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Admissible Sequences for Twisted
Involutions in Weyl Groups

Ruth Haas and Aloysius G. Helminck

Abstract. Let W be a Weyl group, Σ a set of simple reflections in W related to a basis ∆ for the root

system Φ associated with W and θ an involution such that θ(∆) = ∆. We show that the set of θ-

twisted involutions in W , Iθ = {w ∈ W | θ(w) = w−1} is in one to one correspondence with

the set of regular involutions IId. The elements of Iθ are characterized by sequences in Σ which in-

duce an ordering called the Richardson–Springer Poset. In particular, for Φ irreducible, the ascending

Richardson–Springer Poset of Iθ , for nontrivial θ is identical to the descending Richardson–Springer

Poset of IId.

1 Introduction

Let W be a Weyl group generated by a set of reflections Σ. We will assume that Σ

comes from a basis ∆ for the root system associated with W , i.e., (W,Σ) is a finite

Coxeter System corresponding to a root system. If θ is an involution of W then the

set Iθ = {w ∈ W | θ(w) = w−1} is called the set of θ-twisted involutions in W . This

set is important in the study of orbits of minimal parabolic k-subgroups acting on

symmetric k-varieties. The geometry of these orbits and their closures induce a poset

structure on the set Iθ. Understanding this poset structure is key to understanding

the structure of the orbits. This connection will be described in Section 2. There

we will also show that it is sufficient to consider only those involutions θ such that

θ(∆) = ∆, and hence θ(Σ) = Σ. Thus we restrict our attention to involutions θ such

that θ(∆) = ∆. The results of this paper imply a simple algorithm for computing

the poset and elements of Iθ. In particular, for any θ, the poset of Iθ, can be quickly

derived from the poset of IId, where Id is the identity automorphism of W . Notice

that IId = {w ∈ W | w2
= e}.

The Weyl Group W acts on the set Iθ by θ-twisted conjugation, which is defined

as w ∗ a = waθ(w)−1 where w ∈ W and a ∈ Iθ. If s ∈ Σ and a ∈ Iθ then define

s ◦ a = sa (group multiplication) if s ∗ a = a and s ◦ a = s ∗ a otherwise. In both

cases s ◦ a is a twisted involution in Iθ. A sequence s = (s1, . . . , sk) in Σ induces a

sequence in Iθ defined by induction as follows: a(s) = (a0, a1, . . . , ak), where a0 = e

and ai = si ◦ ai−1 = si ◦ · · · ◦ s1 ◦ e for i ∈ [1, k]. It will be important to keep

track of for which elements in s the ∗ operation is used. Thus for s ∈ Σ, a ∈ Iθ we

will use the notation si if si ◦ ai−1 = si ∗ ai−1. Define Σ := {s | s ∈ Σ} and let

rs = (r1, r2, . . . , rk) be the sequence in Σ∪Σ defined by ri = si if si ◦ ai−1 = si ∗ ai−1

in a(s) and ri = si otherwise. The sequence rs will be called an admissible sequence

for Iθ and the sequence s will be called an underlying admissible sequences for Iθ.

Received by the editors November 7, 2008.
Published electronically April 25, 2011.
The second author was partially supported by N.S.F. Grant DMS-0532140.
AMS subject classification: 20G15, 20G20, 22E15, 22E46, 43A85.

663

https://doi.org/10.4153/CMB-2011-075-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-075-1


664 R. Haas and A. G. Helminck

Recall l(w), the length of w with respect to Σ, is the number of elements in a

minimal expression of w as a product of basis elements. Note that this is not generally

equal to the number of elements in Σ∪Σ in a sequence determining w. The sequence

rs is called an admissible ascending sequence for Iθ if 0 = l(a0) < l(a1) < · · · < l(ak).

We will often refer to these as simply admissible sequences when the rest is clear

from context. Richardson and Springer [RS90] showed that every element in Iθ can

be represented by admissible sequences. An element may be represented by several

admissible sequences, and determining all of these is crucial to determine the orbit

closures described in Section 2.

Remark 1.1 From the classification of involutions of simple algebraic groups in

[Hel88] it follows that if the involution θ comes from the root system of a maximal

torus as in [Hel88], then for Φ of type D2n the condition θ(∆) = ∆ implies that

θ = id. So the case of a non-trivial diagram automorphism does not occur.

In this paper we show the following.

Theorem 1.2 Let W be a Weyl group not of type D2n, with Σ, ∆ and Φ as above,

and θ an involution such that θ(∆) = ∆. The sequence r = (r1, r2, . . . , rn) in Σ ∪ Σ

is a maximal admissible ascending sequence for Iθ if and only if r̂ = (rn, . . . , r1) is a

maximal admissible ascending sequence for IId. Where in the sequence r, sa denotes the

operation saθ(s), while in the sequence r̂, sa denotes the operation sas.

