensa-
tion was investigated by comparing the residual errors (i.e., the difference between
the sensor outputs and the inputs) in three test modes.
Mode #1: without thermal compensation.
Mode #2: after compensation with the cooling models (i.e., the thermal models built

under the cool-and-stay temperature profile). The cool-and-stay temperature profile
was significantly different from the actual temperature condition in these tests.
Therefore this test model represented the compensation tests with the thermal
models obtained under a temperature profile that is inconsistent with the actual one.
Mode #3: after compensation with the averaged models (i.e., the thermal models

built by averaging the results from the heat-and-stay and cool-and-stay processes).

Figure 5. Calibration results of NV-IMU100. In each figure, the dashed lines are the results with
the cool-and-stay temperature changing profile and the solid lines are the results with the heat-
and-stay temperature changing profile.
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Tests with similar temperature profiles were not conducted here. They were expected
to provide the best results because of the repeatability of sensor errors under the same
temperature condition; however, it is impossible to consider all the possible tempera-
ture profiles in practical uses during the thermal calibration stage.
There were six tests, including three static tests and three dynamic tests, as described

in Table 3. For each test the environment temperature was changed from −10 °C to
+70 °C with a profile that is different from that during the thermal calibration tests,
and the turntable was used to provide known sensor inputs. Each test focused on
one sensor that experienced the motion from the turntable. For example, the x-axis ac-
celerometer output was investigated with a reference input of the local gravity in Static
test 1, while the x-axis gyro output was studied with a reference input of 10 °/s in
Dynamic test 1. The IMU outputs were averaged during each second to mitigate the
impact of the sensor noises.

4.3.1. Thermal compensation results of MTi-G. Figure 6 shows the compensation
results of MTi-G. Each subplot shows the result of one sensor in the corresponding
test. The blue, green, and red lines are the residual errors in Mode #1, #2, and #3,
respectively.
The residual errors in Mode #1 were immense (i.e. reached −3000 °/h and −5000 µg

for gyros and accelerometers) and changed with long-term trends; however, after
thermal compensation in either Mode #2 or #3, the residual errors were significantly
reduced, and the main long-term trends were mitigated. There were still some changes
in the y-axis gyro output. Such changes (with a RMS of around 200 °/h) were not sig-
nificant for MEMS gyros, which might be caused by stochastic errors.
The statistics (i.e., the mean and the RMS values) of the residual errors are shown in

Table 4. The RMS values were 3697, 1490 and 1951 µg for accelerometers outputs, and
279, 264 and 1938 deg/h for gyro outputs in Mode #1. After thermal compensation,
the RMS values were 1950, 475 and 560 µg, and 196, 206 and 224 °/h in Mode #2,
and 1950, 475, and 560 µg, and 196, 206, and 224 °/h in Mode #3. Thus, even the cali-
bration and compensation were conducted under different temperature profiles, the re-
sidual errors in most sensors were significantly reduced inMode #2. However, both the
x- and y-axis gyros became worse after compensation in Mode #2. On the other hand,
all sensors became better after compensation in Mode #3, which indicated the robust-
ness of compensating with the averaged thermal models.

4.3.2. Thermal compensation results of NV-IMU100. Figure 7 shows the com-
pensation results of NV-IMU100 and Table 5 gives the corresponding statistics. The

Table 3. Descriptions of the six thermal compensation tests.

Motions of the IMUs (provided by the turntable)

Static test 1 IMUs kept static with x-axis pointed upwards.
Static test 2 IMUs kept static with y-axis pointed upwards.
Static test 3 IMUs kept static with z-axis pointed upwards.
Dynamic test 1 IMUs kept rotating around their x-axis at 10 deg/s.
Dynamic test 2 IMUs kept rotating around their y-axis at 10 deg/s.
Dynamic test 3 IMUs kept rotating around their z-axis at 10 deg/s.

