JFP 17 (4 &5): 547-612,2007.  © 2007 Cambridge University Press 547
doi:10.1017/S0956796807006442 First published online 9 July 2007 Printed in the United Kingdom

Acute: High-level programming language design
for distributed computation

PETER SEWELL! JAMES J. LEIFER?, KEITH WANSBROUGH!,
FRANCESCO ZAPPA NARDELLI:Z, MAIR ALLEN-WILLIAMS!,
PIERRE HABOUZIT? and VIKTOR VAFEIADIS!

YWUniversity of Cambridge, Cambridge, England, UK
2INRIA Rocquencourt, France
(e-mail: Peter.Sewell@cl.cam.ac.uk)

Abstract

Existing languages provide good support for typeful programming of stand-alone programs. In a
distributed system, however, there may be interaction between multiple instances of many distinct
programs, sharing some (but not necessarily all) of their module structure, and with some instances
rebuilt with new versions of certain modules as time goes on. In this paper, we discuss programming-
language support for such systems, focussing on their typing and naming issues. We describe an ex-
perimental language, Acute, which extends an ML core to support distributed development, deploy-
ment, and execution, allowing type-safe interaction between separately built programs. The main fea-
tures are (1) type-safe marshalling of arbitrary values; (2) type names that are generated (freshly and
by hashing) to ensure that type equality tests suffice to protect the invariants of abstract types, across
the entire distributed system; (3) expression-level names generated to ensure that name equality tests
suffice for type safety of associated values, for example, values carried on named channels; (4) con-
trolled dynamic rebinding of marshalled values to local resources; and (5) thunkification of threads
and mutexes to support computation mobility. These features are a large part of what is needed
for typeful distributed programming. They are a relatively lightweight extension of ML, should be
efficiently implementable, and are expressive enough to enable a wide variety of distributed infra-
structure layers to be written as simple library code above the byte-string network and persistent store
APIs. This disentangles the language run-time from communication intricacies. This paper highlights
the main design choices in Acute. It is supported by a full language definition (of typing, compilation,
and operational semantics), by a prototype implementation, and by example distribution libraries.

1 Introduction

Distributed computation is now pervasive, with execution, software development, and
deployment spread over large networks, long time scales, and multiple administrative
domains. Because of this, distributed systems cannot in general be deployed or updated
atomically. They are not necessarily composed of multiple instances of a single program
version, but instead of many versions of many programs that need to interoperate,
perhaps sharing some libraries but not others. Moreover, the intrinsic concurrency and
nondeterminism of distributed systems, as well as the complexity of the underlying
network layers, makes them particularly hard to understand and debug, especially without
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type safety. Existing programming languages, such as ML, Haskell, Java, and C#, provide
good support for local computation, with rich type structures and (mostly) static type-safety
guarantees. When it comes to distributed computation, however, they fall short, with little
support for its many system development challenges.

In this work, we seek to remedy this lack, concentrating on what must be added
to ML-like (typed, call-by-value, higher order) languages to support typed distributed
programming. We have defined and implemented a programming language, Acute,
which extends an OCaml core with features for type-safe marshalling and naming in
the distributed setting. Our extensions are lightweight changes to ML, but suffice to
enable sophisticated distributed infrastructure, for example, substantial parts of JoCaml
(Conchon & Le Fessant 1999), Nomadic Pict (Sewell ef al. 1999), and Ambient primitives
(Cardelli & Gordon 1998), to be programmed as simple libraries. Acute’s support
for interaction between programs goes well beyond previous work, allowing type-safe
interaction between different run-time instances, different builds, and different versions
of programs, while respecting modular structure and type abstraction boundaries in each
interacting partner. In a distributed system, it will often be impossible to detect all type
errors statically, but it is not necessary to be completely dynamic—errors should be
detected as early as possible in the development, deployment, and execution process. We
show how this can be done.

The main part of this paper, §2-9, is devoted to an informal presentation of the main
design issues, which we introduce briefly in the remainder of this section. It uses small but
executable examples to discuss these from the programmer’s point of view. Acute has a
full definition (Sewell et al. 2004), covering syntax, typing, compilation, and operational
semantics, and a prototype implementation is also available (Sewell et al. 2005a). This
closely mirrors the structure of the operational semantics; it is efficient enough to run
moderate examples. The semantics and implementation are outlined in §12 and §13,
respectively. The definition and implementation have both been essential to resolve the
many semantic subtleties introduced by the synthesis of the various features.

We demonstrate that Acute does indeed support typeful distributed programs with
various examples (§11), including distributed communication infrastructure libraries, and
in §14 and §15 we describe related and future work and conclude.

Starting point

The starting point for Acute is a conventional ML-like language. The Acute core language
consists of normal ML types and expressions: booleans, integers, strings, tuples, lists,
options, recursive functions, pattern matching, references, exceptions, and invocations of
OS primitives in standard libraries. The module language includes top-level declarations
of structures containing expression fields and type fields, with both abstract and manifest
types in signatures. Module initialisation can involve arbitrary computation.

We omit some other standard features to keep the language relatively small: user-defined
type operators, constructors, and exceptions; substructures; and functors (we believe that
adding first-order applicative functors would be straightforward; going beyond that would
be more interesting and is addressed in recent work by Peskine (forthcoming). Some more
substantial extensions are discussed in the Conclusion. To avoid syntax debate, we fix on
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that of OCaml. Most of the Acute grammar is shown in the Appendix, with the novel
forms highlighted.

Type-safe marshalling (§2,§3)

Our basic addition to ML is type-safe marshalling: constructs to marshal arbitrary values
to byte strings, with a type equality check at unmarshal time guaranteeing safety. We argue
that this is the right level of abstraction for a general purpose distributed language, allowing
complex communication infrastructure algorithms to be coded (type safely) as libraries,
above the standard byte-string network and persistent store APIs, rather than built in to
the language run-time. We recall the different design choices for trusted and untrusted
interaction.

Dynamic linking and rebinding (§4)

When marshalling and unmarshalling code values, for example to communicate ML
functions between machines, it may be necessary to dynamically rebind them to local
resources at their destination. Similarly, one may need to dynamically link modules.
There are many questions here: how to specify which resources should be shipped with
a marshalled value and which should be dynamically rebound; what evaluation strategy
to use; when rebinding takes effect; and what to rebind to. In this section, our aim is
to articulate the design space; for Acute, we make interim choices that suffice to bring
out the typing and versioning issues involved in rebinding while keeping the language
simple. A running Acute program consists roughly of a sequence of module definitions
(of ML structures), imports of modules with specified signatures, which may or may not
be linked, and marks that indicate where rebinding can take effect; together with running
processes and a shared store.

Type names (§5)

Type-safe marshalling demands a run-time notion of fype identity that makes sense
across multiple versions of differing programs. For concrete types, this is conceptually
straightforward—for example, one can check the equality between type int from one
program instance and type int from another. For abstract types, more care is necessary.
Static type systems for ML modules involve nontrivial theories of type equality based on
the source-code names of abstract types (e.g., M. t), but these are only meaningful within
a single program. We generate globally meaningful run-time type names for abstract types
in three ways: by hashing module definitions, taking their dependencies into account;
or freshly at compile time; or freshly at run time. The first two enable different builds or
different programs to share abstract type names, by sharing their module source code or
object code, respectively; the last is needed for modules with effect-full initialisation. In
all three cases, the way in which names are generated ensures that type name equality tests
suffice to protect the invariants of abstract types.

Expression-level names (§6)

Globally meaningful expression-level names are needed for type-safe interaction, for
example, for communication channel names or RPC handles. They can also be constructed
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as hashes or created fresh at compile time or run time; we show how these support several
important idioms. The ways in which expression-level names are generated ensure that
name equality tests suffice to guarantee that any associated values (e.g., any values passed
on named channels) have the right types. The polytypic support and swap operations
of Shinwell, Pitts, and Gabbay’s FreshOCaml (Shinwell et al. 2003; Shinwell 2005) are
included to support swizzling of local names during communication.

Versions and version constraints (§7,§8)

In a single-program development process, one ensures the executable is built from a
coherent set of versions of its modules by controlling static linking—often, simply by
building from a single source tree. With dynamic linking and rebinding, more support is
required: we add versions and version constraints to modules and imports, respectively.
Allowing these to refer to module names gives flexibility over whether code consumers or
producers have control.

There is a subtle interplay between versions, modules, imports, and type identity,
requiring additional structure in modules and imports. A mechanism for looking through
abstraction boundaries is also needed for some version-change scenarios.

Local concurrency and thunkification (§9)

Local concurrency is important for distributed programming. Acute provides a minimal
level of support, with threads, mutexes, and condition variables. Local messaging libraries
can be coded up using these, though in a production implementation they might be built-in
for performance. We also provide thunkification (loosely analogous to call/cc), allowing
a collection of threads (and mutexes and condition variables) to be atomically captured
as a thunk that can then be marshalled and communicated or stored; this enables various
constructs for mobility and checkpointing to be coded up.

Polymorphism (§10)

Acute does not have standard ML-style polymorphism, as our distributed infrastructure
examples need first-class existentials (e.g., to code up polymorphic channels) and first-class
universals (for marshalling polymorphic functions). We therefore have explicit System
F style polymorphism, and for the time being the implementation does some ad hoc
partial inference. For writing typed communication libraries, we need to compare names
of different name types, with the “true” branch typed under the assumption that these are
the same; we add a namecase operation that combines this with existential unpacking.

Examples (§11)

We demonstrate that Acute does indeed support typeful distributed programs with several
medium-scale examples, all written as libraries in Acute above the byte-string TCP
Sockets API: a typed distributed channel library, an implementation of the Nomadic Pict
(Sewell et al. 1999) primitives for communication and mobility, and an implementation of
the Ambient primitives (Cardelli & Gordon 1998). These require and use most of the new
features.
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Semantics (§12)

The main parts of the Acute definition are a type system, a definition of compilation, and
a small-step operational semantics. The static type system for source programs is based
on an OCaml core and a second-class module system, with singleton kinds for expressing
abstract and manifest type fields in modules.

The definition of compilation describes how global type-level and expression-level
names are constructed, including the details of hash bodies.

The operational semantics for rebinding rests on our redex-time evaluation strategy
(Bierman et al. 2003) for simply typed /A-calculus and here adapted to a second-class
module system: to express rebinding, the semantics must preserve the module structure
throughout computation instead of substituting it away.

The semantics also preserves abstraction boundaries throughout computation, with a
generalisation of the coloured brackets of Grossman et al. (2000) to the entire Acute
language (except, to date, the System F constructs). This is technically delicate (and not
needed for implementations, which can erase all brackets) but provides useful clarity in a
setting where abstraction boundaries may be complex, with abstract types shared between
programs.

In addition, the semantics preserves the internal structure of hashes. This too can be
erased in implementations, which can implement hashes and fresh names with literal bit
strings (e.g., 128-bit MD5 or 160-bit SHA1 hashes, and pseudo-random numbers), but
is needed to state type preservation and progress properties. As we discuss later, the
abstraction-preserving semantics makes these rather stronger than usual.

Implementation (§13)

The Acute implementation is written in FreshOCaml, as a meta-experiment in using the
Fresh features for a medium-scale program (some 25,000 lines). It is a prototype: designed
to be efficient enough to run moderate examples while remaining rather close in structure
to the semantics. The runtime interprets an intermediate language that is essentially the
abstract syntax extended with closures. Performance is roughly 3,000 times slower than
OCaml bytecode.

The definition is too large (on the scale of the ML definition (Milner et al. 1990)
rather than an idealised A-calculus) to make proofs of soundness properties feasible
with the available resources and tools. To increase confidence in both semantics and
implementation, therefore, our implementation is designed to optionally typecheck the
entire configuration after each reduction step. This has been extremely useful, identifying
delicate issues in both the semantics and the code.

Relationship to previous work

Acute builds on previous work, in which we introduced new-bound type names for abstract
types (Sewell 2001), hash-generated type names (Leifer et al. 2003a), and controlled
dynamic rebinding in a 4 calculus (Bierman et al. 2003), all in simple variants for small
calculi.
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Our contribution in this paper is threefold: discussion of the design space and
identification of features needed for high-level typed distributed programming, the
synthesis of those features into a usable experimental language, and their detailed semantic
design. The main new technical innovations are:

e a uniform treatment of names created by hash, fresh, or compile-time fresh, both for
type names and (covering the main usage scenarios) for expression names, dealing
with module initialisation and dependent-record modules;

e explicit versions and version constraints, with their delicate interplay with imports
and type equality;

e module-level dynamic linking and rebinding;

e support for thunkification; and

e an abstraction-preserving semantics for all the above.

This paper is a revised and extended version of Sewell et al. (2005b) and Part I of Sewell
et al. (2004). With respect to the latter technical report, §12 outlining the semantics is
entirely new, and there are various other local changes. The main changes with respect to
the former paper are:

addition of §4.7 on the relationship between modules and the filesystem;

addition of §4.8 on module initialisation;

addition of §4.9 on marshalling references;

addition of §6.2-§6.4 on naming: name ties, polytypic name operations, and the
implementation of names;

extension of §7 on versioning;

extension of §8.2 on breaking abstractions and with!;

addition of §8.5 on marshalling inside abstraction boundaries;

extension of §9 on concurrency, with §9.1-9.11 covering the choices for threads and
thunkify in more detail, discussing several interactions between language features;
addition of §10 on polymorphism and namecase;

e addition of §12 outlining key aspects of the semantic definition; and

o addition of §13 describing the implementation.

2 Distributed abstractions: Language versus libraries

A fundamental question for a distributed language is what communication support should
be built in to the language runtime and what should be left to libraries. The runtime must
be widely deployed, and so it is not easily changed, whereas additional libraries can
easily be added locally. In contrast to some previous languages, for example,
Facile (Thomsen et al. 1996), Oblig (Cardelli 1995), and JoCaml (Conchon & Le Fessant
1999), we believe that a general purpose distributed programming language should not
have a built-in commitment to any particular means of interaction.