The full power of this theorem comes from the fact that every partial sequence

of a maximal admissible ascending sequence will also be an admissible ascending se-

quence, and indeed, all admissible sequences are partial sequences of maximal ones.

Note that the ∗ and ◦ action on Iθ as used in the sequences depend on the involu-

tion, and are therefore different for the two sequences in the theorem. Computing

the sequences for IId will be significantly easier than doing it directly in Iθ. To show

that there is a one-to-one correspondence between sequences we will need some ad-

ditional definitions.

Recall that W has a unique element of maximum length with respect toΣ, denoted

here by w0. We will show that w0 ∈ Iθ, for all θ and if s = (s1, . . . , sn) is a maximal

admissible sequence then w0 = sn ◦ · · · ◦ s1 ◦ e. It will be convenient to define partial

sequences descending from w0 as follows. If t = (t1, . . . , tk) is a sequence in Σ, then

define a sequence (b0, b1, . . . , bk) in Iθ by induction as follows. Let b0 = w0 and for

i ∈ [1, k] let bi = ti ◦bi−1. As before, let rt = (r1, r2, . . . , rk) be the sequence in Σ∪Σ

defined by ri = ti if ti ◦ bi−1 = ti ∗ ai−1 and ri = ti otherwise. The sequence rt will be

called a descending sequence for Iθ. Admissible descending sequences in Iθ are those

in which the lengths strictly decrease, i.e., if l(w0) = l(b0) > l(b1) > · · · > l(bk).

We use xy to denote regular group multiplication of x and y, as well, it will be

convenient to denote the action s ∗ x = sxs by sx. For a sequence r = (r1, r2, . . . , rk)

and w ∈ W , define r · w := rk · · · r2r1w.

Theorem 1.3 Let W be a Weyl group not of type D2n, with Σ, ∆ and Φ as above, and

θ an involution such that θ(∆) = ∆. Denote by · the action of a sequence r ∈ Σ ∪ Σ

on Iθ, and · ′ the action of r on IId.
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1. A sequence r = (r1, r2, . . . , rn) in Σ∪Σ is an admissible ascending sequence for Iθ if

and only if it is an admissible descending sequence for IId.

2. A sequence r = (r1, r2, . . . , rn) in Σ ∪ Σ is an admissible descending sequence for Iθ
if and only if it is also an admissible ascending sequence for IId.

3. Let q and r be two sequences in Σ ∪ Σ. They are two admissible ascending sequences

for Iθ and q ·e = r ·e in Iθ if and only if they are two admissible descending sequences

for IId and q · ′ w0 = r · ′ w0 in IId.

The sequences induce a partial order on the elements of Iθ. If a, b ∈ Iθ, then define

a ≻ b if there exists an admissible ascending sequence (r1, . . . , rn) and j < n such

that a = rn · · · r2r1e and b = r j · · · r2r1e. This is a combinatorial description of the

Richardson–Springer order on Iθ, see Section 2. Following the proofs of the main

results we give some additional results about the structure of the the Richardson–

Springer Poset and its sequences in Section 5.

The usual Bruhat order in the Weyl group also induces a poset structure on the

set of involutions. This poset structure was studied by Incitti, Hultman and others

(see, e.g., [Hul05], [Inc04], [Inc06]). However this order is not the same order as

the one that was used by Richardson and Springer [RS90] to describe the orbits (and

their closures) of parabolic subgroups acting on symmetric varieties. In this paper

we consider the poset structure induced by the Richardson–Springer order which we

refer to as the Richardson–Springer poset. An example of the difference in the posets

is given in Section 3.

The results in this paper will lead in a variety of directions. For example, the

duality for the twisted involution posets implies a duality for representations of the

associated symmetric spaces. The structure developed here leads to a significant sim-

plification in designing algorithms for computations related to symmetric spaces.

Many interesting combinatorial questions can be asked about these posets includ-

ing rank formulas, path formulas, etc. Forthcoming papers of the authors and their

students address these ([CHHW10], [CHH+10], [HH010]).

2 Context

In this section we describe how twisted involutions and their admissible sequences

help to characterize orbits of a minimal parabolic k-subgroup acting on a symmetric

k-variety. We start by discussing these orbits and their applications.

Throughout this section let G be a connected reductive algebraic group defined

over a field k of characteristic not 2, θ an involution of G defined over k (i.e., of order

two) and H = Gθ = {g ∈ G | θ(g) = g} the set of fixed points of θ. Let Gk, Hk

denote the sets of k-rational points of G, H. The orbits of a minimal parabolic k-

subgroup P acting on the symmetric k-variety Gk/Hk play a fundamental role in the

study of representations associated with these symmetric k-varieties. These orbits

were studied for many fields and can be characterized in several equivalent ways.