Chamber Temperature
Before each test, the temperature was stabilised at −10 °C;
During each test, the temperature was changed from −10 °C to 70 °C in one hour.
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Table 4. Statistics of residual errors in MTi-G outputs.

Mode #1 Mode #2 Mode #3

(Uncompensated) (Compensated with
cooling models)

(Compensated with
averaged models)

mean RMS mean RMS mean RMS

Accel.X (μg) −3287 3697 −2169 2450 −1773 1950
Accel.Y (μg) 1255 1490 −647 829 −298 475
Accel.Z (μg) 1852 1951 −186 420 −341 560
GyroX(deg/h) −127 279 −216 256 7 196
GyroY (deg/h) −17 264 498 578 −6 206
GyroZ (deg/h) −1813 1938 −362 412 80 224

Figure 6. Residual errors in MTi-G outputs.

Figure 7. Residual errors in NV-IMU100 outputs.
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residual errors were significantly reduced and the long-term changes trends were miti-
gated after thermal compensation. All sensors were enhanced after compensation in
Mode #3. On the other hand, the compensation in Mode #2 enhanced most of the
sensors but degraded the z-axis accelerometer.
Results show that thermal compensation can be effective in reducing the long-term

thermal drifts of sensor errors. However, there is a risk that the residual sensor errors
may increase after thermal compensation if the actual thermal condition is different
from the calibration temperature profile. Compensating with the averaged thermal
model is a feasible way to improve the robustness of thermal calibration.

4.4. Navigation tests and results. The navigation solution (i.e., attitude, velocity,
and position) in three test modes (as described in subsection 4.3) were calculated and
compared. The pure INS mechanisation was implemented as the algorithm for the
three modes. The details of the mechanisation algorithm have been well described in
Shin (2005). Also, we set the initial attitude and position manually at the beginning
of each segment in the three modes to focus on the impact of sensor errors on the navi-
gation errors. Hence the navigation algorithm (i.e. the pure INS mechanisation) and
the initial attitude, velocity and position information are exactly the same except for
the sensor outputs compensation. Ten data segments at different temperature points
were chosen to run the INS navigation algorithm. Each segment lasted for two
minutes. To highlight the effect of thermal compensation, static data was used to elim-
inate the impact of other factors such as vehicle manoeuvres. The navigation drifts of
Mti-G and IMU100 are shown in Figures 8 and 9, respectively.

4.4.1. Navigation results of Mti-G. In Figure 8, the maximum drifts of attitude,
velocity, and position reached 100°, 130 m/s, and 5000 m in Mode #1. After compen-
sation, these values were reduced to approximately 25°, 50 m/s and 2500 m inMode #2
and 10°, 40 m/s and 1800 m in Mode #3. To make the comparison clear, the statistics
of the drifts are shown in Table 6.
The RMS value of the heading error were reduced from 71·7° in Mode #1 to 6·9° in

Mode #2 and 6·1° in Mode #3, which indicates the contribution of thermal compen-
sation. However, the RMS value of the pitch error increased from 6·9° in Mode #1 to
11·0° in Mode #2 because the performance of the y-axis was degraded after compen-
sation with an inaccurate thermal model; this value was reduced to 3·1° in Mode #3.
The RMS values of the position drifts in north and east decreased from 2886 and 2510
m in Mode #1 to 1118 and 1267 m in Mode #2, which were further reduced to 1021
and 700 m in Mode #3.

Table 5. Statistics of residual errors in NV-IMU100 outputs.

Mode #1 Mode #2 Mode #3

(Uncompensated) (Compensated with
cooling models)

(Compensated with
averaged models)

mean RMS mean RMS mean RMS

Accel.X(μg) −16664 17355 2160 3162 −2556 2874
Accel.Y(μg) 9288 9517 862 1851 −679 1833
Accel.Z(μg) −4404 6895 7965 8267 −48 5656
GyroX(deg/h) 61 70 39 52 23 37
GyroY(deg/h) 294 314 −27 62 27 44
GyroZ(deg/h) 32 50 39 46 32 35
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Figure 8. Navigation drifts of Mti-G.

