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(Received 15 August 2007)

Abstract

In this paper we show boundedness of vector-valued Bergman projections on simple connected domains.
With this result we show R-sectoriality of the derivative on the Bergman space on C+ and maximal
L p-regularity for an integrodifferential equation with a kernel in the Bergman space.
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1. Introduction

The left shift semigroup on R+ usually has very bad properties; it is not even norm-
continuous. The spectrum of its generator, the derivative, contains the whole left
halfplane. However, properties of the shift semigroup depend on the underlying
function space. In [2] we introduced a left shift semigroup which is analytic, that is, its
generator d/ds is a sectorial operator. We have considered the shift semigroup on the
space of bounded holomorphic functions on a sector with values in a Banach space X
equipped with the sup-norm, and the vector-valued Bergman space of L p-integrable
holomorphic functions on a sector, respectively. In the present paper we show that
the generator d/ds of the shift semigroup on the Bergman space is not just sectorial
but also R-sectorial. This property corresponds to the maximal L p-regularity for the
transport equation

u̇(t)=
d

ds
u(t)+ f (t),

u(0)= u0.

The proof of R-sectoriality of d/ds is based on the boundedness of the Bergman
projection. So, in another main result of the present paper, we prove boundedness
of the Bergman projection for vector-valued functions on various domains.
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The original motivation for investigating analytic shift semigroups was the
semigroup approach to the integrodifferential equation

u̇(t)= Au(t)+

∫ t

0
B(t − s)Au(s) ds + f (t),

u(0)= x . (IDE)

In this approach (see for example [6]), the solution of (IDE) is described by the
semigroup T generated by

A :=

(
A δ0

B(·) d/ds

)
, D(A) := D(A)× D(d/ds). (1.1)

Hence, regularity of the solutions depends on regularity of the semigroup T and no
regularity can be obtained by this approach if the shift semigroup generated by d/ds
is not even norm-continuous. In [2] we have shown that the solutions of (IDE) are
analytic if the convolution kernel B is analytic. In the present paper we show that the
operator A is R-sectorial if A is R-sectorial and B belongs to an appropriate space of
holomorphic functions. Hence, we have maximal L p-regularity for (IDE). This last
result is not very strong, since Weis showed in [11] maximal L p-regularity for a class
of kernels that are not necessarily holomorphic. However, the present result is not
contained in Weis’s result. Moreover, it gives a nice sufficient condition for maximal
L p-regularity, which is easy to verify.

This paper is organized as follows. In Section 2 we prove boundedness of the
Bergman projection for vector-valued Bergman spaces. Section 3 deals with R-
sectoriality of d/ds and A and maximal L p-regularity for (IDE). The main results
are contained in Theorems 2.1, 3.1, and 3.3.

2. Boundedness of the Bergman projection

The Bergman space Bq(�, X), �⊂ C, is defined by

Bq(�, X) := { f :�→ X : f holomorphic and ‖ f ‖q <+∞},

where

‖ f ‖
q
q :=

∫
�

‖ f (x + iy)‖q dx dy.

In this section we study the Bergman projection 5 of Lq(�, X) onto its closed
subspace Bq(�, X). We show that the Bergman projection is a bounded operator
on Lq for all q ∈ (4/3, 4). Here � is a simply connected domain and X is a Banach
space. Moreover, we show that the projection is bounded for arbitrary 1< q <∞ if
� is a sector

6θ := {z ∈ C : z 6= 0 and |arg z|< θ}, 0< θ ≤ π/2.
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Hedenmalm proved in [7] that the Bergman projection is bounded for scalar-valued
functions, simply connected domains and p ∈ (4/3, 4). We use the idea of his proof.
Concerning vector-valued functions, the boundedness of the Bergman projection is
known for the unit disk and all 1< p <∞ (see Arregui and Blasco [1]).