They can be characterized as the Pk-orbits acting on the symmetric k-variety Gk/Hk

by θ-twisted conjugation (i.e., if x, g ∈ Gk then define g ∗ x := gxθ(g)−1), or as the

number of Hk-orbits acting on the flag variety Gk/Pk by conjugation, or also as the set

Pk\Gk/Hk of (Pk,Hk)-double cosets in Gk. The last is the same as the set of Pk × Hk-

https://doi.org/10.4153/CMB-2011-075-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-075-1


666 R. Haas and A. G. Helminck

orbits on Gk. For k algebraically closed these orbits were characterized by Springer

[Spr85], for k = R characterizations were given by Matsuki [Mat79] and Rossmann

[Ros79] and for general fields these orbits were characterized by Helminck and Wang

[HW93]. For general fields one can first consider the set of (P,H)-double cosets in

G. Then the (Pk,Hk)-double cosets in Gk can be characterized by the (P,H)-double

cosets in G defined over k plus an additional invariant describing the decomposition

of a (P,H)-double coset into (Pk,Hk)-double cosets.

The following result gives a characterization of the (P,H)-double cosets in G. Let

A ⊂ P be a θ-stable maximal k-split torus of G (which exists by [HW93]), N the

normalizer of A in Gk, Z the centralizer of A in Gk, let W = W (A) = N/Z be the

Weyl group of A in Gk, and let Iθ = {w ∈ W | θ(w) = w−1} be the set of twisted

involutions in W .

Theorem 2.1 The (P,H)-double cosets in G defined over k can be characterized by the

pairs (O,w), where O is a closed orbit and w ∈ Iθ ⊂ W .

Proof For k algebraically closed and P a Borel subgroup of G this result follows

by combining [Spr85] and [RS90]. For k not algebraically closed and P a minimal

parabolic k-subgroup of G the result follows by combining the characterization of

the orbits in [HW93], [Hel00] and [Hel04].

Remark 2.2 It follows from this result that to classify the P × H orbits on G one

needs to determine both the closed orbits and the twisted involutions that occur.

In many cases there is a unique closed orbit and then the P × H orbits on G are

completely characterized by the twisted involutions in W . In this paper we prove a

number of results about these twisted involutions in the Weyl group.

2.3 Orbit Closures

These twisted involutions also play an essential role in the study of the orbit closures.

The closure of a P × H orbit on G decomposes as the union of other P × H orbits

on G and these orbit closures are of fundamental importance in the study of Harish-

Chandra modules, see [Vog83]. There is a natural order ≻ on the set of P × H orbits

on G, called the Bruhat order, which is defined as follows. If O1,O2 are orbits, then

O1 ≻ O2 if and only if O2 is contained in the closure of the orbit O1. This order

on the orbits induces an order on the related set of twisted involutions, which we

call the Richardson–Springer order on Iθ. In [RS90] Richardson and Springer gave a

combinatorial description of these Bruhat orders in terms of sequences of reflections

in simple roots, which is exactly the sequence order as we defined above.

2.4 Reduction to Diagram Automorphisms

In this subsection we show that it suffices to consider involutions θ such that θ(∆) =

∆. For k an algebraically closed field, Steinberg [Ste68] proved that there exists a θ-

stable maximal torus A and a basis ∆ of Φ(T) such that θ(∆) = ∆. In this subsection

we show that this result can be extended to involutions of groups defined over non

algebraically closed fields and maximal k-split tori as above. First we need some more
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notation. In the remainder of this subsection let G be a reductive algebraic group

defined over a field k, θ a k-involution of G, A a θ-stable maximal k-split torus of G,

X = X∗(A) the group of characters of A, Φ = Φ(A) the set of roots of A with respect

to G and Φ
+ the set of positive roots with respect to a basis ∆ of Φ. Let wθ ∈ W such

that

θ(Φ+) = wθ(Φ+),

and let θ ′
= θwθ. Then wθ and θ ′ satisfy the following conditions:

Proposition 2.5 Let Φ, Φ+, θ, wθ and θ ′ be as above.

1. wθ ∈ Iθ.

2. θ ′ is an involution of Φ and θ ′(∆) = ∆.

3. θ ′ is W (A)-conjugate to θ if and only if wθ = θ(x)x−1 for some x ∈ W (A).

Proof Since θ(Φ+) = wθ(Φ+) it follows that w−1
θ θ(Φ+) = Φ

+ and consequently

θ(w−1
θ )(Φ+) = θw−1

θ θ(Φ+) = θ(Φ+) = wθ(Φ+). So θ(w−1
θ ) = wθ, which proves

(1) and (2). As for (3) note that θ ′
= xθx−1 for some x ∈ W (A) if and only if

θ ′
= θ · θ(x)x−1. Since θ ′

= θwθ the result follows.