The reason for this is essentially the complexity of the distributed environment: system
designers must deal with partial failure, attack, and mobility—of code, of devices, and
of running computations. This complexity demands a great variety of communication and
persistent store abstractions, with varying performance, security, and robustness properties.
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At one extreme, there are systems with tightly coupled computation over a reliable network
in a single trust domain. Here, it might be appropriate to use a distributed shared memory
abstraction, implemented above TCP. At another extreme, interaction may be intrinsically
asynchronous between mutually untrusting runtimes, for example, with cryptographic
certificates communicated via portable persistent storage devices (smartcards or memory
sticks), between machines that have no network connection. In between, there are systems
that require asynchronous messaging or RMI but, depending on the network firewall
structure, tunnel this over a variety of network protocols.

To attempt to build in direct support for all the required abstractions, in a single general
purpose language, would be a never-ending task. Rather, the language should be at a level
of abstraction that makes distribution and communication explicit, allowing distributed
abstractions to be expressed as libraries.

Acute has constructs marshal and unmarshal to convert arbitrary values to and from
byte strings; they can be used above any byte-oriented persistent storage or communication
APIs.

This leaves the questions of (a) how these should behave, especially for values of
functional or abstract types, and (b) what other local expressiveness is required, especially
in the type system, to make it possible to code the many required distributed abstractions
as libraries. The rest of the paper is devoted to these.

3 Basic type-safe distributed interaction

In this section, we establish our basic conventions and assumptions, beginning with the
simplest possible examples of type-safe marshalling. We first consider one program that
sends the result of marshalling 5 on a fixed channel:

I0.send( marshal "StdLib" 5 : int )

(ignore the "StdLib" for now) and another that receives it, adds 3 and prints the result:

I0.print_int (3+(unmarshal (I0.receive()) as int))

Compiling the two programs and then executing them in parallel results in the second
printing 8. This and subsequent examples are executable Acute code. For brevity, they
use a simple address-less IO library, providing primitives send:string->unit and
receive:unit->string. To emphasise that interaction might be via communication or
via persistent store, there are two implementations of I0, one uses TCP via the Acute
sockets API, with the loopback interface and a fixed port; the other writes and reads strings
from a file with a fixed name. Below we write the parallel execution of two separately built
programs vertically, separated by a dash —.

For safety, a typecheck is obviously needed at run time in the second program, to ensure
that the type of the marshalled value is compatible with the type at which it will be used.
For example, the second program here

I0.send( marshal "StdLib" "five" : string )

I0.print_int (3+(unmarshal (I0.receive()) as int))
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should raise an exception as it receives a string that it uses as an int. Allowing
interaction via an untyped medium inevitably means that some dynamic errors are possible,
but they should be restricted to clearly identifiable program points, and detected as early
as possible. This error can be detected at unmarshal-time, rather than when the received
value is used as an argument to +, so we should do that typecheck at unmarshal-time, but
in some scenarios one may be able to exclude such errors at compile time, for example,
when communicating on a typed channel; we return to this in §6.
The unmarshal dynamic check might be of two strengths. We can:

a. include with the marshalled value an explicit representation of the type at which
it was marshalled, and check at unmarshal-time that that type is equal to the type
expected by the unmarshal—in the examples above, int=int and string=int,
respectively; or

b. additionally check that the marshalled value is a well-formed representation of
something of that type.

In a trusted setting, where one can assume that the string was created by marshalling
in a well-behaved run-time (which might be ensured by network locality or by
cryptographically protected interaction with trusted partners), option (a) suffices for safety.

If, however, the string might have been created or modified by an attacker, then we
should choose (b), to protect the integrity of the local run-time. Note, though, that this
option is not always available: when we consider marshalled values of an abstract type,
it may not be possible to check at unmarshal time that the intended invariants of the type
are satisfied. They may have never been expressed explicitly, or be truly global properties.
In this case, one should marshal only values of concrete types. (One could imagine an
intermediate point, checking the representation type but ignoring the invariants, but the
possibility of breaking key invariants is in general as serious as the possibility of breaking
the local runtime.)

In Acute, we focus on the trusted case, with option (a), and the problems of distributed
typing, naming, and rebinding it raises. We aim to protect against accidental programming
and configuration error, not against malice. A full language should also support the
untrusted case, perhaps with type- or proof-carrying code for marshalled functions.

One goal for Acute is to make it possible to write high-level distributed infrastructure
(middleware) in a high-level language. It would be a very interesting exercise to provide
as much as possible of the functionality of a middleware framework such as CORBA in an
Acute library. Note, though, that the main focus of Acute is rather different from that of
the core of CORBA (the IDL and IIOP). CORBA provides globally defined scalar types
and arrays and records thereof, along with marshalling and unmarshalling functions in
many languages. Its goal is thus to transport concrete data between programs written in a
heterogeneous collection of languages. Acute, by contrast, only supports communication
between homogeneous run-times (all executing code compiled by Acute), but has much
more ambitious support for the content of communicated data, including values of abstract
types, fragments of executable code (modules), etc., and less heavyweight machinery.
However, we would hope that much of the higher level functionality of CORBA (name and
trader services, messaging, fault tolerance, etc.) could be elegantly written in an Acute-like
language.
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We do not discuss the design of the concrete wire format for marshalled values—
the Acute semantics presupposes just a partial raw_unmarshal function from strings
to abstract syntax of configurations, including module definitions and store fragments;
the prototype implementation simply uses canonical pretty-prints of abstract syntax. A
production language would need an efficient and standardised internal wire format, and for
some purposes (and for simple types) a canonical ASN.1 or XML representation would
be useful for interoperation. In the untrusted case, XML is now widely used and good
language support for (b) is clearly important.

Marshalling can be done on values of any type, including polymorphic values (Acute has
System F style explicit polymorphism). Elsewhere, we discuss in depth the issues involved
in handling implicit polymorphism, in our work on HashCaml (Billings et al. 2006).

Rather than a polymorphic marshal, which can be used uniformly on values of arbitrary
types, one could provide machinery for user-defined marshalling functions, integrating
marshalling with data structure traversal. In Acute, we factor the two out.

4 Dynamic linking and rebinding to local resources

4.1 References to local resources

Marshalling closed values, such as the 5 and "five" above, is conceptually
straightforward. The design space becomes more interesting when we consider marshalling
a value that refers to some local resources. For example, the source code of a function (it
may be useful to think of a large plug-in software component) might mention identifiers
for:

1. ubiquitous standard library calls, for example, print_int;

2. application-specific library calls with location-dependent semantics, for example,
routing functions;

3. application code that is not location dependent but is known to be present at all
relevant sites; and

4. other let-bound application values.

In (1-3), the function should be rebound to the local resource where and when it is
unmarshalled, whereas in (4) the definitions of resources must be copied and sent along
before their usages can be evaluated.

There is another possibility: a local resource could be converted into a distributed
reference when the function is marshalled, and its usages indirected via further network
communication. In some scenarios, this may be desirable, but not in others, where
one cannot pay the performance cost for those future invocations, or cannot depend
on future reliable communication (and do not want to make each invocation of the
resource separately subject to communication failures). Most sharply, where the function is
marshalled to persistent store, and unmarshalled after the original process has terminated,
distributed references are nonsensical. Following the design rationale of §2, we do not
support distributed references directly, aiming rather to ensure our language is expressive
enough to allow libraries of “remotable” resources to be written above our lower-level
marshalling primitives.
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4.2 What to ship and what to rebind

Which definitions fall into (2-3) (to be rebound) and (4) (to be shipped) must be specified
by the programmer at the sender site; there is usually no way for an implementation to infer
the correct behavior. We adapt the mechanism proposed by Bierman ez al. (2003) (from a
A-calculus setting to an ML-style module language) to indicate which resources should
be rebound and which shipped for any marshal operation. An Acute program consists
roughly of a sequence of module definitions, interspersed with marks, followed by running
processes; these module definitions, together with implicit module definitions for standard
libraries, are the resources. Marks essentially name the sequence of module definitions
preceding them. Marshal operations are each with respect to a mark; the modules below
that mark are shipped and references to modules above that mark are rebound, to whatever
local definitions may be present at the receiver. The mark "StdLib" used in §3 is declared
at the end of the standard library; this mark and library are in scope in all examples.

In the following example, the sender declares a module M with a y field of type int
and value 6. It then marshals and sends the value fun ()->M.y. This marshal is with
respect to mark "StdLib", which lies above the definition of module M, so a copy of the
M definition is marshalled up with the value fun ()->M.y. Hence, when this function is
applied to () in the receiver, the evaluation of M.y can use that copy, resulting in 6.

module M : sig val y:int end = struct let y=6 end
I0.send( marshal "StdLib" (fun ()->M.y))

(unmarshal (I0.receive ()) as unit -> int) ()

On the other hand, references to modules above the specified mark can be rebound. In the
simplest case, one can rebind to an identical copy of a module that is already present on
the receiver (for (3) or (1)). In the example below, the M1.y reference to M1 is rebound,
whereas the first definition of M2 is copied and sent with the marshalled value. This results
in () and ((6,3),4) for the two programs, with the 6 taken from the M2 module in the
second program and the 3 taken from a copy of the M1 module shipped with the marshalled
value.

module Ml:sig val y:int end = struct let y=6 end
mark "MK"
module M2:sig val z:int end = struct let z=3 end

I0.send( marshal "MK" (fun (O-> (Ml.y,M2.z))
: unit->int*int)

module Ml:sig val y:int end = struct let y=6 end
module M2:sig val z:int end = struct let z=4 end
((unmarshal(I0.receive()) as unit->int*int) (),M2.z)

Note that we must permit running programs to contain multiple modules with the same
source-code name and interface but with different definitions (avoiding “DLL hell”)—
here, after the unmarshal, the receiver has two versions of M2 present, one used by the
unmarshalled code and the other by the original receiver code.
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In more interesting examples, one may want to rebind to a local definition of M1 even if
it is not identical, to pick up some truly location-dependent library. The code below shows
this, terminating with () and (7,3).

module Ml:sig val y:int end = struct let y=6 end

import Ml:sig val y:int end version * = Ml

mark "MK"

module M2:sig val z:int end = struct let z=3 end

I0.send( marshal "MK" (fun (O-> (M1l.y,M2.z))

: unit->int*int )

module Ml:sig val y:int end = struct let y=7 end
module M2:sig val z:int end = struct let z=4 end
(unmarshal (IO0.receive ()) as unit->int*int) ()

The sender has two modules, M1 and M2, with M1 above the mark MK. It marshals a value
fun ()-> (M1.y,M2.z), which refers to both of them, with respect to that mark. This
treats M2.z statically and M1.y dynamically at the marshal/unmarshal point: a copy of
M2 is sent along, and, on unmarshalling at the receiver, the value is rebound to the local
definition of M1, in which y=7. To permit this rebinding we use an explicit import

import M1 : sig val y:int end version * = Ml

An import introduces a module identifier (the left M1) with a signature; it may or may not
be linked to an earlier module or import (this one is, to the M1 module definition earlier
in the example). The version * allows rebinding to any version of M1. This overrides
the default behaviour, which would permit rebinding only to identical copies of the local
M1. Marks are simply string constants, not binders subject to alpha equivalence, as they
themselves need to be dynamically rebound. For example, if one marshals a function that
has an embedded marshal with respect to "StdLib", and then unmarshals and executes it
elsewhere, one typically wants the embedded marshal to act with respect to the now-local
"StdLib".

4.3 Evaluation strategy: The relative timing of variable instantiation and marshalling

A language with rebinding cannot use a standard call-by-value operational semantics,
which substitutes out identifier definitions as it comes to them, as some definitions may
need to be rebound later. We developed two alternative CBV reduction strategies (Bierman
et al. 2003) in a simple A-calculus setting: redex-time, in which one instantiates an identifier
with its value only when the identifier occurs in redex-position, and destruct-time, where
instantiation occurs even later, when the identifier appears in a context that needs to destruct
the outermost structure of the value. Both of these are, in the absence of marshalling,
observationally equivalent to call-by-value reduction (Stoyle 2006). The destruct-time
semantics permits more rebinding, but is also rather complex. We therefore use the redex-
time strategy for module references (local expression reduction remains standard CBV).

For example, the first occurrence of M. y in the first program below will be instantiated by
6 before the marshal happens, whereas the second occurrence would not appear in redex-
position until a subsequent unmarshal and application of the function to (); the second
occurrence is thus subject to rebinding. The results are () and (6,2).
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module M:sig val y:int end = struct let y=6 end
import M:sig val y:int end version * = M
mark "MK"
I0.send( marshal "MK" (M.y, fun ()-> M.y)
¢ int * (unit->int) )

module M:sig val y:int end = struct let y=2 end
let ((x:int), (f:unit->int)) =
(unmarshal (I0.receive()) as int*(unit->int)) in

(x, £ O)

4.4 Controlling when rebinding happens

We have to choose whether or not to allow execution of partial programs, which are those
in which some imports are not linked to any earlier module definition (or import). Partial
programs can arise in two ways. First, they can be written as such, as in conventional
programs that use dynamic linking, where a library is omitted from the statically linked
code, to be discovered and loaded at run-time. For example:

import M : sig val y:int end version * = unlinked
fun () -> M.y

Second, they can be generated by marshalling, when one marshals a value that depends on
a module above the mark (intending to rebind it on unmarshalling). For example, the final
state of the receiver in

module M:sig val y:int end = struct let y=6 end
import M:sig val y:int end version * = M

mark "MK"

I0.send( marshal "MK" (fun (O->M.y) : unit->int )

unmarshal (I0.receive ()) as unit->int

is roughly the program below, with an unlinked import of M.

import M : sig val y:int end version * = unlinked
fun O-> M.y

If we disallow execution of partial programs, then, when we unmarshal, all the unlinked
imports that were sent with the marshalled value must be linked in to locally available
definitions; the unmarshal should fail if this is not possible.

Alternatively, if we allow execution of partial programs, we must be prepared to deal
with an M. x in redex position where M is declared by an unlinked import. For any particular
unmarshal, one might wish to force linking to occur at unmarshal time (to make any errors
show up as early as possible) or defer it until the imported modules are actually used.
The latter allows successful execution of a program where one happens not to use any
functionality that requires libraries that are not present locally. Moreover, the “usage point”
could be expressed either explicitly (as with a call to the Unix dlopen dynamic loader) or
implicitly, when a module field appears in redex-position.