Let ψ be a conformal mapping from � onto the unit disk D. The Bergman
projection for scalar-valued functions on D is given by

5D f (z) :=

∫
D

K D(z, w) f (w) dλ2(w), K D(z, w) :=
1

(1 − zw)2
,

and for functions on � by

5� f (u) :=

∫
�

K�(u, v) f (v) dλ2(v), K�(u, v) :=
ψ ′(u)ψ

′
(v)

(1 − ψ(u)ψ(v))2
(2.1)

(see Hedenmalm [7]). We define the Bergman projection for vector-valued functions
by the same formula. We first show that 5� is a projection onto Bq(�, X). In fact,

x ′(5� f (z))=5�(x
′
◦ f ) (z), (2.2)

for all x ′
∈ X ′. The right-hand side is a holomorphic function, since5� is a projection

onto Bq(�,C) in the scalar case. Hence, 5� f (·) is holomorphic since the left-hand
side is holomorphic for every x ′

∈ X ′. Moreover, if f is holomorphic, then x ′
◦ f is

holomorphic and (2.2) equals (x ′
◦ f ) (z). Hence, 5� f (z)= f (z).

We now show that the projection is bounded. In fact, we show that if we replace the
kernel of the projection by its absolute value, then the mapping remains bounded. We
shall need this stronger result in the proof of R-sectoriality of d/ds.

THEOREM 2.1. Let q ∈ (4/3, 4) and � be simply connected. Then the Bergman
projection 5� and the mapping 5∗

� defined by

(5∗
� f ) (u) :=

∫
�

|K�(u, v)| f (v) dv,

are bounded operators on Lq(�, X).

PROOF. It is sufficient to show boundedness of 5∗
�, that is, the estimate∫

�

‖5∗
�(|ψ

′
| · g) (u)‖q dλ2(u)≤ C

∫
�

‖|ψ ′(u)|g(u)‖q dλ2(u),

|ψ ′
| · g ∈ Lq(�, X).

The substitution f (z) := g(ϕ(z)), where ϕ := ψ−1, yields equivalence of the previous
estimate and ∫

D
‖ϕ′(z)5∗

�(|ψ
′
| · f ◦ ψ) ◦ ϕ(z)‖q

|ϕ′(z)|2−q dλ2(z)

≤

∫
D

‖ f (z)‖q
|ϕ′(z)|2−q dλ2(z).
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We show that 5∗

D f (z)= |ϕ′(z)| ·5∗
�(|ψ

′
| · f ◦ ψ) ◦ ϕ(z), z ∈ D, where

5∗

D f :=

∫
D

∣∣∣∣ 1

(1 − zw)2

∣∣∣∣ f (w) dλ2(w).

In fact,

|ϕ′(z)| ·5∗
�(|ψ

′
| · f ◦ ψ) ◦ ϕ(z)

= |ϕ′(z)|
∫
�

∣∣∣∣ ψ ′(ϕ(z))ψ
′
(v)

(1 − ψ(ϕ(z))ψ(v))2

∣∣∣∣|ψ ′(v)| · f (ψ(v)) dv

=

∫
�

∣∣∣∣ 1

(1 − zψ(v))2

∣∣∣∣|ψ ′(v)|2 · f (ψ(v)) dv =

∫
D

∣∣∣∣ 1

(1 − zw)2

∣∣∣∣ f (w) dw.

So, it remains to prove∫
D

‖5∗

D f (z)‖q
|ϕ′(z)|2−q dλ2(z)≤

∫
D

‖ f (z)‖q
|ϕ′(z)|2−q dλ2(z).

This means that 5∗

D is a bounded operator on the weighted space Lq(D, X, ω), with
weight ω = |ϕ′(z)|2−q .

We have the estimate

‖5∗

D f (z)‖ =

∥∥∥∥∫
D

|K D(z, w)| f (w) dλ2(w)

∥∥∥∥
≤

∫
D

|K D(z, w)|‖ f (w)‖ dλ2(w)=5∗

D‖ f (z)‖.