Although wθ ∈ Iθ the involutions θ ′ and θ are usually not conjugate since not all

elements of Iθ can be written as θ(x)x−1 for some x ∈ W (A). To remove the element

wθ we need to pass to a θ-stable conjugate of the torus A and choose a suitable basis

∆ of Φ. We first describe this basis, which will enable us to get a detailed description

of wθ. For this we need some more notation.

Let X0(−θ) = {χ ∈ X | θ(χ) = −χ}, Φ0(−θ) = Φ ∩ X0(−θ) and π the natural

projection from X to X/X0(−θ). A linear order ≻ on X is called a θ−-order if it has

the following property:

if χ ∈ X, χ ≻ 0, and χ /∈ X0(θ), then θ(χ) ≻ 0.

A basis ∆ of Φ with respect to a θ−-order on X will be called a θ−-basis of Φ. A

θ−-order on X induces orders of Φ0(−θ) and Φ̄θ := π
(

Φ − Φ0(−θ)
)

. Conversely,

linear orders on Φ0(−θ) and Φ̄θ induce a unique θ−-order on X. Let W
(

Φ0(−θ)
)

denote the finite subgroup of W (A) generated by the sα for α ∈ Φ0(−θ). We have

the following:

Lemma 2.6 Let ∆ be a θ−-basis of Φ, w0(−θ) the longest element of W
(

Φ0(−θ)
)

with respect to ∆0(−θ) := ∆ ∩ Φ0(−θ) and θ∗ := θ · w0(−θ).

1. wθ = w0(−θ) ∈ Iθ.

2. θ ′
= θ∗, (θ∗)2

= id.

Proof The result is immediate from the observation that θ(Φ+) = w0(−θ)(Φ+).

This result gives us a nice description of the element wθ. To remove wθ we find a

suitable conjugate of the torus A. Let A−
= {a ∈ A | θ(a) = a−1}0 and for α ∈ Φ(A)

let Aα = {a ∈ A | sα(a) = a}0 and Gα = ZG(Aα) the centralizer of Aα.
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Theorem 2.7 Let A, θ, etc., be as above.

1. There exists a θ-stable conjugate A1 of A such that Φ0(θ,A1) := {α ∈ Φ(A1) |
θ(α) = −α} = ∅.

2. Let ∆1 be a θ−-basis of Φ(A1). Then θ(∆1) = ∆1.

Proof Let ∆ be a θ−-basis of Φ, w0(−θ) the longest element of W
(

Φ0(−θ)
)

with re-

spect to ∆0(−θ) := ∆∩Φ0(−θ) and θ∗ := θ ·w0(−θ). Since w0(−θ) is an involution

it follows from [Hel91, 2.7] that there exist α1, . . . , αn ∈ Φ0(−θ) strongly orthog-

onal roots, such that w0(−θ) = sα1
· · · sαn

. From [Hel97, 3.8] it follows that there

exists x ∈ Gα1
such that A0 = xAx−1 is a θ-stable torus with dim A−

= dim A−

0 + 1.

Let A−

w0(−θ) := {a ∈ A | w0(−θ)(a) = a−1}0. Using induction it follows that there

exists x ∈ ZG(A−

w0(−θ)) such that A1 = xAx−1 is θ-stable, dim A−

1 = dim A− − n and

Φ0(θ,A1) := {α ∈ Φ(A1) | θ(α) = −α} = ∅. By choosing a θ−-basis of Φ1 the

result follows from Lemma 2.6.

In the remainder of this paper we assume that ∆ is θ-stable.

3 Example

We consider as an example S4 whose corresponding Dynkin diagram is of type A3.

Throughout this example, ∗, ◦ and · will refer to actions of W on IId. Let the gener-

ators of S4 be Σ = {s1 = (12), s2 = (23), s3 = (34)}. We compute the maximal as-

cending sequences for IId directly. We make frequent use of the facts that s1s3 = s3s1,

s1s2s1 = s2s1s2 and s3s2s3 = s2s3s2. As well, note that the same element will not occur

twice in a row in an underlying admissible sequence. Let the size of a sequence denote

the number of elements in it.

Since s1 ∗ e = s2 ∗ e = s3 ∗ e = e, the admissible ascending sequences of size 1 are

s1, s2 and s3. There will be 6 admissible ascending sequences of size 2 representing 3

different elements. Since s2 ∗ s1 = s2s1s2 = s1s2s1 = s1 ∗ s2; s3 ∗ s2 = s2 ∗ s3 while

s3 ∗ s1 = s3s1s3 = s1 so s3 ◦ s1 = s1s3 = s1 ◦ s3 and the admissible ascending sequences

are s2s1 = s1s2; s3s1 = s1s3; and s2s3 = s3s2.