A full language should support this per-marshal choice, but for simplicity Acute
supports only one of the alternatives: it allows execution of partial programs, and no linking
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is forced at unmarshal time. Instead, when an unlinked M.x appears in redex position, we
look for an M to link the import to.

4.5 Controlling what to rebind to

How to look for such an M is specified by a resolvespec that can (optionally) be included
in the import. By default, it will be looked for just in the running program, in the sequence
of modules defined above the import. Sometimes, though, one may wish to search in the
local filesystem (e.g., for conventional shared-object names such as 1ibc.so.6), or even
at a web URI. In Acute, we make an ad hoc choice of a simple resolvespec language: a
resolvespec is a finite list of atomic resolvespecs, each of which is either Static_Link,
Here_Already, or a URI. Lookup attempts proceed down the list, with Static_Link
indicating the import should already be linked, Here_Already prompting a search for a
suitable module (with the right name, signature, and version) in the running program, and
a URI prompting a file to be fetched and examined for the presence of a suitable module.

There is a tension between a restricted and a general resolvespec language. Sometimes,
one may need the generality of arbitrary computation (as in Java classloaders), for
example, in browsers that dynamically discover where to obtain a newly required plugin.
On the other hand, a restricted language makes it possible to analyse a program to discover
an upper bound on the set of modules it may require—necessary if one is marshalling it
to a disconnected device, say. A full language should support both, though most programs
might only need the analysable sublanguage.

This resolvespec data is added to imports, for example:

import M : sig val y:int end version * by

"http://www.cl.cam.ac.uk/users/pes20/acute/M.ac"

= unlinked
M.y + 3

Here the M.y is in redex position, so the runtime examines the resolvespec list
associated with the import of M. That list has just a single element, the URI
http://www.cl.cam.ac.uk/users/pes20/acute/M.ac. The file there will be fetched
and (if it contains a definition of M with the right signature) the modules it contains will be
added to the running program just before the import, which will be linked to the definition
of M. The M.y can then be instantiated with its value. URI resolvespecs are, of course, a
limited form of distributed reference.

Note that this mechanism is not an exception—after M is loaded, the M.y is instantiated
in its original evaluation context (_ + 3). It could perhaps be encoded (with exceptions
and affine continuations, or by encoding imports as option references), but here we focus
on the user language.

4.6 The structure of marks and modules

A running Acute program has a linear sequence of evaluated definitions, (marks, module
definitions, and imports) scoping over the running processes. Imports may be linked only
to module definitions (or imports) that precede them in this sequence. When a value is
unmarshalled, any additional module definitions carried with it are added to the end of the
sequence.
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This linear structure suffices as a setting to explore the typing and naming issues in the
remainder of the paper, but it is probably not ideal. For example, one might want cyclic
linking (involving the complexities of recursive modules or mixins); or support for two
endpoints to negotiate about what modules are already shared and what need to be shipped;
or explicit control over what must not be shipped, for example, due to license restrictions
or security concerns. We leave these for future work.

4.7 The relationship between modules and the filesystem

Programs are decomposed not just into modules, but also into separate source files. We
have to choose whether (1) source files correspond to modules (as in OCaml, where a
file named foo.ml implicitly defines a module Foo) or (2) source files contain sequences
of module definitions, and are logically concatenated together in the build process, or (3)
both are possible. As we shall see in the following sections, to deal with version change, we
sometimes need to refer to the results of previous builds. For Acute, we take the simplest
possible structure that supports this, following (2) with files containing compilation units:

compilationunit ::=
empty
e
sourcedefinition ;; compilationunit
includesource sourcefilename ;; compilationunit
includecompiled compiledfilename ;; compilationunit

In this grammar, e is an expression; includesource specifies a source file to statically
include at the program point where it appears; and includecompiled does the same but
for object files.

The result of compilation is a compiled unit, which is just a sequence of compiled
module definitions followed by an optional expression.

compiledunit ::=
empty
e
definition ;; compileduntit

This means that the decomposition of a program into files does not affect its semantics,
except that when code is loaded by a URI resolvespec an entire compiled unit is loaded.

In Acute, any modules shipped with a marshalled value are loaded into the local run-
time, but are not saved to local persistent store to be available to future run-time instances.
One could envisage a closer integration of communication and package installation.

4.8 Module initialisation
In ML, module evaluation can involve arbitrary computation. For example, in

module fresh M : sig val x: int ref val y:unit end
= struct let x=ref 3 let y=I0.print_int !x end
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the structure associates non-value expressions to both x and y; its evaluation to a structure
value involves expression evaluation that has both store and 10 effects. The store effect
enables per-module state to be created.

This is also possible in Acute, though as we see in §5, it is necessary to distinguish
between modules that have such initialisation effects and modules that do not. The
evaluation order for a single sequential program is straightforward: a program is roughly a
sequence of module definitions followed by an expression; the definitions are evaluated in
that order, followed by the expression.

New module definitions can be introduced dynamically, both by unmarshalling and
fetched via resolvespecs. The evaluation order ensures that any modules that must be
marshalled have already been evaluated, and so unmarshalling only ever adds module value
definitions to the program.

Consider now the definitions fetched via a resolvespec. As we do not have cyclic linking,
these definitions must be added before the import that demanded them. One could allow
such definitions to be compiled units of unevaluated definitions. In the sequential case, this
would be straightforward: simply by evaluating the extant definition list in order, any newly
added definitions would be evaluated before control returns to the program below. With
concurrency, however, there may be multiple threads referring to an import that triggers
the addition of new definitions, and some mechanism would be required to block linking
of that import until they are fully evaluated (or, equivalently, block instantiation from each
new definition until it is evaluated). This flow of control seems complex both from the
programmer’s point of view and to express in the semantics; we therefore do not allow non-
evaluated definitions to be fetched via a resolvespec. We return to the interaction between
module initialisation and concurrency in §9.8.

In a language with finer-grain control of linking (for the negotiation discussed in §4.2),
one might want more control over initialisation, allowing clients to demand their own
freshly initialised occurrences of modules. Furthermore, if one has nested marshalling,
that is, marshalled functions that marshal functions, in combination with a nontrivial mark
structure, then the linear order will often not be satisfactory. We leave these issues for
future work.

4.9 Marshalling references

Acute contains ML-style references, so we have to deal with marshalling of values that
include store locations. For example:

let (x:int ref) = ref %[int] 5 in I0.send( marshal "StdLib" x : int ref)

I0.print_int ( ! %[int] (unmarshal (I0.receive ()) as int ref ))

(The % [int] is an explicit System F type application; later we also use % [] as placeholders
for inferred types.) Here the best choice for the core language semantics seems to be for the
marshalled value to include a copy of the reachable part of the store, to be disjointly added
to the store of any unmarshaller. Just as in §4.1, we reject the alternative of building in
automatic conversion of local references to distributed references, as no single distributed
semantics (which here should include distributed garbage collection) will be satisfactory
for all applications. A full language must be rich enough to express distributed store
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libraries above this, of course, and perhaps also other constructs such as those of Sekiguchi
and Yonezawa (1997) and Boudol (2003).

Some applications would demand distributed references together with distributed
garbage collection (as JoCaml provides (Le Fessant 2001)). We leave investigation of
this, and of the type-theoretic support it requires, to future work.

One might well add more structure to the store to support more refined marshalling. In
particular, one can envisage nested regions of local and of distributed store, perhaps related
to the mark structure. We leave the development of this to future work also.

5 Naming: Global module and type names

We now turn to marshalling and unmarshalling of values of abstract types. In ML, and in
Acute, abstract types can be introduced by modules. For example, the module

module EvenCounter

: sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun (x:int)->2+x
end end

provides an abstract type EvenCounter.t with representation type int; this
representation type is not revealed in the signature above. The programmer might intend
that all values of this type satisfy the “even” invariant; they can ensure this, no matter
how the module is used, simply by checking that the start and up operations preserve
evenness.

Now, for values of type EvenCounter.t, what should the unmarshal-time dynamic
type equality check of §3 be? It should ensure not just type safety with respect to
the representation type, but also abstraction safety—respecting the invariants of the
module. Within a single program, as well as for communication between programs with
identical sources, one can compare such abstract types by their source-code paths, with
EvenCounter.t having the same meaning in all copies. (This is roughly what the
manifest type and singleton kind static type systems of Leroy 1994 and Harper and
Lillibridge (1994) do).

For distributed programming, we need a notion of type equality that makes sense at run-
time across the entire distributed system. This should respect abstraction: two abstract
types with the same representation type but completely different operations will have
different invariants, and should not be compatible. Moreover, we want common cases of
interoperation to “just work™: if two programs share a (effect-free) module that defines
an abstract type (and share its dependencies) but differ elsewhere, they should be able to
exchange values of that type.

We see three cases, with corresponding ways of constructing globally meaningful type
names.

Case 1
For a module such as EvenCounter above that is effect-free (i.e., evaluation of the
structure body involves no effects), we can use module hashes as global names for abstract

https://doi.org/10.1017/50956796807006442 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796807006442

Acute: High-level programming language design for distributed computation 563

types, generalising our earlier work (Leifer e al. 2003a) to dependent-record modules. The
type EvenCounter.t is compiled to k. t, where the hash h is (roughly)

hash(
module EvenCounter
: sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun(x:int)->2+x
end end
)

i.e., the hash of the module definition (in fact, of the abstract syntax of the module
definition, up to alpha equivalence and type equality, together with some additional data).
If one unmarshals a pair of type EvenCounter.t * EvenCounter.t, the unmarshal
type equality check will compare with h.t*h.t. This allows interoperation to just work
between programs that share the EvenCounter source code, without further ado.

In constructing the hash for a module M, we have to take into account any dependencies
it has on other modules M’, replacing any type and term references M’ .t and M’ .x. In
our earlier work, we did so by substituting out the definitions of all manifest types and
terms (replacing abstract types by their hash type name). Now, to avoid doing that term
substitution in the implementation, we replace M’ .x by h’.x, where h’ is the hash of
the definition of M’. This gives a slightly finer, but we think more intuitive, notion of type
equality. We still substitute out the definitions of manifest types from earlier modules.
This is forced: in a context where M.t is manifestly equal to int, it should not make any
difference to subsequent types that is used.

Case 2
Now consider effect-full modules such as the NCounter module below, where
evaluating the up expression to a value involves an 10 effect.

module fresh NCounter

: sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up =

let step=I0.read_int() in
fun (x:int)->step+x
end end

This reads an int from standard input at module initialisation time, and the invariant—
that all values of type NCounter .t are a multiple of that int—depends on that effect. For
such effect-full modules, a fresh type name should be generated each time the module is
initialised, at run-time, to ensure abstraction safety.

Case 3

Returning to effect-free modules, the programmer may wish to force a fresh type name to
be generated, to avoid accidental type equalities between different but overlapping runs of
the distributed system. A fresh name could be generated each time the module is initialised,
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as in the second case, or each time the module is compiled. This latter possibility, as in our
earlier work (Sewell 2001), enables interoperation between programs linked against the
same compiled module, while forbidding interoperation between different builds.

For abstract types associated with modules, it suffices to generate hashes or fresh names
h per module, using the various k.t as the global type names for the abstract types of that
module.

We let the programmer specify which of the three behaviours is required with a hash,
fresh, or cfresh mode in the module definition, writing, for example, module hash
EvenCounter. In general, it would be abstraction breaking to specify hash or cfresh for
an effect-full module. To prevent this requires some kind of effect analysis, for which we
use coarse but simple notions of valuability, following Harper and Stone (2000), and of
compile-time valuability.

We say a module is valuable if all of the expressions in its structure are and if
its types are hash-generated. The set of valuable expressions is intermediate between
the syntactic values and the expressions that a type-and-effect system could identify as
effect-free, which, in turn, are a subset of the semantically effect-free expressions. They
can include, for example, applications of basic operators such as 2+2, providing useful
flexibility.

The compile-time valuable, or cvaluable, modules can also include cfresh but
otherwise are similar to the valuable modules. The non-valuable modules are those that
are neither valuable nor cvaluable. If none of the fresh, hash, or cfresh keywords are
specified, then a valuable module defaults to hash; a cvaluable module defaults to cfresh;
and a non-valuable module must be fresh. On occasion, it seems necessary to override
the valuability checks, which we make possible with hash! and cfresh! modes. This is
discussed in §8.3.

In addition, Acute provides first-class System F existentials, as the experience with Pict
(Pierce & Turner 2000) and Nomadic Pict (Sewell et al. 1999; Unyapoth & Sewell 2001)
demonstrates these are important for expressing messaging infrastructures. For these, a
fresh type name will be constructed at each unpack, to correspond with the static type
system.

The constructs described in this section provide, we believe, a good level of abstraction
safety. In Acute, abstract types are not compatible (either statically or dynamically)
with their representation types, and we give the programmer enough control to tune the
dynamic type equality for various scenarios. It seems impossible, however, to prevent all
information about the implementation of an abstract type leaking out. Most obviously, an
equality comparison on the byte sequences of marshalled values of two implementations
of an abstract type could reveal that they they have different representations.

In addition, there are several points at which it seems that programmers writing
distributed multi-version programs involving abstract types would need to actively break
abstractions (see §8.2) or to indirectly break abstraction by overriding valuability checks
(see §8.3). Dynamic rebinding to modules that provide abstract types intrinsically requires
some representation information (see the likespecs of §8.1), and the polytypic name
operations of §6.3 are also intrinsically abstraction breaking (though the usefulness of these
may be debatable).
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Accordingly, abstract types in Acute, as in other languages such as OCaml, should be
viewed as mechanisms to reduce a class of accidental programmer errors, not as providing
guarantees of parametricity.

6 Naming: Expression names

Globally meaningful expression-level names are also needed, primarily as interaction
handles—dispatch keys for high-level interaction constructs such as asynchronous
channels, location-independent communication, reliable messaging, multicast groups, or
remote procedure (or function/method) calls. For any of these, an interaction involves
the communication of a pair of a handle and a value. Taking asynchronous channels as
a simple example, these pairs comprise a channel name and a value sent on that channel. A
receiver dispatches on the handle, using it to identify a local data structure for the channel
(a queue of pending messages or of blocked readers). For type safety, the handle should be
associated with a type: the type of values carried by the channel. (RPC is similar except
that an additional affine handle must also be communicated for the return value.)

