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Abstract. We study three extremal Banach algebras: (a) generated by two her-
mitian unitaries; (b) generated by an element of norm 1 all of whose odd positive
powers are hermitian; (c) generated by an element of norm 1 all of whose even
positive powers are hermitian. In all three cases the numerical range is found for
various elements. The second algebra is shown to be isometrically isomorphic to a
subalgebra of the first. The third algebra is identified with a space of functions.

1991 Mathematics Subject Classification. 47A12, 47B15.

1. Introduction. The extremal Banach algebra generated by a single normalised
hermitian has been studied extensively (see [4], [5], [6], [7], [8]). Its dual space is a
Banach space of entire functions with exponential growth and, consequently, most
of the deeper properties come down to delicate questions about such entire func-
tions, often coefficient problems. For two commuting hermitians, the extremal
algebra is just the projective tensor product of the two one generator algebras (see
[5]). We begin here a study of the case of two non-commuting hermitians. For her-
mitian elements /%, k, the Jordan product ik + kh fails to be hermitian in general,
whereas the imaginary Lie product i(hk — kh) is always hermitian. Hence the extre-
mal algebra on two non-commuting hermitians will contain amongst its hermitians
the free Lie algebra under this imaginary Lie product. This is a very large compli-
cated algebra, and we shall consider here only the quotient algebra when the gen-
erators are idempotents. We get the same algebra by replacing the two hermitian
idempotents with two hermitian unitaries; we take this viewpoint since it has nicer
algebraic features. Our study is thus reduced here to a very tractable algebra.

Let J =[—1, 1]. In Section 2 we study the extremal algebra Ea(J?; unit) on two
hermitian unitaries u, v. There is a natural representation for this algebra as 2 x 2
matrices of functions (see [10]). We calculate the norm and the numerical range for
various elements. The hermitian element k :%i(uv— vu) 1s obviously of special
interest here. In fact, k" is hermitian for all odd n € N (but for no even n € N). We
show in Section 3 that the subalgebra of Ea(J?;unit) generated by k (and 1) is
Ea(J; odd), the extremal algebra generated by a normalised hermitian all of whose
odd positive powers are hermitian. It is then natural to ask for Ea(J; even), the
extremal algebra generated by a normalised element all of whose even positive
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powers are hermitian; this is a much easier task and is dealt with in Section 4. If all
powers of & are hermitian, then the extremal algebra is C[—1, 1] by the Vidav-Palmer
theorem.

On the face of it, we might consider hermitian generators of order other than 2.
In fact, no cases arise other than of order 2. Suppose first that / is hermitian and
P(h) = 0 for some polynomial P. Since / has real spectrum, every factor 7 — ¢ of
P(h), with ¢ not real, is invertible. Thus, without loss of generality, we may suppose
that P has only real roots. Now let /" = 1 with n € N, n odd. The only real factor of
W —11is h—1, and hence & = 1. Now let /" = 1 with n € N, n even. The only real
factors of #" — 1 are h — 1 and & + 1, and hence 4% = 1.

We shall write D™, T and H™ for the sets

{zeC:lzZ| <1}, {zeC:lzl=1}, {zeC:|z-{=<i

respectively. For a Banach algebra element a, we denote the spectrum by Sp(a) and
the spectral radius by r(a). We use | - |, to denote the supremum norm, taken over
appropriate compact sets. For standard notation and results on numerical ranges,
the reader is referred to [1] and [2].

2. The extremal algebra Ea(J% unit). Let Ea(J?;unit) denote the extremal
Banach algebra on two generators u, v with 1 = v* = 1 and u, v hermitian. We note
that |lu|]| = ||v|| = 1, since the spectral radius agrees with the norm for any hermitian.
Then Z; x Z,, the free product of the group Z, with itself, is given by

T, =A{1,u, v, uv, vu, uvu, vuv, . ..}.

Write x = uv. Then, as is well known, 7, may be regarded as the infinite dihedral
group generated by u, x subject to u*> = 1, ux = x~'u. Give the group algebra C[Z,]
its usual involution: (3" a,g,)* = Y. &g, . Let J be the subgroup of C[Z,] consist-
ing of all finite products of

cost+i(sint)u, cost+i(sint)y (reR).