Figure 9. Navigation drifts of NV-IMU100.
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Even after compensation with the averaged models, the maximum attitude, velocity
and position errors reached more than ten degrees, several tens of metres per second
and more than one thousand metres. This is partly because the established error
models cannot eliminate the deterministic sensor errors completely due to the incon-
sistency of MEMS sensor errors under different thermal profiles. Moreover, some
drifts may be caused by residual sensor errors such as run-to-run bias and the noises
(e.g. quantisation noises, white noises, angular rate/acceleration random walk
noises). In real-world navigation applications, constraints such as non-holonomic con-
straints (NHC) and odometer measurements are commonly used to correct the inertial
navigation solution, which is beyond the scope of this paper.
To summarise, in the attitude estimation level, there was still a possibility of de-

grading the system performance in Mode #2 due to the inconsistencies of sensor
errors under different temperature profiles. However, for positioning, either thermal
compensation mode enhanced the system significantly. The results in Mode #3 were
more accurate than those in Mode #2 because the thermal models in Mode #3 were
more robust.

Table 6. Statistics of navigation drifts of Mti-G.

Mode #1 Mode #2 Mode #3

(Uncompensated) (Compensated with
cooling models)

(Compensated with
averaged models)

mean max RMS Mean max RMS Mean max RMS

Attitude (deg) Roll 4·3 12·6 5·7 3·4 7·5 4·7 3·6 10·4 5·1
Pitch 5·9 12·5 6·9 10·7 26·3 11·0 2·7 5·1 3·1
Heading 66·7 102·1 71·7 6·1 11 6·9 5·1 10·9 6·1

Velocity (m/s) North 61·8 133·2 73·3 19·6 50·6 23·6 20·5 42·5 23·5
East 44·6 118·1 54·6 23·8 48·7 26·9 13·0 29·2 15·2
Down 7·0 21·2 9·8 4·0 12·6 5·5 3·4 13·1 5·3

Position (m) North 2471 4594 2886 918 2541 1118 889 1786 1021
East 2036 5215 2510 1075 2348 1267 615 1271 700
Down 198 392 231 123 389 171 112 410 169

Table 7. Statistics of navigation drifts of NV-IMU100.

Mode #1 Mode #2 Mode #3

(Uncompensated) (Compensated with
cooling models)

(Compensated with
averaged models)

mean max RMS Mean max RMS Mean max RMS

Attitude (deg) Roll 9·3 16·8 10·0 2·7 4·3 2·9 0·9 1·7 1·1
Pitch 3·8 4·2 3·8 1·1 1·6 1·1 0·3 0·7 0·3
Heading 2·0 3·1 2·1 1·3 1·9 1·4 0·4 0·5 0·3

Velocity (m/s) North 29·6 35·1 29·8 16·1 21 16·9 8·3 12·5 17·2
East 34·5 75·3 39·9 20·6 29 21·9 11·3 21·4 13·1
Down 8·5 18·3 9·8 18·7 28·3 20·9 6·4 9·6 7·1

Position (m) North 1326 1615 1336 681 901 713 534 764 556
East 1269 3188 1593 957 1343 1016 566 1074 656
Down 493 798 543 863 1324 984 381 585 423
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4.4.2. Navigation results of NV-IMU100. Figure 9 shows the navigation drifts of
NV-IMU100, and Table 7 gives the statistics.
The maximum RMS values of attitude, velocity, and position were reduced from

10·0°, 40 m/s, and 1600 m in Mode #1 to 2·9°, 22 m/s, and 1000 m in Mode #2 and
1·1°, 18 m/s, and 700 m in Mode #3. However, the RMS values of velocity and pos-
ition in vertical direction were degraded from 9·8 m/s and 543 m in Mode #1 to
20·9 m/s and 984 m in Mode #2. These comparisons further verified the contribution
of thermal compensation and the advantage of using the averaged thermal models.