In Acute, we build in support for the generation and typing of name expressions,
leaving the various and complex dynamics of interaction constructs to be coded up above
marshalling and byte-string interaction. As in FreshOCaml, for any type T, we have a
type

T name

of names associated with it. Values of these types (like type names) can be generated
freshly at run time, freshly at compile time, or deterministically by hashing, with
expression forms fresh, cfresh, hash(M.x), hash(T,e), and hash(T,e,e). We
explain these forms below, showing how they support several important scenarios. In each,
the basic question is how one establishes a name shared between sender and receiver code
such that testing equality of the name ensures the type correctness of communicated values
(and hence that there will be no unmarshal failures in the communication library).

The expression fresh evaluates to a fresh name at run-time. The expression cfresh
evaluates to a fresh name at compile time. It is subject to the syntactic restriction that it can
only appear in a compile-time valuable context. The expression hash (M.x) compiles to the
hash of the pair of n and the label x, where n is the (hash- or fresh-) name associated with
module M, which must have an x component. The expression hash (T, e) evaluates e to a
string, and then computes the hash of that string paired with the run-time representation of
T. (Recall that a string can be injectively generated from an arbitrary value by marshalling.)
The expression hash(T,e2,el) evaluates el to a T’ name and e2 to a string, then
hashes the triple of the two and T.

Each name form generates T names that are associated with a type T. For fresh and
cfresh, it is the type annotation; for hash(M.x), it is the type of the x component of
module M; for hash (T, e), itis T itself; and for hash (T, e2, e1),itis T. Of these, fresh
is non-valuable; cfresh is compile-time valuable; hash (M.x) has the same status as M;
and hash (T, e) and hash(T, e2, el ) have the join of the status of their component parts.

(A purer collection of hash constructs, equally expressive, would be hash(T),
hash(el, e2), of aname and a string, and hash(e1, T), of a name and a type. We chose
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the set above instead as they seem to be the combinations that one would commonly wish
to use.)

6.1 Establishing shared names

For clarity, we focus on distributed asynchronous messaging, supposing a module DChan
that implements a distributed DChan . send by sending a marshalled pair of a channel name
and a value across the network.

module hash DChan :
sig
val send : forall t. t name * t -> unit
val recv : forall t. t name * (t -> unit) -> unit
end

This uses names of type T name as channel names to communicate values of type T.
(Acute does not support user-definable type constructors. If it did we would define an
abstract type constructor Chan. c:Type->Type and have send : forall t. t Chan.c
name * t -> unit.)

Scenario 1
The sender and receiver both arise from a single execution of a single build of a single
program. The execution was initiated on machine A, and the receiver is present there, but
the sender was earlier transmitted to machine B (e.g., within a marshalled 1-abstraction).
Here the sender and receiver can originate from a single lexical scope and a channel
name can be generated at run-time with a fresh expression. This might be at the
expression level, for example:

let (c : int name) = fresh in

with sender code DChan.send %[int] (c,v) and receiver DChan.recv %[int]
(c,f), for some v:int and f:int->unit, or a module-level binder

module M : sig val ¢ : int name end
= struct 1let c = fresh end

These generate the fresh name when the let is evaluated or the module is initialised

respectively. This first scenario is basically that supported by JoCaml and Nomadic Pict.
Commonly, one might have a single receiver function for a name, and tie together the

generation of the name and the definition of the function, with an additional DChan field

val fresh_recv : forall t. (t -> unit) -> t name
implemented simply as

Function t -> fun f ->
let c=fresh in DChan.recv %[t] (c,f); c

and used as below.

module M : sig val c : int name end
= struct let ¢ = DChan.fresh_recv %[int]
(fun x -> I0.print_int x+1) end
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Note that this M is an effect-full module, creating the name for ¢ at module initialisation
time.

Scenario 2

The sender and receiver are in different programs, but both are statically linked to a
structure of names that was built previously, with expression cfresh for compile-time
fresh generation.

Here one has a repository containing a compiled instance of a module such as

module cfresh M : sig val ¢ : int name end
= struct let ¢ = cfresh end

in a file m. aco, which is included by the two programs containing the sender and receiver:

includecompiled "m.aco"
DChan.send %[int] (M.c,v)

includecompiled "m.aco"
DChan.recv %[int] (M.c,f)

Different builds of the sender and receiver programs will be able to interact, but rebuilding
M creates a fresh channel name for c, so builds of the sender using one build of M will not
interact with builds of the receiver using another build of M.

This can be regarded as a more disciplined alternative to the programmer making use
of an explicit off-line name (or GUID) generator and pasting the results into their source
code.

Scenario 3

The sender and receiver are in different programs, but both share the source code of a
module that defines the function f used by the receiver; the hash of that module (and the
identifier £f) is used to generate the name used for communication.

This covers the case in which the sender and receiver are different execution instances
of the same program (or minor variants thereof), and one wishes typed communication to
work without any (awkward) prior exchange of names via the build process or at run-time.
The shared code might be

module hash N : sig val £ : int -> unit end
= struct let f = fun x->I0.print_int (x+100) end

module hash M : sig val ¢ : int name end
= struct let c¢ = hash(int,"",hash(N.f) %[1) %[] end

in a file nm. ac, included by the two programs containing the sender and receiver:

includesource "nm.ac"
DChan.send %[int] (M.c,v)

includesource "nm.ac"
DChan.recv %[int] (M.c,N.f)

The hash(N.f) gives a T name, where T = int->unit is the type of N.f; the
surrounding hash coercion hash(int,"",_) constructs an int name from this. (Such
coercions support Chan. ¢ type constructors too, for example, to construct an int Chan.c
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name from an (int->unit) name.) This involves a certain amount of boiler plate, with
separate structures of functions and of the names used to access them, but it is unclear how
that could be improved. It might be preferable to regard the hash coercion as a family of
polymorphic operators, indexed by pairs of type constructors Af.T| and AZ.T; (of the same
arity), of type V£.T1 name — T, name.

Scenario 4

The sender and receiver are in different programs, sharing no source code except a
type and a string; the hash of the pair of those is used to generate the name used for
communication.

let ¢ = hash(int,"foo") %[] in
DChan.send %[int] (c,v)

let ¢ = hash(int,"foo") %[] in
DChan.recv %[int] (c,f)

This idiom requires the minimum shared information between the two programs. It can be
seen as a disciplined, typed form of the use of untyped “traders” to establish interaction
media between separate distributed programs.

Scenario 5

The sender and receiver have established by some means a single typed shared name c,
but need to construct many shared names for different communication channels. The hash
coercion can be used for this as well, constructing new typed names from old names, new
types, and arbitrary strings. Whether this will be a common idiom is unclear, but it is easy
to provide and seems interesting to explore. For example:

let c1 = hash(int,"one",c)

let c2 = hash(int,"two",c)

let c3 = hash(bool,"",c)

DChan.send %[int] (c1,v1);DChan.send %[int] (c2,v2) ;DChan.send %[bool] (c3,v3);
let c1 = hash(int,"one",c)

let c2 = hash(int,"two",c)

let ¢3 = hash(bool,"",c)

DChan.recv %[int] (c1,f1);DChan.recv %[int] (c2,f2) ;DChan.recv %[bool] (c3,£3);

Whether this will be a common idiom is unclear, but it is easy to provide and seems
interesting to explore.

6.2 A refinement: Ties

Scenario 3 of §6.1 above used a hash(N.f) as part of the construction of a name M.c
used to access the N.f function remotely, linking the name and function together with a
call DChan.recv (M.c,N.f). It may be desirable to provide stronger language support
for establishing this linkage, making it harder to accidentally use an unrelated name and
function pair. For this, we propose a built-in abstract type

T tie
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of those pairs, with an expression form M@x that constructs the pair of hash (M.x) and the
value of M.x (of type T tie where M.x : T), and projections from the abstraction type
name_of _tie and val_of _tie.

6.3 Polytypic name operations
We include the basic polytypic FreshOCaml expressions for manipulating names:

swap el and e2 in e3
el freshfor e2
support %[T] e

Here swap interchanges two names in an arbitrary value, freshfor determines whether a
name does not occur free in an arbitrary value, and support calculates the set of names
that do occur free in an arbitrary value (returning them as a duplicate-free list, at present).

We anticipate using these operations in the implementation of distributed communi-
cation abstractions. For example, when working with certain kinds of distributed channel,
one must send routing information along with every value, describing how any distributed
channels mentioned in that value can be accessed.

We do not include the FreshOCaml name abstraction and pattern matching constructs
just for simplicity—we foresee no difficulty in adding them.

In contrast to FreshOCaml, when one has values that mention store locations, the
polytypic operations have effect over the reachable part of the Acute heap. This seems
forced if we are to both (a) implement distributed abstractions, as above, and (b) exchange
values of imperative data-type implementations.

For constructing efficient data structures over names, such as finite maps, we provide
access to the underlying order relation, with a comparison between any two names of the
same type.

compare_name %[T] : T name -> T name -> int

This cannot be preserved by name swapping, obviously, and so it would be an error to use
it under any name abstraction, and in any other place subject to swapping. Nonetheless, the
performance cost of not including it is so great that we believe it is required. To ameliorate
the problem slightly, one might add a type

T nonswap

with a single constructor Nonswap that can be used to protect structures that depend on the
ordering, with swap either stopping recursing or raising an exception if it encounters the
Nonswap constructor. For the time being, however, T nonswap is not included in Acute.

6.4 Implementing names

In the implementation, all names are represented as fixed-length bit strings (e.g., from
2160)_both module-level and expression-level names, generated both by hashes and
freshly. The representations of fresh names are generated randomly. More specifically, we
do not want to require that the implementation generates each individual name randomly, as
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that would be too costly—we regard it as acceptable to generate a random start point at the
initialisation of each compilation and the initialisation of each language run-time instance,
and thereafter use a cheap pseudo-random number function for compile-time fresh and
run-time fresh (the successor function would lead to poor behavior in hash tables). This
means that a low-level attacker would often be able to tell whether two names originated
from the same point, and that (for making real nonces etc) a more aggressively random
fresh would be required.

There is a possible optimisation that could be worthwhile if many names are used
only locally: the bit-string representations could be generated lazily, when they are first
marshalled, with a finite map associating local representations (just pointers) to the
external names that have been exported or imported. This could be garbage collected as
normal. Whether the optimisation would gain very much is unclear, so we propose not to
implement it now (but bear in mind that local channel communication should be made very
cheap).

To implement the polytypic name operations, the expression-level names must be
implemented with explicit types.

7 Versions and version constraints

In a single-executable development process, one ensures the executable is built from a
coherent set of versions of its component modules by choosing what to link together—in
simple cases, by working with a single code directory tree. In the distributed world, one
could do the same: take sufficient care about which modules one links and/or rebinds to.
Without any additional support, however, this is an error-prone approach, liable to end
up with semantically incoherent versions of components interoperating. Typechecking can
provide some basic sanity guarantees, but cannot capture these semantic differences.

One alternative is to permit rebinding only to identical copies of modules that the
code was initially linked to. Usually, though, more flexibility will be required—to permit
rebinding to modules with “small” or “backwards-compatible” changes to their semantics,
and to pick up intentionally location-dependent modules. It is impractical to specify
the semantics that one depends upon in interfaces (in general, theorem proving would
be required at link time, though there are intermediate behavioural type systems). We
therefore introduce versions as crude approximations to semantic module specifications.
We need a language of versions, which will be attached to modules; a language of version
constraints, which will be attached to imports; a satisfaction relation, checked at static and
dynamic link times; and an implication relation between constraints, for chains of imports.

Now, how expressive should these languages be? Analogously to the situation for
resolvespecs, there is a tension between allowing arbitrary computation in defining the
relations and supporting compile-time analysis. Ultimately, it seems desirable to make the
basic module primitives parametric on abstract types of version and constraint languages—
in a particular distributed code environment, one may want a particular local choice for
these. For Acute, once again we choose not the most general alternative, but instead one
that should be expressive enough for many examples, and which exposes some key design
points.
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Scenario 1

It is common to use version numbers that are supplied by the programmer, with no
checked relationship to the code. As an arbitrary starting point, we take version numbers
to be non-empty lists of natural numbers, and version constraints to be similar lists
possibly ending in a wildcard * or an interval; satisfaction is what one would expect,
with a * matching any (possibly empty) suffix. Many minor enhancements are possible
and straightforward. Arbitrarily, we enhance version constraints with closed, left-open,
and right-open intervals, for example, 1.5-7, 1.8.-7, and 2.4.7-. These are certainly
not exactly what one wants (they cannot express, for example, the set of all versions
greater than 2. 3. 1) but are indicative. The meanings of these numbers and constraints are
dependent on some social process: within a single distributed development environment,
one needs a shared understanding that new versions of a module will be given new version
numbers commensurate with their semantic changes.

Scenario 2

To support tighter version control than this, we can make use of the global module
names (hash or freshly generated) introduced in §5: equality testing of these names is
an implementable check for module semantic identity. We let version numbers include
myname and version constraints include module identifiers M (those in scope, obviously).
In each case, the compiler or run-time writes in the appropriate module name. This
supports a useful idiom in which code producers declare their exact identity as the least
significant component of their version number, and consumers can choose whether or not
to be that particular. For example, a module M might specify it is version 2.3.myname,
compiled to 2.3.0xA564C8F3; an import in that scope might require 2.3 .M, compiled to
2.3.0xA564C8F3, or simply 2. 3. *; both would match it.

A key point is the balance of power between code producers and code consumers. The
above leaves the code producer in control, who can “lie” about which version a module
is—instead of writing myname they might write a name from a previous build. This is
desirable if they not only know there are clients out there with an exact-name constraint
but also know that their semantic change from that previous build will not break any of the
clients.

Scenario 3

Finally, to give the code consumer more control, we allow constraints not only on
the version field of a module but also on its actual name (which is unforgeable within
the language). Typically, one would have a definition of the desired version available
in the filesystem (in Acute, bringing it into scope as M with an include) and write
name=M. (These exact-name constraints are also used to construct default imports when
marshalling.) One could also cut and paste a name in explicitly: name=0xA564C8F3. To
guarantee that only mutually tested collections of modules will be executed together,
for example, when writing safety-critical software, this would be the desired idiom
everywhere, perhaps with development-environment support.