Define an algebra seminorm on C[Z;] by

N N
llall :inf{zmjl :NeN, o;eC, geJ, Zajaj :a}.
‘ =

J=1

For a=> a,g,€J, we have a*a=1. From the coefficient of x°, |a|, =
o lan$)!/? = 1, where || - ||, denotes the £2-norm. It follows that, for all a € C[Z5],
llall > |lall,- Hence || - || is a norm.

Since exp(itu) = cos t + i(sin T)u (r € R), we have the following result.

THEOREM 2.1. The extremal algebra Ea(J?*; unit) is isometrically isomorphic to the
completion of C[Z,] with respect to || - |.

When / is hermitian, so also is a~'ha whenever ||a~ || = |la|| = 1. It follows that
all words of odd length in u, v are hermitian; thus x"u is a hermitian involution for
eachn e Z.
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Now let k=J%i(uv—vu)=1i(x—x7'). Then k is hermitian, and also
li(x* —=x7?) since w,vuv are hermitian. More generally, the eclement
ky = Yi(x" — x™") is hermitian for each n € N. Thus, C[Z] has a basis with “three
quarters” of the elements being hermitian. In contrast, we shall see that each word
of even length in Z,, other than 1, has numerical range the closed unit disc D™

PROPOSITION 2.2. We have Sp(x) = T and, for alln € N,
VX =Vx™") =VE"+x")=D".

Proof. Since ||x|| = [|x~!| =1, we have Sp(x) € T and, for all n e N, V(x"),
V(x™) and V(3(x" 4+ x™")) are contained in D™. If, for m € N, we quotient out by
x™ =1 then, in the factor algebra, Sp(x) contains all " roots of unity. Hence in
Ea(J?; unit), Sp(x) contains all roots of unity and, since it is closed, Sp(x) = T.

Now let n € N and quotient out by x* =1 so that we are working with the
extremal algebra over the finite dihedral group D,,. Since x" = x™", to complete the
proof it is enough to show that in this finite dimensional algebra V(x") contains D.
The norm is determined by the fact that all products of the exponential terms
exp(itu), exp(itv) (r € R) have norm 1. A straightforward induction argument shows
that any such product w is of the form

2n—1 2n—1

w= E ajx-’—i—ig Bix'u,
=0 =0

where «;, B; € R, and that ww* = 1, where here * is the canonical involution on the
group algebra C[D»,]. Equate coefficients of x° and x” and we obtain

2n—1 n—1
Z("‘? +A) =1 2 ZW:‘%‘M + BiBj+n) = 0.
J=0 Jj=0

It follows that

n—1

> [l £ ) + B £ Brn)’] =1

J=0
and hence |ag| + |o,| < 1. Now define a functional on C[D,,] by f(1) =1, fix") =¢
and f(y) = 0 for all other elements of D,,. For |¢| < 1 we now get | f(a)| < ||a||, for all
a. This shows that V(x") contains D™. OJ

ProposITION 2.3. For all n € N,
Vik,)=J and VK" =J.

Proof. Since k is hermitian with

Spk) = {Yiz—z""):zeT} =1,
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we have V(k) = J. This holds, similarly, for &k, (n € N). We also have

n—1
-1 .
k2n71 — (_4)1—)1 Z < n )(—l)lkzn—l—er

r=0 r

so that k2"~! is hermitian for all n € N, with spectrum and numerical range equal to
J. ]

It is less obvious that, for each n € N, V(k*") = H™. This will be established later
in Corollary 3.10. For the present, we have the following result.

LEMMA 2.4. For alln e N, V(k*) 2 V(k*) =H".

Proof. We have k* =1 —1(x? + x~?) and, by Proposition 2.2, V((x? + x72)) =
D~. Hence V(k*)=H". Now quotient out x* =1. Then, for n e N, k¥ =k’ =
%(1 — x?) and it follows from the proof of Proposition 2.2 that, in the factor algebra,
V() =D~ and V() = H-. 0

3. The extremal algebra Ea(J; odd). Let Ea(J; odd) denote the extremal Banach
algebra generated by £ subject to the conditions ||| = 1 and every odd positive
power of / is hermitian. We shall show that Ea(J; odd) can be identified with the
closed subalgebra of Ea(J?; unit) generated by the element k = %i(uv — vu).