Hence, it is sufficient to show that 5∗

D is a bounded operator on Lq(D,C, ω), that
is, for scalar-valued functions z 7→ ‖ f (z)‖. It was proved by Bekollé and Bonami
in [3, Propositions 3 and 4] that 5∗

D is a bounded operator on the weighted space
Lq(D,C, ω) if ω satisfies

sup
(θ,ρ)∈M

(
1

|S(θ, ρ)|

∫
S(θ,ρ)

ω dλ2

)(
1

|S(θ, ρ)|

∫
S(θ,ρ)

ω−1/(q−1) dλ2

)q−1

≤ C, (2.3)

with M := [0, 2π)× (0, 1]. The set S(θ, ρ) is defined by

S(θ, ρ) := {z = reiα
: 1 − ρ < r < 1, |α − θ |< 2πρ}.

In Hedenmalm [7] it is shown that ω = |ϕ′
|
2−q satisfies (2.3) for 4/3< q < 4. 2

Let us show the following result.

THEOREM 2.2. The Bergman projection 5� and the operator 5∗
� are bounded on

Lq(�, X) for every 1< q <∞, provided �=6θ , 0< θ ≤ π/2.
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PROOF. Fix q ∈ (1,+∞) and a ∈ [1,+∞) such that z 7→ za maps6θ onto C+. Then

ψ(u) :=
1 − ua

1 + ua (2.4)

is the conformal mapping from 6θ onto the unit disk D. Its inverse is

ϕ(z) :=

(
1 − z

1 + z

)1/a

.

According to the proof of the previous theorem, it is sufficient to show that (2.3) holds
for ω = |ϕ′

|
2−q . First of all, we show that the integrals∫

D
ω dλ2 and

∫
D
ω−1/(q−1) dλ2 (2.5)

are finite. Since

|ϕ′(z)| =
2
a
|1 + z|−1−1/a

|1 − z|−1+1/a,

we have
c|1 − z|(−1+(1/a)) (2−q)

≤ ω(z)≤ C |1 − z|(−1+(1/a)) (2−q),

for z in a neighbourhood of 1, and

c|1 + z|(−1−(1/a)) (2−q)
≤ ω(z)≤ C |1 + z|(−1−(1/a)) (2−q),

for z in a neighbourhood of −1, which are the only problematic points. Since the
exponents are larger than −2 the first integral in (2.5) is finite. The proof for the
second integral is analogous since(

− 1 +
1
a

)
2 − q

1 − q
>−2 and

(
− 1 −

1
a

)
2 − q

1 − q
>−2,

for a ∈ [1,∞), q ∈ (1,∞).
Take ε > 0 small enough. For ρ > ε the integrals in (2.3) are estimated by the

integrals over D and |S(θ, ρ)| ≥ δ for some δ > 0. Hence,(
1

|S(θ, ρ)|

∫
S(θ,ρ)

ω dλ2

)(
1

|S(θ, ρ)|

∫
S(θ,ρ)

ω−1/(q−1) dλ2

)q−1

(2.6)

is estimated by a constant independent of θ , ρ, provided ρ > ε.
It remains to show that (2.6) is bounded for ρ ≤ ε. If ε is small enough, then S(θ, ρ)

is far enough from at least one of the points 1, −1. The two cases are analogous, so
we may assume that dist(−1, S(θ, ρ))≥ 5ε. Take c > 0 such that

S(θ, ρ)⊂ B(eiθ , cρ), ∀θ ∈ [0, 2π), ρ ≤ ε,

where B(x, r) denotes the ball of radius r centred at x .
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Assume first that d := dist(1, B(eiθ , cρ))≥ cρ. Then∫
S(θ,ρ)

C |1 − z|α dλ2 ≤

∫
B(eiθ ,cρ)

C |1 − z|α dλ2 ≤ 2cρ
∫ d+2cρ

d
Ctα dt,

if α < 0. If α > 0 we have to replace tα by (c1t)α in the last term. In both cases

1
|S(θ, ρ)|

∫
S(θ,ρ)

C |1 − z|α dλ2 ≤ C
1
ρ
((d + cρ)α+1

− dα+1), (2.7)

since the area of S(θ, ρ) is proportional to ρ2. The right-hand side of (2.7) is estimated
by C̃dα . Hence, (2.6) is less than

C̃1dα · (C̃2d(α/1−q))q−1
= C3,

where the constants are independent of ρ and θ .
If d < cρ then B(eiθ , cρ)⊂ B(1, 3cρ) and

1
|S(θ, ρ)|

∫
S(θ,ρ)

C |1 − z|α dλ2 ≤ C
1

ρ2

∫ 3cρ

0
2π t · tα dt ≤ C̃ρα.