The current Acute version numbers and constraints, including all the above, are as
follows.

aune ::= Atomic version number expression
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n natural number literal
N numeric hash literal
myname name of this module
une i:= Version number expression
avne avune .vne
avce ::= Atomic version constraint expression
n natural number literal
N numeric hash literal
M name of module ¥
dvuce ::= Dotted version constraint
avce | n-n’ | -n | n— | * | avce.dvce
vce ::= Version constraint
duce dotted version constraint
name = M exact-name version constraint

Version number and constraint expressions appear in modules and imports as below.

definition ::= ..
module M:Sig version wne = Str
| import M:Sig version wce ... by resolvespec = Mo

In constructing hashes for modules, we also take into account their version expressions, to
prevent any accidental equalities. These version expressions can mention myname, and,
as we do not wish to introduce recursive hashes, the hash must be calculated before
compilation replaces myname with the hash.

It turns out that one needs exact-name version constraints not just for user-specified tight
version constraints, as in the idiom above, but also during marshalling, when one may have
to generate imports for module bindings that cross a mark. Exact-name constraints seem
to be the only reasonable default to use there.

One might wish to extend the version language further with conjunctive version number
expressions and disjunctive constraints. One might also wish to support cryptographic
signatures on version numbers. Both would affect the balance of power between code
producer and consumer, and further experience is needed to discover what is most usable.

Finally, we have had to choose whether version numbers are hereditary or not. A
hereditary version number for a module M would include the version numbers of all the
modules it depends on (and the version constraints of all the imports it uses), whereas
a non-hereditary version number is just a single entity, as in the grammar above. The
hereditary option clearly provides more data to users of M, but, concomitantly, requires
those users to understand the dependency structure—which usually one would like a
module system to insulate them from. If one really needs hereditary numbers, perhaps the
best solution would be to support version number expressions that can calculate a number
for M in terms of the numbers of its immediate dependencies, for example, adding tuples
and version(M) expressions to the avne grammar.
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Just as for withspecs (see §8.2), one might need rich development-environment support.
Local specifications of version constraints, spread over the imports in the source files of a
large software system, could be very inconvenient. One might want to refer to the version
numbers of a source-control system such as CVS, for example.

8 Interplay between abstract types, rebinding, and versions

8.1 Definite and indefinite references

With conventional static linking, module references such as M.t are definite, in the
terminology of Harper and Pierce (2005): in any fully linked executable, there is just a
single such M, though (with separate compilation) it may be unknown at compile time
which module definition for M it will be linked to. In contrast, the possibility of rebinding
makes some references indefinite—during a single distributed execution, they may be
bound to different modules.

For example, consider a module that declares an abstract type that depends on the term
fields of some other module:

module M : sig val f:int->int end
= struct let f=fun(x:int)->x+2 end
module EvenCounter

: sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun (x:int)->M.f x
end end

In the absence of any rebinding, the run-time type name for the abstract type
EvenCounter .t would be the hash of the EvenCounter abstract syntax with M. f replaced
by h. £, where h is the hash of the abstract syntax of M. This dependence on the M operations
guarantees type- and abstraction preservation.

Now, however, if there is a mark between the two module definitions, a marshal can cut
and rebind to any other module with the same signature, perhaps breaking the invariant
of EvenCounter.t that its values are always even. The M.f module reference below is
indefinite, and indeed is rebound to a plus-three function.

module M : sig val f:int->int end
= struct let f=fun (x:int)->x+2 end
import M : sig val f:int->int end version * = M

mark "MK"
module EvenCounter
: sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun (x:int)->M.f x
end end

I0.send(marshal "MK" (fun ()->EvenCounter.get
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(EvenCounter.up EvenCounter.start)):unit->int)

module M : sig val f:int->int end
= struct let f=fun (x:int)->x+3 end
(unmarshal (I0.receive ()) as unit->int) ()

To prevent this kind of error, one can use a more restrictive version constraint in the import
of M that EvenCounter uses, either by using an exact-name constraint name=M to allow
linking only to definitions of M that are identical to the definition in the sender, or by using
some conventional numbering. If no import is given explicitly, an exact-name constraint is
assumed.

The version constraint should be understood as an assertion by the code author that
whatever EvenCounter is linked with, so long as it satisfies that constraint (and also has
an appropriate signature, and is obtained following any resolvespec present), the intended
invariants of EvenCounter.t will be preserved.

Now, what should the global type name for EvenCounter.t be here? Note that the
original author might not have had any M module to hand, and even if they did (as
above), that module is not privileged in any way: EvenCounter may be rebound during
computation to other M matching the signature and version constraint. In generating the
hash for EvenCounter, analogously to our replacement of definite references M’ . x by the
hash of the definition of M’, we replace indefinite import-bound references such as M.f
by the hash of the import. This names the set of all M implementations that match that
signature and version constraint.

In the case above, this hash would be roughly

hash(import M:sig val f:int->int end version * )

and where one imports a module with an abstract type field

import M : sig type t val x:t end
version 2.4.7-

the hash h =

hash(import M : sig type t val x:t end
version 2.4.7- ...)

provides a global name A.t for that type.

In the EvenCounter example, the imported module had no abstract type fields. In cases
where there are abstract type fields, for type soundness we have to restrict the modules
that the import can be linked to, to ensure that they all have the same representation types
for these abstract type fields. We do so by requiring imports with abstract type fields to
have a likespec (in place of the ... above), giving that information. A compiled likespec
is essentially a structure with a type field for each of the abstract type fields of the import.

At first sight this is quite unpleasant, requiring the importers of a module to “know”
representation types which one might expect should be hidden. With indefinite references
to modules with abstract types, however, some such mechanism seems to be forced,
otherwise no rebinding is possible. Moreover, in practice, one would often have available a
version of the imported library from which the information can be drawn. For example,
one might be importing a graphics library that exists in many versions, but for which
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all versions that share a major version number also have common representations of the
abstract types of point, window, etc. A typical import might have the form

import Graphics:sig type t end version 2.3.x*
like Graphics2_0

(with more types and operations), where Graphics2_0 is the name of a graphics module
implementation, which is present at the development site, and which can be used by the
compiler to construct a structure with a representation for each of the abstract types of the
signature.

While the abstraction boundaries are not as rigid as in ML, this should provide a
workable idiom for dealing with large modular evolving systems, not only supporting
rebinding but also allowing one to restrict type representation information to particular
layers. The only alternative seems to be to make all types fully concrete at interfaces where
rebinding may occur.

To correctly deal with abstract types defined by modules following an import, which
use abstract type fields of the imported module in their representation types, compiled
likespecs must be included in the hashes of imports. On the other hand, we choose not to
include resolvespecs in import hashes. This is debatable—the argument against including
them is that it is useful to be able to change the location of code without affecting types,
and so without breaking interoperation (e.g., to have a local code mirror, to change a web
code repository to avoid a denial-of-service attack, etc.).

Note that the indefinite character of our imports makes them quite different from
module imports that are resolved by static linking, where typing can simply use module
paths to name any abstract types and no likespec machinery is required. Both mechanisms
are needed.

8.2 Breaking abstractions

In ongoing software evolution, implementations of an abstract type might need to be
changed, to fix bugs or add functionality, while values of that type exist on other machines
or in a persistent store. It is often impractical to simultaneously upgrade all machines to a
new implementation version.

A simple case is that in which the representation of the abstract type is unchanged and
where the programmer asserts that the two versions have compatible invariants, so it is
legitimate to exchange values in both directions. This may be the case even if the two are
not identical, for example, for an efficiency improvement or bug fix. Here, there should be
some mechanism for forcing the old and new types to be identical, breaking the normal
abstraction barrier.

We proposed (Sewell 2001; Leifer ef al. 2003a) a strong coercion with! to do so, and
Acute includes a variant of this. By analogy with ML sharing specifications, we allow
a module definition to have a withspec, a list of equalities between abstract types and
representations of modules constructed earlier (often this will be of previous builds of the
same module).

definition ::= ... | module M : Sig version wne = Str withspec

withspec empty | with! withspecbody

withspecbody empty | M.t=T,withspecbody

https://doi.org/10.1017/50956796807006442 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796807006442

576 Sewell et al.

The compiler checks that the representation type of these M.t are equal to the types
specified (respecting any internal abstraction boundaries); if they are, the type equalities
can be used in typechecking this definition.

For example, suppose the EvenCounter module definition of §5 was compiled to a file
pll_even.aco and is widely deployed in a distributed system, and that later one needs
a revised EvenCounter module, adding an operation or fixing a bug without making
an incompatible type. A new module with an added down operation can be written as
follows:

includecompiled "pll_even.aco"

module EvenCounter

: sig

type t = EvenCounter.t
val start:t
val get:t->int
val up:t->t
val down:t->t
end
= struct
type t=int
let start = 0
let get = fun (x:int)->x
let up = fun (x:int)->2+x
let down = fun (x:int)-> x-2
end
with! EvenCounter.t = int

In the interface here, the type t of the new module is manifestly equal to the abstract type
t of the previously built module, and the with! enables the type equality between that
abstract type and int to be used when typing the new module. The new type is compiled
to be manifestly equal to (the internal hash-name of) the old type. (For this example, where
the previous EvenCounter had a hash-generated type, one could include the source of
the previous module rather than the compiled file, but if it were cfresh-generated, the
compiled file is obviously needed.)

The withspec is, in effect, a declaration by the programmer that the old and new
implementations respect the same important invariants—here, that values of the re-
presentation type will always be even. In general, they will not respect exactly the
same invariants. For example, here the new module allows negative ints, but the
programmer implicitly asserts that the clients of the old module will not be broken by
this.

It would not suffice to check only that the new module respects at least the important
invariants of the old, as, if the types are made identical, then values produced by either
module can be acted upon by operations of the other.

In the more complex case where the old and new invariants are not compatible, or where
the two representation types differ, the programmer will have to write an upgrade function.
The same strong coercion can be used to make this possible, with a module that contains
two types, one coerced to each. An example is given in Leifer ez al. (2003a).

There are several design options for withspecs. In our earlier proposals, with! coerced
an abstract type of the module being defined to be equal to an earlier abstract type. Here
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the with! instead simply introduces a type equality to the typechecking environment;
manifest types in the signature of the new module can be used to make the type field
of the compiled signature equal to the old. This simplifies the semantics slightly and
may be conceptually clearer. We allow the withspec type equalities to be used both for
typechecking the body of the new module and for checking that it does have the interface
specified. One might instead only allow them to be used for the latter; it is unclear whether
this would always be expressive enough. The programmer has to specify the representation
type in a withspec explicitly. This is fine for small examples, such as the int above, but if
the representation type is complex, then it would be preferable to simply write with! M.t.
That requires a somewhat more intricate semantics (as typechecking of modules with
withspecs then depends on the representation types of earlier modules), and so we omit
it for the time being. Finally, one might well want development-environment support,
allowing collections of modules to be “pinned” to the types in a particular earlier build
without having to edit each module to add a withspec and make the types manifestly equal
to the earlier ones.

8.3 Overriding valuability checks

The semantics for abstract type names outlined in §5 ensures that two instances of an
effect-full module give rise to distinct abstract types. In general, this is the only correct
behaviour, as (as explained there) they may have very different invariants. In practice,
however, one may often want to permit rebinding to modules that have some internal state.
For example, in the communication library described in §11, the Distributed_channel
module stores a Tcp_string messaging.handle option, which is set by calls to
Distributed_channel.init : Tcp.port -> unit. One has to keep this as module
state rather than threading a handle through the Distributed_channel interface calls
so that those calls can be correctly rebound if (say) one marshals a function mentioning
them. Despite the initialisation effect (evaluating ref None), we need the module name
for Distributed_channel to be hash-generated, not fresh-generated, so that the abstract
types in the interface are the same in different instance, so that rebinding can take place.
The desired behaviour really is for the conceptually distinct abstract types of different
instances to be compatible. This could be expressed either

1. with module annotations hash! and cfresh!, which override the valuability check
but otherwise are like hash and cfresh; or

2. with an expression form ignore_effect (e ), transparent at run-time but concealing
arbitrary effects as far as valuability goes.

We choose the former to make the coercion clearer in the module source and to avoid
polluting the expression grammar, but the latter has the advantage of localising the coercion
to where it is really needed.

8.4 Exact matching or version flexibility?

In §6, we focussed on name-based dispatch, delivering an incoming message by
demultiplexing on a name it contains. An alternative idiom for remote invocation simply
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makes use of the dynamic rebinding facilities provided in Acute, for example, as in the
code below where a thunk mentioning N. f is shipped from one machine to another.

module N:sig val f:int->unit end
= struct let f=fun x-> I0.print_int (x+1) end

mark "MARK-N"

I0.send (marshal "MARK-N" ((fun ()->N.f), 9))

module N:sig val f:int->unit end
= struct let f=fun x-> I0.print_int (x+1) end

mark "MARK-N"

let (g,(y:int))=unmarshal(I0.receive()) in g () y

As the marshal is with respect to a mark ("MARK-N") below the definition of N, the pair
of the thunk and v will be shipped together with an unlinked import for N; when the
unmarshalled thunk is applied that import will become linked to the local definition of
N on the receiver machine.

In the code as written, the import will have an exact-name version constraint, but this
could be liberalised by writing an explicit import in the sender, with an arbitrary version
constraint.

This is quite different from the name-based dispatch of §6, where a simple name equality
is checked for each communication. Here, a full link-ok check is involved, checking a
subsignature relationship and a version constraint. It is therefore much more costly, but
allows much more flexible linking.

Another difference between the two schemes is that with name-based dispatch, the
receiver can express access-control checks by testing name equality, whereas here one
would need to test equality of arbitrary incoming functions (against fun () ->N.f thunks),
which we do not admit.

A common idiom may be to establish a shared structure of names by dynamic linking
(including a version check) at the start of a lengthy interaction and thereafter to use
name-based dispatch. Acute does not provide the low-level linking machinery needed for
explicitly sending such a structure (see the discussion of negotiation elsewhere), so we do
not explore this further here.