Now let i(f) =t (¢t € J). We define

P= !Zanhzn“ oy € R o] < oo} c C-1,1]

n=0

and then G =exp(iP). For each g=exp(ip) € G and re€J, we have g(—1) =
g() =g (1), |g()] =1, g(0) = 1 and g% = exp(iap) € G (« € R). We now define

S= {ianh” ta, € C, Zlan| < oo}
n=0

and

W= {Zanexp(iﬂnh) ca, € C, By eR, Z lo,| < oo}.
n=1
Then G € S € W. For the second inclusion, see [5, Theorem 2.2].

For a € lin G, define |a| to be the infimum of ZnN:1 || over all representations
a= ZnN:l a,g, with N e N, o, € C and g, € G. Since G is a group, this clearly defines
an algebra seminorm and it is a norm since each |g,(¢)] = 1, which gives |a(?)| <
> |ay| and hence |al,, < ||a]|.

LEMMA 3.1. We have S =1inG and, for a = Z::io a, " €S with a, € R and
Zzi() loy| < 00, |lafl < Zzo:() |ty ].
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Proof. Certainly linG € S. Consider p =" m,h**! with 7, € R and
> |my| < 1. The Maclaurin series

. 11 5 1
sin p=p+§.§p +§

315,
.4.5p

has positive coefficients with finite sum giving sin~! p € P. Hence p = sin(sin"! p) €
linG and ||p|| < 1. In particular, /& € linG with ||| < 1. Since lin G is an algebra, it
follows that S C linG. Hence S = 1linG.

By linearity, the above gives |Y 02 m,a*"| <3 0% |my| when all 7, € R.
Hence if ) 2 || < 0o, where all o, € R, since ||4]| < 1, we have

00 00 00 00
n 2n+1 2n—1
E anh E Aopnt1 h h E a2nh = E |an | s
n=0 n=0 n=1 n=0

< ool + +

as required. O

LeEmMA 3.2. Let H be a hermitian element of some Banach algebra, with | H| < 1.

(@) Let Y .2y, =30 Buexpliyyh), where oy, By € C, vy, € R, Y |ay| < 00
and Y |Bl < 0o. Then Y o2 o, H" =Y 02, By expliy,H).

(b) Let g=exp(ip), where p=3 "2 a,h** 1 € P, and g="> " y,exp(id,h),
where y,€C, 8,€R and Y |y,| < 0o. Then exp(i Y o2 o a, H* 1) = 32, v, exp(is, H).

Proof. (a) By [9, the first Proposition on page 424], this holds for any poly-
nomial Ziv:o a,/". By [5, Theorem 2.2], we have h = > ", 8, exp(ic,,h) for certain
8, € C and ¢, € R with }_|5,,| = 1, and similar expressions for 4" (n=2,3,...).
From this it follows that

N 00 00
Z ah" = Z Buexpliyah) + Z An €Xp(ipnh) (%)
n=0

n=1 n=1

where A, € C, u, € R and Y7, |1, < 02 vy lanl. We may substitute H for A in
(*). Then, letting N — oo gives the required equality.
(b) Write g=> 1 n,/i" with n,e€C and Y |n, <oo. Then ny=1,

N = ioy, . ... Hence,
o0 o0 o0
exp (i Z oanZ"“) = Z nH'" = Z v exp(is, H),
n=0 n=0 n=1
using (a) for the last equality. O

PROPOSITION 3.3. Let H be an element of some Banach algebra, with |H| < 1 and
all odd positive powers of H hermitian, and let Y- |€,] < 0o, where &, € C. Then

1020 EH Il < 11 Y 52 Eah"I.

Proof. Let Zfiio &' = Zr/:/:l ®ugn, Where g, = exp(ip,) and p, = Zzo nmihzﬁ_l

with 7, ; € R and Zj |7, ;| < oo. We can write g, = Zj’il Yn,j €Xp(i8y, ;1) with y, ; € C,
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8nj€R and Y|yl <oo. Hence Y 2 & = SN S @Y €xp(i8, jh). By

Lemma 3.2,
[o¢]
ZSnH" Zzanyn Jexp(l‘sn jH) Zan eXp(lZm H2/+1)
n=0 n=1 j=1
Hence || Y 2, & H"|| < SN Jal, since iy 7, ;HY*! is hermitian. Taking the infi-
mum of Z,I,Vzl || over suitable representations gives the required inequality. O
Let A be the completion of S with respect to || - ||. Any ¢ € A may be written in

the form ) 2, a,, where a, € S and )_ ||a,|l < oco. Then each a, is a finite sum
Z oy, j&n,j» With Z lotn ;| < llanll +27". Hence a =) -, Bugn, With B, €C, g, €G
and > 1Bal < o0, where the series for a converges in A.