Since s3 ∗ s2s1 = s3s2s1s2s3 we get the admissible ascending sequence s3s2s1. Since

s2∗s3s1 = s2s3s1s2, we get the admissible ascending sequence s2s3s1. The only sequence

of size 3 we must still consider is s1 ∗ s2s3. Noticing that s3s2s1s2s3 = s3s1s2s1s3 =

s1s3s2s3s1 shows that the admissible ascending sequence s1s2s3 = s3s2s1. There are

3 cases to consider for possible sequences of size 4.

(i) s2 ∗ s3s2s1 = s2s3s2s1s2s3s2 = s3s2s3s1s3s2s3 = s3s2s1s2s3, so the admissible ascend-

ing sequence is s2s3s2s1.

(ii) s1 ∗ s2s3s1 = s1s2s3s1s2s1, giving the admissible ascending sequence s1s2s3s1.

(iii) s3 ∗ s2s3s1 = s3s2s3s1s2s3, giving the admissible ascending sequence s3s2s3s1.

All three are actually equal to the same element, as can be seen:

s3s2s3s1s2s3 = s2s3s2s1s2s3 = s2s3s1s2s1s3 = s2s1s3s2s3s1 = s2s1s2s3s2s1

= s1s2s1s3s2s1 = s1s2s3s1s2s1.
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There can be no bigger sequences in IId since these three start with the three possible

elements of Σ. Further this must be w0 the longest element in IId and the unique

longest in W . From the computation, and more easily, from the poset drawn in

Figure 1 we see that there are actually 8 maximal sequences.
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Figure 1: Poset of IId for S4.

By Theorems 1.2 and 1.3, we can read all admissible sequences for Iθ directly from

our poset for IId. Some samples follow. There will be 8 maximal admissible de-

scending sequences for Iθ. Following the left-most path down from the top we get

s1s2s3s1w0 where the s is an action in θ, is one maximal admissible descending se-

quence for Iθ. Two admissible descending sequences in Iθ represent the same element

in Iθ if and only if the sequences represent the same element as admissible ascending

sequence in IId. Hence, s2s3w0 = s3s2w0.

Instead of the above order on the set of twisted involutions one can also consider

the order induced from the usual Bruhat order in Weyl group. This leads to a different

poset, which was studied by Incitti, Hultman and others (see, e.g., [Hul05], [Inc04],

[Inc06]). In Figure 2 we give the poset on the set IId for S4 induced by the strong

Bruhat order. We indicate each additional edge in the above Richardson–Spinger

poset with a dashed line.

4 Proofs

Throughout this section we assume that the root system, Weyl Group, etc., come

from a maximal k-split torus of G as described in Section 2. We also assume that the
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Figure 2: Poset of IId for S4 induced by the strong Bruhat order.

involution θ is the restriction of an involution of the group G.

Let Φ denote a root system in the Euclidean Vector Space, E, ∆ a basis of Φ, Φ+

and Φ
− the positive and negative roots, respectively, W the Weyl group of Φ and

Σ = {sα | α ∈ ∆}, where sα denotes the reflection through α. If τ ∈ Aut(Φ) is an

involution then τ induces an involution of W as follows, τ̃ (w) := τwτ . Following

the standard abuse of notation we will write τ for τ̃ .

As in Section 2, let θ be an involution such that θ(∆) = ∆, i.e., θ is either the

identity or a diagram automorphism. By the following remark, it suffices to prove

our theorems for the case that Φ is irreducible, which we assume from here on.

Remark 4.1 All possible Dynkin diagrams consist of a set of connected compo-

nents, each of which corresponds to an irreducible root system. From [Hel88] it fol-

lows that an involution either fixes a connected component of the Dynkin diagram

or exchanges two identical copies. In the case where the involution exchanges two

connected components, the Weyl group for these two components is W = W1 ×W1,

where W1 is the Weyl group of the irreducible component. Also, Σ = Σ1×Σ1, where

Σ1 is the set of generators for W1. Further, the set Iθ = {(w,w−1) | w ∈ W1} and

the Richardson–Springer order on Iθ is the usual Bruhat order on W1. In particular,

the admissible sequence for an element (w,w−1) ∈ Iθ will be a sequence of the form

(r1, . . . , rn) ∈ Σ ∪ Σ, such that ri ∈ Σ for all i. Moreover, each ri is of the form

ri = (s j , e), for some s j ∈ Σ1. Thus, the presentations of (w,w−1) ∈ Iθ as admissible

sequences are in one-to-one correspondence with the presentations of w as reduced

expressions in Σ1.
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Remark 4.2 If Φ is of type A1,Bn,Cn, E7, E8, F4, or G2, then there are no non-

trivial diagram automorphisms. In these cases looking at twisted involutions is the

same as looking at regular involutions. If Φ is of type Dn, n ≥ 5, An, n ≥ 2 or

E6 there is a unique non-trivial diagram automorphism of order 2 which we shall

denote by θ. For D4 there are 3 non-trivial diagram automorphisms of order 2. We

shall only consider involutions of Φ coming from involutions of the group G. By the

classification theorem of involutions of reductive algebraic groups (see [Hel88]) for

n even, no involution of the group G induces a diagram automorphism of order 2 of

the Dynkin diagram of type Dn.