4.5. Importance of periodical calibration. The performance of the tested IMUs
was significantly improved after thermal compensation. However, we found that
some sensor errors showed significant inconsistent thermal drift curves six months
after thermal compensation. Figure 10 shows the Mti-G accelerometer biases and
non-orthogonalities in July 2013 (the solid lines) and January 2014 (the dashed
lines). Although the surrounding environment of the tests were different (with a
room temperature of 30 °C in July 2013 and 10 °C in January 2014), the thermal
chamber isolated the IMUs from the external environment and provided the same tem-
perature changing profile (i.e., increasing the temperature from −10 °C to 70 °C with
10 °C steps) for both tests. It is shown that the x-axis accelerometer bias had a repeat-
ability of over 3000 μg in two tests; also, the non-orthogonalities between the x- and y-
axis had a repeatability of 2000 ppm. The inconsistencies suggest that periodical
thermal calibration is necessary for MEMS IMUs.

5. CONCLUSIONS. This paper investigates the thermal characteristics of typical
MEMS IMUs with a reliable thermal test procedure.
Thermal calibration results show that MEMS sensor errors, not only biases, but also

scale factors and non-orthogonalities, can vary significantly with temperature. These
sensor errors had repeatable curves during tests with the same temperature profile;
however, some of them showed significant inconsistencies at the same temperature
points under different temperature profiles. Since our thermal calibration procedure
has been tested to be reliable, these inconsistencies are probably an issue inherent in
MEMS sensors.
Thermal compensation results indicate that thermal compensation is effective in

reducing the long-term residual errors in the sensor outputs; however, there is a risk

Figure 10. Calibration results of two tests with a time interval of six months. Solid and dashed lines
are results in July 2013 (the solid lines) and January 2014 (the dashed lines), respectively.
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that the residual sensor errors may increase after thermal compensation if the actual
thermal condition is different from the temperature profile for thermal calibration,
due to the inconsistencies of MEMS sensor errors motioned above. Since it is impos-
sible to consider all the real-world temperature profiles during the in-lab thermal cali-
bration stage, a feasible way to mitigate this issue is presented by using the sensor data
during both heat-and-stay and cool-and-stay processes to establish the averaged
thermal models. It was verified that compensating with the averaged thermal models
is a robust way to enhance all sensors.
In the navigation tests, even using the thermal models established under a different

temperature profile significantly enhanced most navigation states (i.e., attitude, vel-
ocity, and position). However, there was still a possibility that the inconsistencies of
MEMS sensors might degrade the estimation of some navigation information.
Compensating with the averaged thermal models can provide the best performance
and improved the estimation of all navigation states.
Also, it is found that MEMS sensor errors may have significantly inconsistent

thermal drift curves after a time period such as several months, which suggests that
periodical thermal calibration is necessary for MEMS IMUs. The outcome of this
paper can promote the better understanding and wider uses of MEMS sensors and
IMUs.

ACKNOWLEDGEMENT

The authors would like to thank Yalong Ban, Kunlun Yan and Xin Yang for the helps during the
tests. This work was supported in part by the National Natural Science Foundation of China
(41174028, 41231174), the Key Laboratory Development Fund from the Ministry of
Education of China (618-277176), the National High Technology Research and Develop
Program of China (2012AA12A206), and the Fund from China Scholarship Council
(201306270139).

REFERENCES

Abdel-Hamid, W. (2004). An ANFIS-based modeling of thermal drift of MEMS-based inertial sensors.
Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS 2004). 784–791.

Aggarwal, P., Syed, Z. and El-Sheimy, N. (2008a). Thermal calibration of low cost MEMS sensors for land
vehicle navigation system. Vehicular Technology Conference, IEEE, 2859–2863.