An expression such as exp(i#) now has two meanings: a given element of G and a
power series converging in 4. These coincide. Consider, for example, sin/. The
remainder after the n™ term is )" (—1)/A%*!/(2j + 1)! which, by Lemma 3.1, has
norm at most Z ~, 1/(2j+ DL

By construction, for n =0, 1,2, ..., |[exp(ich®*")| =1 (¢ € R) so that #**+! is
hermitian. Similarly, any p € P is hermitian. Since 4(1) =1, |||l = 1. Hence, by
Proposition 3.3, we have established the following result.

THEOREM 3.4. The extremal algebra Ea(J; odd) is isometrically isomorphic to

CA - 1D

Note that A4 is a commutative Banach algebra. Let ¢ be a multiplicative linear
functional on A. Since ||A] = 1 = || exp(iah)| (¢ € R), ¢(h) =t € J. Clearly, any t € J
gives a multiplicative linear functional. Consider a = Y%, a, exp(i )= Bu/h7t') € A,
where o, €C,B,;€R, > |a, <oo and Z—o |Bn,j] < o0. For the above P,
P(a) = a(1), where a(t) = Y2 aexp(i Y2 B, ,tzf“) The function « is continuous
on J. We have Sp(a) = {a(¢) : t € J}, so that r(a) = max{|a(?)| : t € J}.

For a € C and g € G, define

(ag)* =ag ", (@g)' = ag™
and extend, by addition, to involutions on S. Then, for ¢ € S and ¢ € J, a*(¢) = a(t)
and a'(f) = a(—t), which shows that these involutions are well defined. They are
isometric on S and so extend to A. Note that i* = i = —h'.
Let Q denote the closure of P in A.
LEMMA 3.5. Let a € A with a* = a = —at. Then a € Q.

Proof. Let a =Y 2| angy. Then

00 00 00
Z— —1 ] Z -1 Fyk Zi

a = Cl* = Olng,, = —a-} = — angn = _((,Z*) = — angn.
n=1 n=1 n=1

Hence a= Y%, Bu.(g. —g;'), where B, = 4(an —a,) € iR. For g=-exp(ip) with
p € P, we have —1i(g — g_l) =sinp € P. Hence B.(g, — g,') e Pandae Q. [
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LeEMMA 3.6. Let a € A with a(0) = 1, a*a = 1 and a* = a'. Then a € exp(iQ).

Proof. For t € J, |a(t)* = |a*(0)||a(1)| = (a*a)(r) = 1 and a(—1) = a' (1) = a*(1) =
a(?). Since we also have a continuous on J, there exists a real odd function b, con-
tinuous on J, such that a = exp(ib). Then there exists a real odd polynomial p in A
such that |b — p|,, < 1. Let g = exp(ip) and ¢ = g~ 'a. Then |a — g| = 2| sin%(b —p)l
which gives |c— 1| =la—gls <1. We have c¢*¢c=1 and c¢*=cl. Let
d=1logce A, so that d is a limit of polynomials in ¢. Hence d* =log(c*) =
log(¢™!) = —logc = —d and, similarly, d" = —d. This gives (id)* = id and (id) =
—id. By Lemma 3.5, id € Q. Hence ¢ = expd € exp(iQ) and a = gc € exp(iQ). O

LemMaA 3.7. Let p be a real polynomial in ih with p(0) # 0. Then there exists
g € exp(iQ) such that (pg)" = pg.

Proof. We have p(—t) = p() (t € J). Any zeros of p in J are in pairs of the form Fa.
We may factor these out to assume, without loss, that p is never 0 on J, and hence
p~! € A.Since (ih)* = (ih)" we have p* = pt. Let g = p*p~!. Then ¢*¢ = 1 and ¢* = ¢'.
By Lemma 3.6, g € exp(iQ). Let g = ¢'/?>. Then g = p*p~' and pg = p*g~' = (pg)*. O

PrOPOSITION 3.8. Let p be a real polynomial in ih. Then ||p|| = r(p).