Lemma 4.3 Let Φ be a root system with Weyl Group W . Then, − Id /∈ W if and only

if Φ is of type An for n ≥ 2, Dn for n odd, or E6.

Proof This result can be found in [Hel91]. One can also check it case by case using

the tables in [Bou81].

Recall l(w) is the length of w with respect to Σ. It is well known (see for exam-

ple [Bou81]) that the l(w) = |w(Φ+) ∩ Φ
−|. Recall that w0 is defined to be the

longest element in W , with respect to Σ. This is precisely the unique element such

that w0(Φ+) = Φ
−. Notice that if − Id ∈ W then − Id = w0.

Lemma 4.4 Let θ 6= Id be a non-trivial diagram automorphism of order 2 as above,

then θw0 = w0θ = − Id. Further, w0 ∈ Iθ.

Proof If w0 = − Id then by Lemma 4.3, Φ is of type A1,Bn,Cn, E7, E8, F4 or G2

or D2n. By Remark 4.2 none of these cases has a non-trivial diagram automorphism.

Hence, w0 6= − Id. Since θ(∆) = ∆ we get that θ(Φ+) = Φ
+. Then θw0θ(Φ+) = Φ

−,

hence, θ̃(w0) := θw0θ = w0. For the second equality we have that − Id w0(Φ+) =

Φ
+, so since this is not the identity map it must be the unique non-trivial diagram

automorphism θ.

Now, θw0θw0 = (− Id)2
= Id and by definition θ(w0) = θw0θ. Hence w−1

0 =

θ(w0), so w0 ∈ Iθ.

Lemma 4.5 If (r1, . . . , rk) ∈ Σ ∪ Σ is an admissible ascending sequence and

(r1, . . . , rk)·e 6= w0 then there exists an element rk+1 ∈ Σ∪Σ such that (r1, . . . , rk, rk+1)

is also an admissible ascending sequence.

To keep clear when we are computing under the two different involutions θ and

Id we use some additional notation. Recall the an element w ∈ W acts on a ∈ Iτ

by twisted conjugation which is defined as w ∗ a = waτ (w)−1. As before denote by

∗ the twisted action of W on Iθ, and ∗ ′ the twisted action of W on IId (which is just

the usual conjugation). For s ∈ Σ, a ∈ Iθ and b ∈ IId we will use the notation

sa := s ∗ a, and s ′b := s ∗ ′ b. Define Σ := {s | s ∈ Σ} and Σ
′

:= {s ′ | s ∈ Σ}. If

r = (r1, r2, . . . , rk) be a sequence in Σ ∪ Σ then define the action of r on a ∈ Iθ by

r ·a := rk · · · r2r1a. If r ′ is a sequence in Σ∪Σ
′

then define the action of r ′ on b ∈ IId

similarly.

Lemma 4.6 Let r = (r1, r2, . . . , rk) be a sequence in Σ ∪ Σ, and define r ′ :=

(r ′1, r ′2, . . . , r ′k) to be the sequence in Σ ∪ Σ
′

, where r ′i = s if ri = s ∈ Σ and r ′i = s ′ if

ri = s ∈ Σ. Then r · e = (r ′ · w0)w0.
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Proof It is useful to write that for all i, ri = si or ri = si . Let (ri1
, ri2

, . . . , ril
) be the

subsequence of r consisting of precisely the elements in Σ, and so (r ′i1
, r ′i2

, . . . , r ′il
) will

be the subsequence of precisely the elements in Σ
′

. The left hand side above is then:

r · e = rk · · · r2r1e = sk · · · s2s1θ(si1
)θ(si2

) · · · θ(sil
)

= sk · · · s2s1θsi1
si2

· · · sil
θ.

The right hand side above is

(r ′ · w0)w0 = (r ′k · · · r ′2r ′1w0)w0

= sk · · · s2s1w0si1
si2

· · · sil
w0

= sk · · · s2s1(− Id)θsi1
si2

· · · sil
(− Id)θ

= sk · · · s2s1θsi1
si2

· · · sil
θ.