Hence, (2.6) is estimated by

C̃ρα(C̃1ρ
(α/1−q))q−1

= C3.

This last estimate completes the proof. 2

3. R-sectoriality and maximal regularity

In this section we show R-sectoriality of the derivative on the Bergman space
Bq(C+, X), where X is a UMD space. With this result we show maximal L p-
regularity for (IDE). It follows immediately from the definitions below that if A has
maximal L p-regularity, then so also does (IDE).

Let T ∈ (0,∞]. We say that operator A (or (IDE)) has maximal L p-regularity for
T if for every f ∈ L p([0, T ), X) there exists a unique solution u of

u̇(t)= Au(t)+ f (t), 0 ≤ t < T,

u(0)= 0 (ACP)

(or (IDE)), such that u̇, Au ∈ L p([0, T ), X) and

‖u̇‖p + ‖Au‖p ≤ CA‖ f ‖p (3.1)

holds with CA independent of f .
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A set M ⊂ L(X) is said to be R-bounded if there exists a constant C such that∥∥∥∥ n∑
i=1

ri (·)Ti xi

∥∥∥∥
Lq ((0,1),X)

≤ C

∥∥∥∥ n∑
i=1

ri (·)xi

∥∥∥∥
Lq ((0,1),X)

(3.2)

holds for all n ∈ N, T1, . . . , Tn ∈ M , x1, . . . , xn ∈ X and one/all q ∈ (1,+∞). The
functions ri are Rademacher functions or another system of functions from [0, 1] to
{−1, 1} satisfying ∫ 1

0
ri (t)r j (t) dt = 0 ∀i 6= j.

The smallest C satisfying (3.2) is called the R-bound of M . An operator

A : D(A)⊂ X → X

is said to be R-sectorial if 6θ ⊂ ρ(A) and the set

{λR(λ, A) | λ ∈6θ }

is R-bounded for some θ > π/2.
The following holds for each operator B on a Banach space X . If B has maximal

L p-regularity for one p ∈ (1,∞) and one T ∈ (0,∞), then it has maximal regularity
for all p ∈ (1,∞) and all T ∈ (0,∞) (see Dore [5]). Moreover, if X is a UMD space
then B has maximal L p-regularity for T = ∞ if and only if it is R-sectorial. An
operator B has maximal L p-regularity for T <∞ if and only if B + ω is R-sectorial
for some ω ∈ R (see Weis [10]).

From now on, assume X to be a UMD space. Then Bq
θ := Bq(6θ , X) is a UMD

space, since it is a closed subspace of a UMD space Lq(6θ , X). Hence, Xq
= X × Bq

θ

is a UMD space as well.
We show R-sectoriality of d/ds in the case when θ = π/2. The proof of the

following theorem is based on the idea of Weis.

THEOREM 3.1. The operator d/ds is R-sectorial on Bq(C+, X), 1< q <+∞.

PROOF. Since f =5 f for f ∈ Bq(C+, X), we have the following integral
representation for the translation semigroup T :

(T (t) f ) (z)= f (t + z)=

∫
C+

K (t + z, w) f (w) dw =

∫
C+

1

(t + z + w)2
f (w) dw.

In fact, (2.1) and (2.4) yield

K (u, v)=
1

(u + v)2
.