8.5 Marshalling inside abstraction boundaries

If one has a module defining an abstract type, and within that module marshals a value of
that type, one has to choose whether it is marshalled abstractly or concretely. For example,
in

module EvenCounter
. sig
type t
val start:t
val get:t->int
val up:t->t
val send : t -> unit
val recv : unit -> t
end
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= struct
type t=int
let start = 0
let get = fun (x:int)->x
let up = fun (x:int)->2+x
let send = fun (x:t) -> I0.send( marshal "StdLib" x : t)
let recv = fun () -> (unmarshal(I0.receive()) as t)

end
EvenCounter.send (EvenCounter.start)

is the communicated value compatible with int or with EvenCounter.t? For Acute, we
take the former option: all types (in the absence of polymorphism) are fully normalised
with respect to the ambient type equations before execution. Running the above in parallel
with

I0.print_int (3+(unmarshal (I0.receive()) as int))

will therefore succeed.

One might well want more source-language control here, allowing the programmer to
specify that such amarshal should be at the abstract type, but we leave this for future work.
In general, with nested modules and with with! specifications, there may be a complex
type equation set structure to select from.

9 Concurrency, mobility, and thunkify

Distributed programming requires support for local concurrency: some form of threads and
constructs for interaction between them.

9.1 Language-level concurrency versus OS threads

The first question here is whether to fix a direct relationship to the underlying OS threads
or take language-level threads to be conceptually distinct, which might or might not
be implemented with one OS thread each. The former has the advantages of a simple
relationship with the OS scheduler (which may provide rich facilities, for example,
for QoS, that some programs need) and the potential to exploit multiple processors.
It has the disadvantages of different concurrency models on different OSs, and of a
nontrivial relationship between threading and the language garbage collector. The latter
gives the language implementor much more freedom. In particular, to support lightweight
concurrency (as in Erlang, Pict, JoCaml, etc.), in which many parallel components simply
send a message or two, it is desirable for parallel composition to not require the (costly)
construction of a new OS thread. For Acute, we adopt language-level concurrency.

9.2 Interaction primitives

There are two main styles of interaction between threads: shared memory and message
passing. The latter is a better fit to large-scale distributed programming, and, we believe,
often leads to more transparent code. The former, however, is needed when dealing with
large mutable data structures and suits the imperative nature of ML/OCaml programming.
In large programs, we expect both to be required. In Acute, we initially provide shared-
memory interaction, as OCaml does: references can be accessed from multiple threads,
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with atomic dereferencing and assignment, and mutexes and condition variables can be
used for synchronisation. These enable certain forms of message-passing interaction to be
expressed as library modules, which suffices for the time being. In future, we expect to
build in support for message passing. Indeed, some forms require direct language support
(or a preprocessor-based implementation), for example, Join patterns with their multiway
binding construct.

9.3 Thunkification

We want to make it possible to checkpoint and move running computations—for fault
tolerance, for working with intermittently connected devices, and for system management.
Several calculi and languages (JoCaml, Nomadic Pict, Ambients, etc.) provided a linear
migration construct, which moved a computation between locations.

It is more generally useful to support marshalling of computations, which can then
be communicated, checkpointed, etc. using whatever communication and persistent store
constructs are in use. Taking a step further, as we have marshalling of arbitrary values,
marshalling of computations requires only the addition of a primitive for converting
a running computation into a value. We call this thunkification. Checkpointing a
computation can then be implemented by thunkifying it, marshalling the resulting value,
and writing it to disk. Migration can be implemented by thunkification, marshalling, and
communication. Note that these are not in general linear operations—if a computation has
been checkpointed to disk, it may be restarted multiple times.

There are many possible forms of thunkification. The simplest is to be both subjective
and synchronous: executing thunkify in a single thread gives a thunk of that thread,
essentially capturing the (single-thread) continuation of the thunkify. Typically, though,
the computation that one wishes to thunkify will be composed of a group of threads. The
programmer would then have to manually ensure that all the threads synchronise and then
thunkify themselves, and finally collect together the results. This would be very heavy,
requiring substantial rewriting of applications to make them amenable to checkpointing
or migration. Accordingly, we think it preferable to have an objective and asynchronous
thunkify, freezing a group of threads irrespective of their current behavior.

A group of threads may be intertwined with interaction primitives (i.e., mutexes and
condition variables) used for internal communication and synchronisation. Accordingly,
thunkify should also be applicable to those interaction primitives. Thunkification is
destructive, removing the threads, mutexes, and condition variables that are thunkified.

Thunkification of a group must be atomic. To see the inadequacy of a thunkify that
operates only on a single thread, consider thunkifying a pair of threads, the first of which
is performing a thread operation (e.g., kill) on the second. If the second is thunkified
before the first, then the ki1l will fail, whereas with an atomic multi-thread thunkify, it
will always succeed, either before the thunkify happens or after the group is unthunkified
later.

9.4 Naming and grouping

Threads must be structured in some fashion. The simplest option, taken by many process
calculi, is to have a running system be a flat parallel composition of anonymous threads. In
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contrast, operating system threads are typically named, with names provided by the system
at thread creation time; these names may be reused over time and between run-times.

For Acute, some naming structure is required, to allow threads to be manipulated
(thunkified, killed, etc.). We see two main possibilities:

1. globally unique names, created freshly by the system at thread creation time, or
2. locally unique names, provided by the programmer at thread creation time, with an
exception if they are already in use on this run-time.

The other two possibilities are neither useful nor implementable: if names are being created
freshly by the system, they might as well be globally unique, with the same representation
as we use for other names; if names are being provided by the programmer, then it is not
in general possible to check whether they are in use on any run-time.

We expect (1) to be the most commonly desired semantics. Nonetheless, in Acute, we
choose (2). First, given (2), the programmer can implement (1) simply by providing a fresh
name at each thread creation point. The difference between the two shows up when one
moves a group of threads, which internally record and manipulate the thread names of
the group, from one machine to another. Second, with (1), they necessarily receive new
names at the destination, so to maintain correctness, all records of their old names must
be permuted with the new—which may be awkward if there are external records of these
names. In addition, with (2), if this movement is known to be linear, then the original names
can be reused without further ado.

The same two possibilities exist for the naming of interaction primitives for
synchronisation and communication between threads, that is (at present), mutexes and
condition variables, and we make the same choice of (2) for them.

Many distributed process calculi have exploited a hierarchical group structure over
processes, with boundaries delimiting units of migration, units of failure, synchronisation
regions, secure encapsulation boundaries, and administrative domains. There is a basic
tension between the need for communication across boundaries and the need for
encapsulation and control over untrusted components, giving rise to a complex design
space that is not well understood. The tutorial (Sewell 2000) gives a very preliminary
overview. How this tension should be resolved and what group structure should be provided
as primitive is a very interesting question for future work. Our examples demonstrate that
groups for migration and synchronisation units can be expressed rather easily in Acute
with flat parallel compositions of named threads, and that is what the language currently
provides.

In addition, any group structure should—presumably—structure the interaction
primitives (mutexes, channels, etc.) but here there are additional complications, as these
are necessarily going to be used for interaction across a boundary, so the interactands may
be split apart by thunkification.

A further motivation for richer group structure comes from performance requirements.
When programming in a message-passing style (as in the m-calculus and in the derived
languages JoCaml, Pict, and Nomadic Pict), one may have many threads that contain
only a single asynchronous output. For performance, it may be necessary to optimise these,
not always creating thread names and scheduler entries for them. If threads can discover
their own names, for example, by a
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self : unit -> thread name

primitive, then this optimisation is nontrivial: a thread that outputs the value of an
expression involving self must have been created with a name, whereas outputs of
other values need not. This led us to explore grouping structures of named groups
containing anonymous threads. Ultimately, we rejected them, returning to the flat parallel
compositions of named threads, as they seemed excessively complex and it seemed likely
that a rather simple static analysis would be able to identify most non—self outputs.

9.5 Thread termination

Acute threads do not return values, and their termination cannot be synchronised upon.
We have no strong opinion about these choices, making them for simplicity for the time
being. Thread termination is observable indirectly, as thunkify and kill raise exceptions
if called on non-existent threads.

9.6 Nonexistent threads, mutexes, and condition variables

In conventional single-machine programming, it is straightforward to ensure that any
mutexes and condition variables used must already exist—in OCaml, for example, the
type system guarantees this. In Acute, however, this is no longer possible.

First, mutex names may be marshalled (either alone or in a function such as function
() -> unlock m) and then unmarshalled on another machine. In the absence of
thunkification, it is debatable whether this is useful: one might imagine forbidding such
examples, either with a dynamic check at marshal-time or a rich type system that identifies
non-marshallable types. With thunkification, however, one may certainly need to marshal a
thunkified group of threads together with their internal mutexes. Second, thunkification can
remove a mutex, leaving active threads that refer to it. This scenario seems inescapable: if
one moves some threads, they typically are going to have been interacting, in some fashion,
with other threads at the source.

Accordingly, the mutex and condition variable operations may fail dynamically, giving
Nonexistent mutex and Nonexistent_cvar exceptions. One would expect high-
level communication libraries, for example, of distributed communication channels and
migration, to ensure that such errors never occur.

9.7 References, names, marshalling, and thunkify

Semantically, it is tempting to treat store locations as another variety of name, similar to
thread and mutex names. In Acute, we do not make this identification, as the cost seems
undermotivated. A naive implementation, indirecting all access via a name lookup, would
obviously be absurd. Even an optimised version, using local pointers but keeping a name
with every store value, would be rather expensive—in a typical program, there are many
more store locations than mutexes or threads (it would be necessary to keep a name for
each explicitly, as garbage collection can relocate pointers but the name order must be
preserved).
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Furthermore, the dynamic semantics is rather different: marshalling copies the reachable
fragment of the store, whereas names are simply marshalled as the values that they are.
Thunkifying threads and mutexes is destructive, removing them from the running system.
Copying the reachable fragment of the store ensures that dereferencing and assignment
can never fail dynamically (which we think would be unacceptable), whereas the implicit
marshalling of entire threads seems unlikely to be desirable. Further practical experience
is required to assess these choices.

9.8 Module initialisation, concurrency, and thunkify

Without module initialisation, all threads are simply executing an expression. With
initialisation, however, at least one thread might be executing a sequence of definitions
(followed by an expression), evaluating expressions on the right-hand side of structures in
programs as follows.

module fresh M : sig val x: int ref val y:unit end

= struct let x=ref 3 let y=I0.print_int !x end
M.x :=7

These expressions may spawn other threads, which may interact (via the store, mutexes,
etc.) with the first. In fact, as discussed in §4.8, no uninitialised definitions can be
dynamically added to the system, so it is an invariant that at most one thread is executing in
definitions (though the semantics actually allows definitions in all threads, for uniformity).
The initial thread has no other special status.

Now, what should thunkify do if invoked on such a thread? Acute has a second-class
module system, so there is (unfortunately) no way to represent a suspended module-level
computation in the expression language. The thunkify must therefore either abort or block
until module initialisation is complete. For the time being, we take the former choice,
raising a Thunkify thread_in definition exception.

9.9 Thunkify and blocking calls

With any form of thread migration or (more generally) with our thunkification, one has to
deal with threads that are blocked in system calls. There are two possibilities:

1. have the thunkify block until the target thread returns, thunkifying its state just
after the return; or

2. have the thunkify return immediately, thunkifying the state of the target thread with
a raise of a Thunkify EINTR exception replacing the blocked call, and discarding
the eventual return value of the call. This is analogous to the Unix EINTR error,
returned when a system call is interrupted by a signal, which applications must be
prepared to deal with.

Both are desirable, in different circumstances, and so we allow a per-thread choice, as
expressed through the sum type thunkifymode defined below.

Note that this applies only to blocking (or “slow”) system calls such as read (), not to
the many non-blocking system calls which return quickly. The language semantics must
distinguish the two classes.
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Taking this further, it is unpleasant for the system interface to be special in this way. For
example, suppose one has a user library module that provides a wrapper around the system
interface; one might want to identify some of the user module entry points as blocking
and have similar thunkify behaviour. This would be conceptually straightforward if the
functions provided by the module are all first order and cannot be partially applied, in
which case there is a straightforward notion of a thread executing “in” the module. A
thunkify could behave as (2) as far as the calling thread is concerned and raise an
asynchronous exception in the user library code. We believe this kind of mechanism is
desirable, but have not explored it in detail.

9.10 Concurrency: The constructs

Putting these choices together, we have types thread, mutex, cvar, thunkifymode,
and thunkkey. The first three types are empty (phantom types); they are introduced
to form types thread name, mutex name, and cvar name. A thunkifymode is either
Interrupting or Blocking; and type thunkkey has three constructors, Thread, Mutex,
and CVar, each taking a name of the associated type; the first takes also a thunkifymode.

We have operations for threads, mutexes, condition variables, and thunkification as
follows:

create_thread : thread name -> (T->unit) -> T -> unit
self : unit -> thread name
kill : thread name -> unit

create_mutex : mutex name->unit create_cvar : cvar name->unit

lock : mutex name->unit wait : cvar name->mutex name->unit
try_lock : mutex name->bool signal : cvar name->unit

unlock : mutex name->unit broadcast : cvar name->unit

thunkify : thunkkey list -> thunkkey list -> unit
exit : int -> T

In addition, we have a control operator
el ||l e2

that spawns its first argument, as syntactic sugar for

create_thread fresh (function () -> el); e2

Here, thunkify takes a list of thunkkeys specifying which threads, mutexes, and
condition variables to thunkify; it returns a function that takes a list of the same shape
specifying the names to give these entities and then atomically recreates them.

9.11 Example

Below is a simple use of thunkify, capturing the state of a single running thread and an
(unused) mutex.
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let rec delay x = if x=0 then () else delay (x-1) in

let rec f x = I0.print_int x; IO.print_newline O; £ (x+1) in
let tl1 = fresh in

let m1 = fresh in

let _ = create_thread t1 £ 0 in
let _ = create_mutex ml in
let _ = delay 15 in

let v = thunkify ((Thread (t1,Blocking))::(Mutex ml1)::[]) in
I0.send( marshal "StdLib" v : thunkkey list -> unit )

let rec delay x = if x=0 then () else delay (x-1) in

let exit_soon = create_thread fresh (fun () -> delay 15 ; exit 0) () in
let v = (unmarshal(I0.receive()) as thunkkey list -> unit) in

v ((Thread (fresh,Blocking))::(Mutex fresh)::[])

When run, the first program prints 0 1 2 3 4 and then thunkifies, marshals, and sends
thread t1; the second then receives and applies it, creating a freshly named thread (and
mutex) locally that prints 5 6 7 8.