Proof of Theorem 1.2 If (r1, r2, . . . , rn) is a maximal admissible ascending sequence

in IId then (r1, r2, . . . , rn) · e = w0. Hence, by Lemma 4.6,

(

(r ′1, r ′2, . . . , r ′n) · w0

)

w0 = w0

and so (r ′1, r ′2, . . . , r ′n) ·w0 = e. Thus, (r ′1, r ′2, . . . , r ′n) is a maximal admissible descend-

ing sequence for Iθ. It is easy to verify that the sequence (r ′1, r ′2, . . . , r ′n) is a maximal

admissible descending sequence in Iθ if and only if (r ′n, r ′n−1, . . . , r ′1) is a maximal

admissible ascending sequence in Iθ.

Proof of Theorem 1.3 By Lemma 4.6, for all j ≤ n,

(r1, r2, . . . , r j) · e =
(

(r ′1, r ′2, . . . , r ′j ) · w0

)

wo.

Hence,

l
(

(r1, r2, . . . , r j) · e
)

= l(w0) − l
(

(r ′1, r ′2, . . . , r ′j ) · w0

)

.

Consequently,

l
(

(r1, r2, . . . , r j) · e
)

> l
(

(r1, r2, . . . , r j−1) · e
)

if and only if

l
(

(r ′1, r ′2, . . . , r ′j ) · w0

)

< l
(

(r ′1, r ′2, . . . , r ′j−1) · w0

)

.

This proves (1), and the argument for (2) is similar. Statement (3) follows again from

Lemma 4.6.
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Figure 3: Proof of Theorem 5.2.

5 Properties of the Richardson–Springer Order

We collect some properties about admissible ascending sequences.

Corollary 5.1 If Φ is of type A1,Bn,Cn, E7, E8, F4, or G2, then every admissible as-

cending sequence is also an admissible descending sequence and vice versa. That is, the

poset is symmetric.

Proof By Lemma 4.3, w0 = − Id in W if Φ is of type A1, Bn, Cn, E7, E8, F4, or G2. By

an argument similar to that of Lemma 4.6, the result follows.

We next show that all elements of IId can be obtained by admissible ascending

sequences in which all elements of Σ occur before all elements in Σ.

Theorem 5.2 Assume Φ is simply-laced. Then for every w ∈ IId there is an admissible

ascending sequence r = (r1, r2, . . . , rk) with w = r · e, such that the subsequence of r

consisting of precisely the elements in Σ is (r1, r2, . . . , rν) for some ν.

Proof The proof is by induction on the size of an admissible ascending sequence

for w. Note that each admissible sequences of size 1 contains one element from Σ.

Suppose w = tsr·e, where (r1, . . . , rk−2, s, t) is an admissible ascending sequence such

that s ∈ Σ and t ∈ Σ. It will be convenient to write x := r · e. This is schematical

shown in Figure 3. We show that sw is also in IId and of smaller length than w. First,

if st = ts then w = str · e and we’re done. So assume st 6= ts.

Notice that sw = stsx, so l(sw) ≤ l(w). Assume these lengths are equal, to get a

contradiction. If they are equal then sw = stsx ∈ IId. By assumption tsxst = sxs 6= x

since w came from an ascending sequence, hence sw = stsx = stsxs = s(sxs)t = xst ,

and tsx ∈ IId.

Now it cannot be that both tsx ∈ IId and tsx ∈ IId. The former implies tsxtsx = e,

while the latter implies tsxstsxs = tsxtstxs = e. Together these force x = txs. By the

exchange property, there exists a minimal representation of x that either begins with

t or ends in s. If there is a minimal representation of x that begins with t , then l(tx) <
l(x), but since xs = tx then l(xs) < l(x) as well. Hence there must be a minimal

representation of x ending with s as well. Thus x = σ1 · · ·σhs, σi ∈ Σ but then

sx = sσ1 · · ·σhss = sσ1 · · ·σh which has the same length as x, a contradiction.
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Figure 4: Orbit-Stabilizer Graph of Iθ for S4.

5.3 Orbits and Stabilizers

The Richardson–Springer Poset of Iθ provides a method to determine the orbits and

stabilizers under θ twisted action. It is useful to consider an edge-labeled graph G

defined as follows. Vertices of G are precisely the elements of Iθ. There is an edge

(v,w) labeled si in G precisely when siv = w. This may result in multiple edges.

Further, if siv = w then put loops labeled si at v and w. An example of this orbit

stabilizer graph for S4 is given in Figure 4. Note by Theorem 1.3, the graph and edge

labels do not depend on θ. Recall that a walk in a graph is a sequence (v1, . . . , vk) of

vertices in G such that vi , vi+1 is an edge (or loop) in G. The walk is closed if further

v1 = vk.