Aggarwal, P., Syed, Z., Niu, X. and El-Sheimy, N. (2008b). A standard testing and calibration procedure for
low cost MEMS inertial sensors and units. Journal of navigation, 61, 323–336.

Berman, Z. (2011). Inertial Sensors- A New Approach for Low Cost Calibration and Testing. Symposium
Gyro Technology, 2011. Institute of Systems Optimization, 8–8.

Berman, Z. (2012). Inertial sensors: Further developments in low-cost calibration and testing. Position
Location and Navigation Symposium (PLANS), 2012 IEEE/ION, 837–848.

El-Diasty, M., El-Rabbany, A. and Pagiatakis, S. (2007). Temperature variation effects on stochastic char-
acteristics for low-cost MEMS-based inertial sensor error.Measurement Science and Technology, 18, 3321.

Fong, W., Ong, S. and Nee, A. (2008). Methods for in-field user calibration of an inertial measurement unit
without external equipment. Measurement Science and Technology, 19, 085202.

Han, S. andWang, J. (2010). Land vehicle navigation with the integration of GPS and reduced INS: perform-
ance improvement with velocity aiding. Journal of Navigation, 63, 153–166.

Li, Y., Niu, X. and Zhang, H. (2011). An IMU Calibration Method Using Simple Machinary and the
Comprehensive Error Analysis. Proceedings of China Satellite Navigation Conference (CSNC),
Shanghai, China, 2011. 18–21.

388 QINGJIANG WANG AND OTHERS VOL. 69

https://doi.org/10.1017/S0373463315000600 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000600


Li, Y., Niu, X., Zhang, Q., Zhang, H. and Shi, C. (2012). An in situ hand calibration method using a pseudo-
observation scheme for low-end inertial measurement units. Measurement Science and Technology, 23,
105104.

Naranjo, C. (2008). Analysis and modeling of MEMS based inertial sensors. Kungliga Tekniska Kgskolan,
Stockholm, School of Electrical Engineering.

Nassar, S. (2003). Improving the inertial navigation system (INS) error model for INS and INS/DGPS appli-
cations, University of Calgary, Department of Geomatics Engineering.

NAV Technology Co., Ltd. (2014). NV-IMU100 Inertial Measurement Units. Available online: http://www.
nav.cn/UpFile/2009922153819.pdf (accessed on 18 Dec 2014).

Nieminen, T., Kangas, J., Suuriniemi, S. and Kettunen, L. (2010). An enhanced multi-position calibration
method for consumer-grade inertial measurement units applied and tested. Measurement Science and
Technology, 21, 105204.

Niu, X., Li, Y., Zhang, H., Wang, Q. and Ban, Y. (2013). Fast thermal calibration of low-grade inertial
sensors and inertial measurement units. Sensors (Switzerland), 13, 12192–12217.

Niu, X., Nassar, S. and El-Sheimy, N. (2007). An accurate land-vehicle MEMS IMU/GPS navigation system
using 3D auxiliary velocity updates. Navigation, 54, 177–188.

Shcheglov, K., Evans, C., Gutierrez, R. and Tang, T. K. (2000). Temperature dependent characteristics of the
JPL silicon MEMS gyroscope. Aerospace Conference Proceedings, IEEE, 403–411.

Shin, E.-H. (2005). Estimation techniques for low-cost inertial navigation. UCGE report, 20219.
Shin, E. and El-Sheimy, N. (2002). A new calibration method for strapdown inertial navigation systems.
Zeitschrift für Vermessungswesen, 127, 1–10.

Syed, Z., Aggarwal, P., Goodall, C., Niu, X. and El-Sheimy, N. (2007). A new multi-position calibration
method for MEMS inertial navigation systems. Measurement Science and Technology, 18, 1897.

Titterton, D. andWeston, J. (2004). Strapdown Inertial Navigation Technology. 2-nd Edition. The Institution
of Electronical Engineers, Reston USA.