Proof. Assume that r(p) < 1. It is then enough to prove that ||p|| < 1. We have
p =" a,(ih)", where a;, € R and « € (—1, 1). For n € N, define

pm=p+ 1 —a)1 =1,  qu=pipn,

so that ¢, is a real polynomial in 4#? and ¢,(f) = |p.(¢)|* (¢ € J). Then we have
@0 =1, ¢, 0)=0 or ¢l0)=2a]— 4w —4n(l — ay).

Choose ny € N such that ¢, (0) <0, and § € (0, 1) such that g,,(1) < 1 (0 < |7] < 9).
Therefore, if 0 < |¢| < § then |p,,(¢)| < 1; if also m > ny then p,,(f) i3 a convex com-
bination of p(f) and p,(¢); and if further r(p)+2(1 —§*)" < 1, then we have
pm(®)] <1 (0 < |f] <1). Repeat the above for p replaced with —p to give
DPm = —p + (1 + ap)(1 — #*)" with the same properties. We may choose, and now fix,
the same m by increasing exponents. Then 2p = (1 + ao)p,, — (1 — )Py, and it is
enough to show that |p,|l <1, since ||p,|l <1 follows similarly. Note that
gm(0) =1, ¢,(0) <0 and g¢,(1) <1 (0<|f] <1). By Lemma 3.7, there exists
g €exp(iQ) such that (p,g)* =pmg. Let s=p,g. Then s* =s=s', since
pmg =pig* =phet = (g, Also, s> = p*p, = ¢ and 1 — s> = h2c, where ¢ is a
real polynomial in 4#? with ¢(¢) > 0 (¢ € J). The functional calculus gives \/c € A as a
limit of polynomials in ¢. Hence (/)" =./c=(/¢)'. Let d= s+ ihy/c. Then
d* =s—ihyJc=d and d*d = s>+ h*c=1. By Lemma 3.6, d € exp(iQ). Any ele-
ment of O is a limit of hermitians and is therefore hermitian. Hence ||d|| = 1. Simi-
larly, [|d@*|| = 1. Hence [|p,|l < lIsllllg™" = lIs] < 1. O

As in Section 2, we write k = $i(x — x!), where x = uv. Recall that ||k|| = 1 and
all odd positive powers of k are hermitian. Since Ea(J; odd) is the extremal algebra
subject to this condition, it is immediate that || P(k)|| < || P(h)| for all polynomials P.
In fact, we have the following result.
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THEOREM 3.9. The extremal algebra Ea(J; odd) is isometrically isomorphic to the
subalgebra of Ea(J*; unit) generated by the element Li(uv — vu), where u, v are the
generators of Ea(J?; unit).

Proof. Let H be the subgroup of 7, generated by x, and let B = C[H]™ so that B
is a commutative subalgebra of Ea(J?;unif). It is enough to prove that
|P(k)|| = ||P(h)| for all polynomials P.

Let
N
C= {Zank” :NeN, o, C}
n=0
and define an algebra norm |-| on C by |ZHN:0 a, k" = || ij:o a,h"||. Since
Sp(k) = J it follows that |- | is well defined. It is enough to show that, for ¢y € C,
llcoll = lcol.

Let ¢g € C. Clearly ||co|| < |co|. There exists ¢ € C' with |¢| = 1 and ¢(co) = |co].
We show that ¢ has an extension v € C[Z,] such that || <1. Then
llcoll = (o) = Plco) = Icol-

Consider a¢ € J. By induction, ¢*a = 1 and @ = b + icu with b, ¢ € R[H]. For all
d € R[H], we have ud = d*u, which gives 1 = a*a = b*b + c¢*c. Let x € B’ be a mul-
tiplicative linear functional. Since x(¢*) = x(d) (d € B), we have | x(b)|> + |x(c)|*> = 1.
Hence |x(b)| < 1 and so r(h) < 1. Define an isomorphism of period 2 on C[H] by
() =(=x"") (jeZ). We have kf =k and so ¢f =¢ (ce(C). Since Sp(x)=
Sp(—x~"), we have r(b") = r(b). For jeZ, X+ (—x"")/ is a real polynomial in
x — x~! = —2ik. Hence, if d € C[H] (respectively R[H]) then d + d' is a polynomial
(respectively real polynomial) in ik. Let p= %(b +b%. We have r(p)<
L(r(b) + r(b")) < 1. By the above, p =Y mi(ik)/, where m; € R. Let ¢ =Y m(ih).
Since Sp(k) = Sp(h), r(q) =r(p) <1. By Proposition 3.8, |¢g|| <1. Hence
Ipl = llqll < 1. Therefore |p(p)| < I¢] Ip] < 1.