Since for all t ∈6δ , z, w ∈ C+ the inequality |t + z + w| ≥
1
2 |z + w| holds (if δ is

small enough), we obtain ∣∣∣∣ 1

(t + z + w)2

∣∣∣∣ ≤

∣∣∣∣ 4

(z + w)2

∣∣∣∣.
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Since the integral operator with kernel k(z, w) := 4|(z + w)|−2 is bounded on
Lq(C+, X) by Theorem 2.2, the set {T (t) : t ∈6δ} is R-bounded by Denk et al. [4,
Proposition 4.12]. Hence, the generator d/ds is R-sectorial by Weis [10]. 2

We shall now show that operator A defined by (1.1) is R-sectorial. To do this
we apply perturbation theory for R-sectorial operators. We start with a perturbation
lemma. It holds that A + C is R-sectorial if A is R-sectorial and ‖Cx‖ ≤ a‖Ax‖ +

b‖x‖ with a sufficiently small. We show that if C is of a special form then we do
not need a to be small. A similar result for sectorial operators was proved by Nagel
(see [9]).

LEMMA 3.2. Let A : D(A)→ X and B : D(B)→ Y be R-sectorial. If
C ∈ B(D(B), X), then

E :=

(
A C
0 B

)
, D(E) := D(A)× D(B),

is R-sectorial on X × Y .

PROOF. The resolvent of E is given by

R(λ, E)=

(
R(λ, A) R(λ, A)C R(λ, B)

0 R(λ, B)

)
.

The set {λR(λ, E) : λ > 0} is R-bounded since {λR(λ, A) : λ > 0} and {λR(λ, B) :

λ > 0} are R-bounded by assumption and the third term is R-bounded since for the
R-bounds the inequality R(λR(λ, A)C R(λ, B))≤R(λR(λ, A)) · ‖C(B + ε)−1

‖ ·

R((B + ε)R(λ, B)) <+∞ holds. 2

THEOREM 3.3. Let A be R-sectorial on X and d/ds be R-sectorial on Bq
θ for some

q > 2. Let B satisfy one of the following conditions:

(i) B ∈ Bq(6θ , B(D(A), X)), ‖B(·)x‖ ≤ a‖Ax‖ + b‖x‖ with a > 0 sufficiently
small;

(ii) B ∈ Bq(6θ , B(Xα, X)), where Xα = D(Aα), 0< α < 1;
(iii) B, B ′

∈ Bq(6θ , B(D(A), X)).

Then A + w is R-sectorial for some w ∈ R.

PROOF. According to the previous lemma,

A0 + w :=

(
A + w δ0

0 d/ds + w

)
is R-sectorial for some w ∈ R. Boundedness of δ0 : D(d/ds)→ D(A) follows from
the continuous embedding of W 1,q(6θ , X) in continuous functions for q > 2. We can
assume that w = 0.

R-sectoriality of A + w now follows from [8, Theorem 1, if (i) holds, respectively
Corollary 12, if (ii) holds]. If B satisfies (iii), we consider the Banach space

X1 := (D(A0), ‖ · ‖A 0),
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where ‖ · ‖A 0 denotes the graph norm. Since X1 is isomorphic to X , it is also
a UMD space. The part of A0 in X1 is similar to A0, and hence is R-sectorial.
Since the part of A in X1 is a bounded perturbation of the part of A0 in X1, it is
R-sectorial as well (see Kunstmann and Weis [8] or Dore [5]). By similarity we obtain
the R-sectoriality of A . 2

In this case, we have maximal L p-regularity for the abstract Cauchy problem on the
product space X on [0, T ) for every T <∞. By taking the right-hand side F :=

( f
0

)
,

we obtain maximal L p-regularity for (IDE). If s(A) <∞, then we have maximal
L p-regularity for T = ∞ as well (see Dore [5]).

Acknowledgements

The author is grateful to R. Nagel for initiating his interest in this topic and L. Weis
for help with R-boundedness.

References

[1] J. L. Arregui and O. Blasco, ‘Bergman and Bloch spaces of vector-valued functions’, Math. Nachr.
261 (2003), 3–22.

[2] T. Bárta, ‘Analytic solutions of Volterra equations via semigroups’, Semigroup Forum 76(1)
(2008), 142–148.
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