Woodman, O. J. (2007). An introduction to inertial navigation. University of Cambridge, Computer
Laboratory, Tech. Rep. UCAMCL-TR-696, 14, 15.

Xsens. (2014). MTi-G GPS-aided MEMS-Based Attitude and Heading Reference System (AHRS).
Available online: http://www.xsens.com/en/general/mti-g (accessed on 18 Dec 2014).

Zhang, H., Wu, Y., Wu, W., Wu, M. and Hu, X. (2010). Improved multi-position calibration for inertial
measurement units. Measurement Science and Technology, 21, 015107.

APPENDIX ESTIMATION OF THE SENSOR ERRORS WITH ACQUIRED
DATA IN AN 8-STEP CALIBRATION SCHEME

A1. ESTIMATION OF ACCELEROMETER ERRORS. The accelerometer
outputs can be represented as

lax
lay
laz

2
4

3
5 ¼

kax myx mzx bax
mxy kay mzy bay
mxz myz kaz baz

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

ax
ay
az
1

2
664

3
775 ðA1Þ

where the diagonal elements kai (i= x, y, z) are the scale factors, the off-diagonal ele-
ments mij (i= x, y, z; j = x, y, z) represent the non-orthogonalities, and bai (i = x, y, z)
are the biases. In the calibration scheme, each accelerometer axis is pointed upward
and downward precisely (except z-axis); thus, the ideal specific force can be represented
as follows:

a01 ¼
g
0
0
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3
5 a02 ¼

�g
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0

2
4

3
5 a04 ¼

0
�g
0

2
4

3
5 a05 ¼

0
0
g

2
4

3
5 ðA2Þ
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Then, the design matrix can be denoted by A and the measured specific forces are
denoted by U.

A ¼ a01 a02 a03 a04 a05
1 1 1 1 1

� �
ðA3Þ

U ¼ u1 u2 u3 u4 u5½ � ðA4Þ
In this case, the column vector of the U matrix should be:

u1 ¼
lax
lay
laz

2
4

3
5
X�upwards

�u1 ¼
lax
lay
laz

2
4

3
5
X�downwards

ðA5Þ

u3, u4 and u5 are similar with u1 and u2.Then, the M matrix can be estimated by the
least-square method.

M ¼ U � AT ðA � ATÞ�1 ðA6Þ

A2. ESTIMATION OF GYRO ERRORS. The gyro errors are estimated through
a two-step method, instead of using the least-square method directly. The first step is to
calculate the biases using static data. The next step is to calculate the scale factor errors
and non-orthogonalities with dynamic data.

A2.1. Estimation of gyro biases. The bias of the i-axis gyro can be calculated by:

bgi ¼ li�upwards þ li�downwards

2
ðA7Þ

where li-upwards and li-downwards are the gyro outputs when the axis points upwards and
downwards, respectively.

A2.2. Estimation of gyro scale factor errors. The scale factor errors of the i-axis
(i = x, y, z) gyro can be estimated using the same idea as the 6-position method.

Sgi ¼ Li�clockwise � Li�anticlockwise

2Lref
� 1 ðA8Þ

where Sgi is gyro scale factor, Li−clockwise and Li−anticlockwise represent the angle derived
by the integration of the i-axis gyro outputs when the IMU is rotated around this axis
by Lref clockwise and counter-clockwise, respectively. For the designed 8-step calibra-
tion scheme, the value of Lref is 90°.

A2.3. Estimation of gyro non-orthogonalities. The non-orthogonalities cause
each axis to be affected by the signal of the other two axes. When the turntable is
rotated around i-axis, the output of j-axis will be affected by this rotation due to
the non-orthogonalities between i- and j-axis. Thus, the non-orthogonalities between
i- and j-axis can be estimated by

nij ¼ Lj�clockwise þ Lj�anticlockwise

2Lref
� 1 ðA9Þ

where nij is the non-orthogonalities of i-axis to j-axis.
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