Proposition 5.4 For θ, G, etc., as defined above, two elements of Iθ are in the same

orbit under twisted action by elements of W if and only if they are in the same connected

component of G. An element si1
si2

· · · sik
in W is in the stabilizer of x under conjugation

if and only if there is a closed walk at x whose edge labels are precisely si1
, si2

, . . . , sik
.
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Masson, Paris, 1981.

[CHH+10] P. Cahn, R. Haas, A. G. Helminck, J. Li and J. Schwartz, A data structure for the exceptional
Weyl groups of type F4 and G2. In preparation.

https://doi.org/10.4153/CMB-2011-075-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-075-1


Admissible Sequences for Twisted Involutions in Weyl Groups 675

[CHHW10] C. Cooley, R. Haas, A. G. Helminck and N. Williams, Combinatorial properties of the
Richardson-Springer involution poset. In preparation.

[HH010] R. Haas and A. G. Helminck, Algorithms for twisted involutions in Weyl groups. Proceedings of
the International Conference on Algebraic Groups and Related Topics, Algebraic Colloquium,
Peking University, 2010, to appear.

[Hel88] A. G. Helminck, Algebraic groups with a commuting pair of involutions and semisimple
symmetric spaces. Adv. in Math. 71(1988), 21–91. doi:10.1016/0001-8708(88)90066-7

[Hel91] , Tori invariant under an involutorial automorphism I. Adv. in Math. 85(1991), 1–38.
doi:10.1016/0001-8708(91)90048-C

[Hel97] , Tori invariant under an involutorial automorphism II. Adv. in Math. 131(1997), 1–92.
doi:10.1006/aima.1997.1633

[Hel00] , Computing orbits of minimal parabolic k-subgroups acting on symmetric k-varieties.
J. Symbolic Comput. 30(2000), 521–553. doi:10.1006/jsco.2000.0395

[Hel04] , Combinatorics related to orbit closures of symmetric subgroups in flag varieties. CRM
Proc. Lecture Notes 35(2004), 71–90.

[Hul05] A. Hultman, Fixed points of involutive automorphisms of the Bruhat order. Adv. Math.
195(2005), 283–296. doi:10.1016/j.aim.2004.08.011

[HW93] A. G. Helminck and S. P. Wang, On rationality properties of involutions of reductive groups.
Adv. in Math. 99(1993), 26–96. doi:10.1006/aima.1993.1019

[Inc04] F. Incitti, The Bruhat order on the involutions of the symmetric group. J. Algebraic Combin.
20(2004), 243–261. doi:10.1023/B:JACO.0000048514.62391.f4

[Inc06] , Bruhat order on the involutions of classical Weyl groups. Adv. in Appl. Math. 37(2006),
68–111. doi:10.1016/j.aam.2005.11.002

[Mat79] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic
subgroups. J. Math. Soc. Japan 31(1979), 331–357. doi:10.2969/jmsj/03120331

[Ros79] W. Rossmann, The structure of semisimple symmetric spaces. Canad. J. Math. 31(1979),
157–180.

[RS90] R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties. Geom. Dedicata
35(1990), 389–436.

[Spr85] T. A. Springer, Some results on algebraic groups with involutions. In: Algebraic groups and
related topics (Kyoto/Nagoya, 1983), North-Holland, Amsterdam, 1985, 525–543.

[Ste68] R. Steinberg, Endomorphisms of linear algebraic groups. Mem. Amer. Math. Soc. 80, Amer.
Math. Soc., Providence, RI, 1968.

[Vog83] D. A. Vogan, Irreducible characters of semi-simple Lie groups III. Proof of the Kazhdan–Lusztig
conjectures in the integral case. Invent. Math. 71(1983), 381–417. doi:10.1007/BF01389104

Department of Mathematics, Smith College, Northampton, MA 01063, USA
e-mail: rhaas@math.smith.edu

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA
e-mail: loek@unity.ncsu.edu

https://doi.org/10.4153/CMB-2011-075-1 Published online by Cambridge University Press

http://dx.doi.org/10.1016/0001-8708(88)90066-7
http://dx.doi.org/10.1016/0001-8708(91)90048-C
http://dx.doi.org/10.1006/aima.1997.1633
http://dx.doi.org/10.1006/jsco.2000.0395
http://dx.doi.org/10.1016/j.aim.2004.08.011
http://dx.doi.org/10.1006/aima.1993.1019
http://dx.doi.org/10.1023/B:JACO.0000048514.62391.f4
http://dx.doi.org/10.1016/j.aam.2005.11.002
http://dx.doi.org/10.2969/jmsj/03120331
http://dx.doi.org/10.1007/BF01389104
https://doi.org/10.4153/CMB-2011-075-1