10 Polymorphism

Ultimately, both subtype and parametric polymorphism should be included. Many version
changes involve subtyping, for example, the addition of fields to a manifest record
type argument of a remote function; it should be possible to make these transparent to
the callers. Parametric polymorphism is of course needed in some form for ML-style
programming. In the distributed setting, it seems to be particularly useful to have first-
class universals, allowing polymorphic functions to be communicated, and first-class
existentials. (An alternate approach to universals and existentials, which we do not consider
here, is to add first-class modules to the language (Peskine forthcoming).)

The latter support an idiom, common in Pict and Nomadic Pict, in which one packages
achannel name and a value that can be sent on that channel, as a value of type 3¢. t name *
t. This lets one express communication infrastructure libraries that can uniformly forward
messages of arbitrary types.

There are two substantial difficulties here. First, type inference is challenging for
such combinations of subtyping and parametric polymorphism. A partial type inference
algorithm will be required, and it must be pragmatically satisfactory—inferring enough
annotations, and unsurprising to the programmer. This is the subject of recent research
on local type inference (Pierce & Turner 1998; Hosoya & Pierce 1999) and coloured
local type inference (Odersky et al. 2001). Without subtyping, the MLF of Le Botlan
and Rémy (2003) allows full System F but can infer types for all ML-typable
programs.

Second, the interaction between subtyping and hash types requires further work—for
instance, using a subhash order derived from subtype and subversion relationships, which
is dynamically propagated (Deniélou & Leifer 2006).

In Acute, we sidestep both of these issues for the time being, making an interim choice
that suffices for writing nontrivial examples, for example, of polymorphic communication
infrastructure modules. Acute has no subtyping. The basic scheme is monomorphic, but
with type inference. The definition of the internal language has explicit type annotations,
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on pattern variables and on built-in constructors such as [] and None. In the external
language, these annotations can all be inferred by a unification-based algorithm. To this, we
add first-class System F universals and existentials, with types forall t.T and exists
t.T and explicit type abstractions, applications, packs, and unpacks, with expression
forms

Function t -> e

e %[T]

{T,e} as T’

let {t,z} = el in e2

There is no automatic generalisation, and the subsignature relation remains, as in
the monomorphic case, without generalisation. We also have no user-definable type
constructors. The expression forms could easily be more tightly integrated with the other
pattern matching and function forms.

Traditional ML implementations can erase all types before execution. In contrast, an
Acute runtime needs type representations at marshal and unmarshal points to execute
the expressions marshal e : T and unmarshal e as T. (These types can often be
inferred.) Type representations are also needed at fresh, cfresh, and hash(...) points.
Our prototype implementation keeps all type information, throughout execution, so that
we can do run-time typechecking between reduction steps. A production implementation
would probably do a flow analysis to determine where types are required, adding type
representation parameters to functions as needed. The only operations that a production
implementation needs to do on these type representations are (1) compare them for
syntactic equality, (2) construct them when a polymorphic function is applied to its type
parameter, and (3) take hashes of them. It is therefore not necessary to keep all the type
structure. Indeed, one could (with a small probabilistic reduction in safety) work with
hashes of types at run time. Alternatively, if one keeps the structure it would be possible
to add some form of run-time type analysis (Weirich 2002) at little extra cost, at least for
non-abstract types.

10.1 A refinement: Marshal keys and name equality

In the implementation of distributed communication libraries, one may often be
communicating values of types such as exists t. t name * T (with the t potentially
occurring in T), where the t name is used as a demultiplexing/dispatch key at the receiver.

To statically type the receiver code, an enhanced conditional or matching form is needed:
having compared that t name with the locally stored name associated with (say) a channel
data structure, typing the true branch must be in an environment where the two are known
to be of the same type.

The enhanced form could be either an explicit type equality test or a name equality test.
At present, we do not see a strong argument either way. A type equality test is perhaps
cleaner, but would lead to run-time type information being required at more program
points. A general name equality test, if el=e2 then e3 else e4, where el and e2
are of arbitrary T1 name and T2 name types, is the most obvious alternative, but this
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requires a slightly intricate treatment of multiple type equalities in the semantics. For the
time being, we combine name equality testing with existential unpacks, with

namecase el with {t,(z1,z2)} when zl=e
-> e2
otherwise -> e3

where el :exists t. t name * T, the e:T’ name is evaluated first and used to build
an equality pattern, and in the e2 branch it is known that t=T". Obviously, such existentials
are not uniformly parametric in Acute.

If one is communicating values of type exists t. t name * t,andis demultiplexing
on the t name, the explicit type in the marshalled value (and the unmarshal-time type
equality check) could be omitted; name equality gives an equally strong guarantee. If
communicating many small values the performance gain of this could be worth direct
language support for such “marshal keys.”

11 Pulling it all together: Examples

We have written three example distributed communication libraries in Acute: a distributed
message-passing library; an implementation of the Nomadic Pict constructs for migration
of mobile computations and communication between them; and an implementation of
the Ambient calculus primitives. There are also two games that mostly exercise local
computation: blockhead and minesweeper; the latter using marshalling to save and
restore the game state. The distributed message-passing library shows how many of the
Acute features are needed and used. It has the following modules:

Tcp-connection management maintains TCP connections to TCP addresses (IP ad-
dress/port pairs), creating them on demand. Tcp_string messaging uses that to provide
asynchronous messaging of strings to TCP addresses. These are both hash modules, with
abstract types of handles; they spawn daemons to deal with incoming communications.

Separately, a module Local _channel provides local (within a runtime) asynchronous
messaging, again with an abstract type of channel management handles and
with polymorphic send:forall t. t name * t -> unit and recv:forall t. t
name* (t->unit) -> unit (to register a handler). Channel states are stored as existential
packages of lists of pending messages or receptors; a namecase operation is used to unpack
existential name/value packages, allowing a new type equality to be used in the “true”
branch of a name equality test. Mutexes are needed for protection.

Distributed_channel pulls these together, with send:forall t.string->
(Tcp.addr*t name)->t-> unit (and a similar recv) for distributed asynchronous
messaging to TCP addresses. The string names the mark to marshal with respect to. For a
local address, this simply uses Local_channel. For a remote address, the send marshals
its t argument and uses Tcp_string messaging; the recv unmarshals and generates a
local asynchronous output. This deals with the non-mobile case—active receivers cannot
be moved from one run-time to another. However, code that uses this module, for examples
functions that invoke send and recv, can be marshalled and shipped between run-times;
the module initialisation state includes the TCP messaging handles, and so rebinding
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to different instances of send and recv works correctly. Finally, a simple RFI module
implements remote function invocation above distributed channels.

Clients of this library can use any of the various ways of creating shared typed names
discussed in §6 and §8.4. Moreover, the use of first-class marks means that clients have the
same flexible control over the marshalling that goes on as direct users of marshal.

The Nomadic Pict library supports mobility of running computations, with named
groups of threads, each with a local channel manager, that can migrate between machines.
Migration uses thunkify to capture the group’s channel and thread state. Threads within
a group can interact via local channels; groups can interact with a location-dependent
send_remote that sends a message to a channel of a group assumed to be at a particular
TCP address. The location-independent messaging algorithms of JoCaml or high-level
Nomadic Pict should be easy to express above this (the former requiring the polytypic
support and swap operations to manipulate the free channel names of a communicated
value).

The Ambient library implements the mobility primitives of the Ambient calculus. An
ambient is a collection of running threads and resources (including other ambients) that
migrates as a unit: mobility amounts to restructuring the nesting tree of the ambients. In
a distributed world, this nested structure is shared among different runtimes. Interactions
between ambients in the same run-time are resolved using local concurrency, mutexes, and
condition variables. Interaction between remote machines may cause an ambient to migrate
to another runtime: this is implemented using thunkification and marshalling, on top of the
TCP_string messaging library.

It is worth noting that these libraries provide coherent abstractions above the combined
low-level concurrency and thunkification features of the language, and clients of the
libraries should not also directly use those low-level features. For example, the Nomadic
Pict library provides an API including message-passing concurrency and thread creation
within a group. The implementation of this thread creation function not only invokes
the low-level create_thread but also updates metadata associated with the group, all
protected by locking calls, which direct, client usage of the low-level create_thread
would not. Similarly, clients should not directly use mutex operations or thunkification.
Language support for enforcing such constraints is an interesting problem for future work
on module systems.

Each of these libraries is around 1,000 lines of Acute code, including comments and
utility functions. They took a few days or weeks to write, in sharp contrast to the many
months required for the original Nomadic Pict implementation. Much of the remaining
complexity is related to local concurrency and locking. The distributed aspects were rather
straightforward, with the Acute rebinding semantics used to ensure that communicated
code is correctly rebound to the local state of the libraries at the receiver.

The code for these examples is available on the Acute web page (Acute team, n.d.). A
related (but simpler) example is given in our later HashCaml paper (Billings et al. 2006).

12 Semantics

The Acute definition, Part III of Sewell et al. (2004), defines the language syntax,
type system, typed desugaring, compilation (abstractly, dealing with issues such as the
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compile-time construction of type names), operational semantics, and the errors that can
arise during compilation and execution.

The definition is written in rigorous but informal (not machine-processed) mathematics,
and we state precise type preservation and progress conjectures. We have not attempted
to prove these results. Any proof on this scale is a daunting prospect, be it informal or
machine checked—the definition alone is around 80 pages, roughly the size of that of
SML (Milner et al. 1990). Indeed, we know of few other high-level languages of similar
size with a complete and rigorous definition, and none with fully proven metatheory.!
Furthermore, the value of informal proofs at this scale is questionable: one might well
discover problems in the semantics by carrying out such proof, but it would be hard
to have confidence that the proof did not contain errors. Ideally, then, we would have
both a machine-processed definition and machine-checked proofs of soundness. But at
present, our (partial) confidence in the soundness of the definition is based only on a
combination of weaker evidence: meta-theoretic proofs about small calculi with some of
the key features (Sewell 2001; Bierman et al. 2003; Leifer et al. 2003a) and experience
with the implementation (which closely follows the semantics and which can optionally
re-typecheck each configuration that is reached).

In this section, we give an overview of the key novel features in the definition, illustrated
with selected rules and examples.

12.1 Type and term names

The main issue dealt with in the Acute semantics is that of run-time type names. In SML
and OCaml, types can be erased at run time. In Acute, on the other hand, some run-
time representation of types is needed, both at marshal points (to include with the mar-
shalled value) and at unmarshal points (to do a type equality check between the expected
type and that of the marshalled value). For a language with simple types, these run-
time representations would be conceptually straightforward, isomorphic to the type
expressions that occur in source programs. (One might choose to use cryptographic hashes
of those instead, gaining performance at the cost of a small probability of error.) In
Acute, however, we have abstract types, just as SML and OCaml do. In the absence of
marshalling, abstraction is enforced by a combination of statically scoped type names and
a type system based on singleton kinds. With marshalling, we need to be able to compare
abstract types that may be from partially or completely different programs, so we need run-
time representations for these types that make sense globally, not just in some particular
scope.

Singleton-kind type system

Much of the Acute type system for source-language programs is standard, following
the manifest-type system of Leroy (1994) and the singleton-kind system of Harper and
Lillibridge (1994). The type system is defined over fully type-annotated syntax—our

! There is ongoing work on Twelf formalisation of a Harper-Stone semantics for SML, with meta-theory for
an internal language (Lee et al. 2007), and several authors have formalised large foundational Proof-Carrying
Code and Typed Assembly Language systems.
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implementation includes a partial type inference algorithm, but that is not formalised.
There is a core language (with System F style polymorphism) and a second-class module
language of named structure definitions. Modules can contain type fields, which can either
be abstract or manifest. For example, the concrete source-language program

module EvenCounter’

. sig = struct
type t (* abstract *) type t=int
type t’=string (* concrete/manifest *) type t’=string
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
end end

is formally treated as a definition with a signature

module EvenCounter’
. sig
type t : Type
type t’ : Eq(string)
val start:t
val get:t->int
end
in which both type fields have kind assumptions. The t field is simply of kind Type,
revealing no information, whereas the t’ field is of kind Eq(string)—the kind of all
types that are provably equal to string—revealing its implementation. The type system
uses paths M. t to name abstract types, with static selfification rules that permit the signature
of a module identifier (but not of an arbitrary structure) to be strengthened with an equality
to the relevant path, as follows:
module EvenCounter’
: sig
type t : Eq(Evencounter’.t)
type t’ : Eq(string)
val start:t
val get:t->int
end

Hashes and names in the type grammar

Our run-time type representations for abstract types are a dynamic analogue of these paths,
and they are introduced by dynamic analogues of the selfification type rules. Hashes and
abstract names appear in the type grammar

T = ..
M.t tfield of module M,
h.t t field of hash or name h

where h is either a module or import hash, or a pure name:

h = hash(hmodule,, M : Sig, version vne = Str)
hash(himport M : Sig, version vc like Str)
n
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Compilation and module initialisation replace paths M), .t by the h.t form, which is not
permitted in source programs. (Here M is a module external identifier, which does not
alpha-vary, and M is an alpha-varying internal identifier.)

As the grammar above shows, the semantics preserves the internal structure of hashes,
with the hash(...) in the semantics treated as a formal constructor. This is needed to state
type preservation, to define typing for the expressions that can arise at run time. However,
we take care to ensure that an implementation can use numeric hashes, without depending
on their internal structure. The current Acute implementation can do either, using the
internal structure only when the optional per-step typechecking is enabled.