For any ae(C[Z;], write a=b+icu with b,ce C[H], and define
Y(a) =1¢(b+b").If d € C, then d' = d and y(d) = ¢(d). If a € 7, then |[y(a)| < 1 by
the preceding paragraph. Hence ||y| < 1 and v is a suitable extension of ¢. O

COROLLARY 3.10. Let k= %i(uv —vu), where u, v are the generators of
Ea(J?; unit). Then for n € N, |k* — 1| =L and V(k*) = H™.

Proof. Define ae A by a(f)=1—2r". Then a satisfies the conditions of
Proposition 3.8, so that |la|| = 1. Hence, by Theorem 3.9, ||1 —2k*"|| = 1, so that
V(k*) € H™, and applying Lemma 2.4 completes the proof. O

4. The extremal algebra FEa(J; even). Let Ea(J;even) denote the extremal
Banach algebra generated by % (not hermitian) subject to the conditions |4 =1
and every even positive power of /4 is hermitian. The Vidav-Palmer theorem shows
that the subalgebra generated by 1 and /4 is a commutative unital monogenic C*-
algebra, and so is the algebra of continuous functions on Sp(/#?). Certainly this
spectrum is contained in J so that Sp(%) is contained in [—1, 1] U [—i, {]. We shall see
that, in fact, equality holds in both cases. The extremal algebra may be realised as
follows.
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Let K=[—1,1]U[—i,{] and let & be all continuous f: K — C such that
= i SO —f(=0)
SO ==
exists. Then £ is an algebra under pointwise operations. For f'€ £ and ¢ € K, define

£ty —fi=1)
: £ = 2t

10) if t = 0.

_ if t 0,
ity SO

For f € &, fi and f; are the unique even continuous functions on K such that

SO =L@+ 1) (1€ K).

Conversely, f € £ whenever f has such a decomposition. For f € £, define

/1= 1f1loo + 1 /2o

Then | - || is an algebra norm and (&, || - ||) is a Banach algebra since, as a normed
space, it is the ¢! direct sum of two continuous function spaces. Since the even
polynomials are |- |,,-dense in the even continuous functions it follows that the
polynomials are || - ||-dense in (&, || - ||).

Now let & be the identity function on K. Then /& € £ with ||A] = 1. It follows
directly from the definition of spectrum that Sp(#) = K, so that all even positive
powers of & have spectrum J.

PROPOSITION 4.1. For n € N,

VIK"y=J (neven) and V(I")=D" (n odd).

Generalising the odd power case, for any even function f € &, V(hf) is the closed disc,
centre 0 and radius p, where p = | f| -

Proof. For n € N, n even, | exp(ith")|| = 1 (r € R), so that 4" is hermitian, and

hence V(/") = J, the convex hull of the spectrum.
For f € £, fan even function, and A € C with |A| = 1, we have

’

1 Mf]| — 1 1 -1
Mtarmii=1_ A+ep)—-1_
o

sup ReV(Ahf) = alg{)l+ Jim, a
giving V(hf) as stated. [

Finally, we have the following identification.

THEOREM 4.2. The extremal algebra Ea(J; even) is isometrically isomorphic to

&1 1.

Proof. Let h(t) =t (t € K). Then ||h|| = 1 and all even positive powers of / are
hermitian. To see that || - || is extremal, let g be any Banach algebra element with
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llgll = 1 and all even powers of g hermitian, let P be any polynomial and let Q and R
be the even polynomials such that, for all ¢, P(¢) = Q(¢) + tR(¢). Then, since Q(g)
and R(g) are in the algebra generated by 1 and g2, and Sp(g) € K = Sp(/), we have

1P < 12N + IRl = r(Q(2) + r(R(g)) = QMo + [R(D)] = 1P|

and the result follows. O
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