The typing rules for hashes and names are similar to those for module identifiers. For
example, the two rules for type formation are as follows:

E K ok
EFK ok E by h 2 Sig
E b My : Sig (t, : K) e Sig
(t, : K) e Sig t abstract iNpamepary(e) B
E Feos Myt 1 K E e ht 1 K

(We return later to the role of the egs subscripts.) The rule for 4.t has an additional premise
that permits use of h.t only when t really is abstract in the signature of h. The assumption
E ks h : Sig indirectly ensures that h is well formed, for which the module-hash rule is
as follows:

h = hash(hmodule,,; M : Sig, version vne = Str)
EnaEconst }_eqs Str : Slgo

F Str flat

F Sig, flat

E,+h ok

This checks that the hashed structure Str matches the signature Sig, but in a globally
meaningful type environment E,, E¢onst rather than the type environment of any particular
program context. The E.ns 1S a fixed type environment of special constants for the
standard library. The E, is a global environment of assumptions on the pure names that
have been created so far, of the form below. It associates names n (taken from a fixed
infinite set) with types (for term-level names), kind TYPE (for type names of opened
existentials), or module/import data (for fresh and cfresh modules and imports).

E,,n : TYPE
E,,n : nmodule,,; M : Sig, version vne = Str
E,,n : nimport M : Sig, version vc like Str

We construct hashes “up to provable type equality.” Part of this is captured by the flat
premises of the type rule above, which ensure that the structure is normalised with respect
to any type definitions t; = 7 within it (by substituting 7" for t), and similarly for manifest
type assumptions in the signature.
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There is a further subtlety concerning hashes that might be pasted into version
expressions and constraints by the programmer. For these, the system cannot ensure that
they are hashes of well-formed modules, but in this context soundness does not depend on
that, so they can be treated semantically simply as numeric constants.

Construction of module hashes and names

Hashes and names h are constructed per-module (and per-import), rather than per-abstract
type. How and when they are constructed depends on whether the module (or import) is
annotated hash, cfresh, or fresh (which will generally depend on whether it is valuable,
cvaluable, or nonvaluable):

o hash: compute module hash & at compile time;
e cfresh: generate module name & fresh at compile time; and
e fresh: generate module name h fresh at module initialisation time.

The Acute compilation semantics specifies how the first two are done, of which the most
interesting is the hash case. In outline:

1. All types are normalised as far as possible, replacing any types M’y..t defined
in earlier modules by either the corresponding h’.t (if they are abstract) or the
corresponding 7" (if they are manifest).

2. Any withspec is checked, and the resulting set of type equations, normalised, is
recorded.

3. The hash of this module is constructed, first replacing any module expression
dependencies My, .x by the corresponding h’.x.

4. That hash is used to selfify the remaining abstract type fields of the signature,
replacing type t, : TYPE by type t, : EQ(h.t).

5. The version number expression of the module is evaluated, replacing myname by
the hash h. This must be done after calculation of the hash, as otherwise recursive
hashes would be needed.

The result has the form
cmoduley,; o4 i, My @ Sigy version vn = Str

where & is this module’s hash, egs are any extra equations added by the withspec, Sig,
is the normalised but non-selfified signature, Sig; is the normalised and selfified signature
(computable from Sig, and h), vn is the version number, and Str is the normalised struc-
ture. Syntactic equality on normalised types corresponds to provable static type equality.

Compilation: Simple hash modules

For example, the EvenCounter example from §5 is compiled to the cmodule below
(generated by our implementation).

cmodule EvenCounter[M,] hO_-EvenCounter : {} (* id, name, eqgs *)
sig type tlto] : Type (* abstract sig *)
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val start[startoe] : to
val getl[geto] : to -> int
val uplupo] : to —> to

end (valuable, valuable) (* valuability *)
sig type tlto]l : Eq(hO_EvenCounter.t) (* selfified sig *)

val start[starty] : hO_EvenCounter.t
val getlgety] : hO-EvenCounter.t -> int
val uplupy] : hO-EvenCounter.t -> hO_EvenCounter.t
end version hO_EvenCounter (* version *)
= struct (* struct *)
type tlto] = int
let start[starty] = 0
let getlgeto] = function (%, : int) -> %o
let uplupy] = function (%, : int) -> 2 + xo
end

where

hO_EvenCounter =
hash(hmodule EvenCounter : {}
sig
type tlto]l : Type
val start[starty] : to
val get[geto] : to -> int
val uplupo] : to —> to
end
version myname
= struct
type tlto] = int
let start([starty] = 0
let getl[geto] = function (x, : int) -> xo
let uplupy] = function (%o : int) -> 2 + x,
end)
= O#E09083A42C03366FA0698C81E0063682

593

Scope resolution has introduced internal identifiers Mo, to, starto, xo, etc. Compilation
has calculated a module name hO_EvenCounter as an hash of an hmodule form,
containing the external module identifier, signature, version expression, and structure. This
hash is taken up to alpha equivalence by choosing canonical strings for bound identifiers
(the semantics is up to alpha throughout, so there the formal hash(...) constructor is
applied to an alpha-equivalence class) and up to type equality by substituting out earlier
module names for identifiers and substituting out internal type dependencies. (The hash
body shown is pretty-printed in a different mode to that used to build the actual hash to
make it more readable, with identifiers based on the source language strings.) Both the
symbolic and numeric hash forms are shown. The compiled cmodule EvenCounter has

two signatures, one in which source abstract types are still abstract (used for typechecking
later modules) and one in which they have been selfified using the module name and
substituted through, for example, the type t[to] : Eq(hO_EvenCounter.t) and val
start[starto] : hO_-EvenCounter.t (used for type normalisation of later modules).

The version of the compiled module has defaulted to its hash-generated name.
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Compilation: Hash module dependencies

The result of compiling modules M and EvenCounter from §8 is given below, showing
how the construction of hashes captures any semantic dependencies between the modules.
Two hashes are constructed to use as the names of the two modules, hO_M and
h1_EvenCounter. Note that the up field of the cmodule EvenCounter structure refers
toM[Mo] .f xo, whereas the up field of the hmodule EvenCounter in the body of its hash

refers to hO_M.f xq, using the earlier hash.

cmodule M[M,] hO_M :
sig val f[f,]
sig val f[f,]
version hO_M

= struct let f[f,] = function (x,
end

{

: int -> int end

cmodule EvenCounter[M,] hl_EvenCounter

sig type tlto] : Type [...]
val uplupe] : to —> to

end (valuable, valuable)

sig type tlto]
val up[upo]

end

version hl_EvenCounter

= struct type tlto] =

end
where
hO_M =
hash(hmodule M : {}
sig val f[fo] : int -> int end
version myname
= struct
let f[f,] = function (%, :
end)

int [..
let uplupo] = function (xq :

: int -> int end (valuable, valuable)

:int) > xo + 2

{0

: Eq(hl_EvenCounter.t) [...]
: hl_EvenCounter.t -> hl_EvenCounter.t

.1
int) -> M[Mo].f %

int) -> xo + 2

= O#FBCF6A65CCD4F06635C5188503EA9B72

and

h1_EvenCounter =

hash (hmodule EvenCounter : {}
sig type tlto] : Type [...
val uplupe] : to —> to
end version myname
= struct
type tlto] = int [...]
let uplupy] = function (x
end)

: int) -> hO_M.f x,

= O#FS5EF4DE7D2DCBOESDS6EESAAD19AE3E9

Compilation: Fresh and cfresh modules, and imports

In the cfresh case, compilation constructs an h for the module randomly instead of by
hashing, but is otherwise similar. In the fresh case, the h for the module is constructed
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randomly at the start of its execution, whereupon it can be used to selfify and normalise
types just as in compilation.

Imports are treated broadly similarly, with a likespec rather than a withspec, resulting in
a compiled form

cimport;,.;, M)y : Sig, version vc like Sir by resolvespec = Mo

Term names

Supporting the various term name cases of §6 is basically straightforward: the expression
grammar for executing programs (though not for source programs) permits hash(h.x) 7, for
a name created on the basis of a module value field; ny, for a pure name; and the various
other hash forms. (There are complications with respect to coloured brackets for names
that we do not go in to here.)

12.2 Run-time configurations

The operational semantics is defined as a labelled transition system over configurations of
a single machine. These have the form

E, ; (Es, s, definitions, P)

where E, is a global type environment for fresh names; s and E; are the store and its
typing environment; definitions is a list of module values, imports, and marks; and P is a
multiset of named running threads (n : definitions e), mutexes (n : MX(b)), and condition
variables (n : CV). The type environments E, and E; are not required in a production
implementation. The E,, is not regarded as binding in the configuration body (in contrast to
n-calculus new binders) to avoid the need to consider alpha conversion of names occuring
within hashes and marshalled values.

Compiling a program generates a configuration E, ; (empty, &, empty, n
definitions e), where E, contains cfresh names created during compilation, and n is the
name of the initial thread. When this is executed the module definitions in definitions are
initialised sequentially, producing module values that are moved to the global definitions
of the configuration. Only when definitions is empty is the expression e executed. New
threads might be created during module initialisation or during execution of e; in either
case, they are created without per-thread module definitions, but must be in the scope of
the previously initialised global definitions.

Labels on transitions are used to record OS calls and returns, as well as requests for code
at a URI (needed when evaluating resolve specs). The operational semantics is defined
using various classes of evaluation context and reduction (or labelled transition) axioms.

12.3 Module field instantiation

By keeping the global module definitions (rather than substituting them away), we can
perform redex-time instantiation as in §4.3. The simplest case is that of a module field
reference M, .x that is in redex position, with a module value for M,

definition = cmoduley, oy, .sig, Vubs My : Sig = Str
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in the global definitions (suppose also that no type abstraction is involved). There will be
a value field (let x, = v?) € Str and we can simply instantiate My;.x by v?. More
generally, M; may be bound indirectly, via a chain of linked imports.

Otherwise, Mj; may be bound to an unlinked import (again, possibly via a chain of
linked imports) and the resolvespec of that import must be examined. This may involve
local linking or attempts to fetch new definitions from URIs; in either case, a link-ok
check is performed between the import and any module (or import) it might be linkable
to, involving checks that (1) the external identifiers match; (2) the interfaces match (we
check a syntactic subsignature relation that coincides with the full relation on flattened
signatures); (3) the versions match; and (4) the representations of types mentioned in the
import’s likespec match.

12.4 Marshalling

Marshalled values are strings that represent five-tuples
marshalled(E,, E, s, definitions, v, T)

where v? is the value itself, T is its (normalised) type, for use in the unmarshal type
equality check; definitions is a sequence of module definitions and imports; s and E;
are a location-closed store and store typing that are reachable from locations in v2 and
definitions; and E, is the fragment of the global name type environment needed for the
other components. The semantics does not specify in detail how these are represented as
strings; it is simply parameterised on a raw_unmarshal function from strings to such five-
tuples that includes all marshalled values in its range. A production implementation would
not need E,, or E;.

The interesting question in defining the marshalling semantics is what definitions are
shipped. Broadly, for a marshal“MK”(v?)T with respect to a mark “MK”, either there is
no mark “MK” in the global definitions (in which case an exception is raised) or we have
some

definitions = definitions; 3; mark “MK” ;3 definitions,

and mark “MK” ¢ definitions,. We prune definitions,, omitting any modules that are
not needed, but including all marks, to give deﬁnitions’z. We also calculate which modules
from definitions | are referred to by these or by the value v? (taking care that these can also
contain store locations and store locations can contain functions referring to modules).
For each of these modules (which must be in definitions;), we construct an import; the
final marshalled definitions’ is makeimports(definitions,) 3; definitions’. The import
constructed for a structure is a default form with a signature taken from that of the structure
and an exact-name version constraint. The import constructed for an import is essentially
an unlinked copy of the original import.

For example, recall the program from §4.2 that marshals a thunk referring to one module
above a mark and one below.

module Ml:sig val y:int end = struct let y=6 end
mark "MK"
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module M2:sig val z:int end = struct let z=3 end
I0.send( marshal "MK" (fun ()-> (M1.y,M2.z)) : unit->int*int)

The marshalled value is below. This includes an import for M1 and the module for M2, and a
function that refers to both. The former is automatically generated for the module binding
of M1 that is cut by the mark. It is constructed with an exact-name version constraint, here
to the hash-generated name h0_M1 of M1. The likespec of the import is also constructed
on the basis of the original module, though here it had no abstract types, so the resulting
likespec is empty.

marshalled (
{ }’
{cimport M1[M,] hO_M1
: sig wval y[x] : int end (valuable, valuable)

sig val y[x] : int end
version name = hO_M1
like struct end
by Here_Already

= unlinked

cmodule M2[My] hi_M2 : {}
sig wval z[x] : int end (valuable, valuable)
sig wval z[x] : int end

version hil_M2
= struct 1let z[x] = 3 end
oAb
{3

(function (x : unit) -> match x with () -> (M1[Mo].y, M2[Mo].2)),
unit -> int * int)

When a value of a type involving an abstract type is marshalled, type normalisation ensures
that a type involving a hash or name is included in the marshalled value, for example, for
the value of type unit->M1.t marshalled below the run-time type in the marshalled value
isunit -> hO_M1.t.

module Ml:sig type t val y:t end = struct type t=int let y=6 end
mark "MK"
marshal "MK" (fun ()-> Ml.y : unit->M1.t )

Here this value also refers to the code of M1, which is defined above the mark "MK" referred
to in the marshal, so an import of that module is generated and included in the marshalled
value as well. In this case, the import has a nontrivial likespec.

marshalled ({}, {

cimport M1[My] hO_MI

sig type t[t] : Type val y[x] : t end (valuable, valuable)

sig type t[t]l : Eq(hO_M1.t) val y[x] : hO_MI1.t end

version name = hO_M1

like struct type t[t] = int end

by Here_Already = unlinked }, {}, {},

(function (x : unit) -> match x with () -> M1[M].y),

unit -> hO_MI.t)
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12.5 Coloured brackets

Most calculi and languages with type abstraction (existentials or ML-style modules) either
have no operational semantics or have reduction rules that forget abstraction boundaries,
for example, with this rule for opening an existential package

let {t,x} =({T,e}as T')in e — {T/t,e/x}es

or analogous rules for modules that replace abstract type paths by their representation.

This style of semantics suffices for soundness, ensuring that values are not used during
execution at inappropriate concrete types (e.g., that integers are not used as functions).
However, there is a stronger property that interests us, namely, abstraction preservation:
for example, that values of type EvenCounter.t (see §5) are not manipulated at run-
time except by code from the EvenCounter module. While abstraction preservation does
indeed hold for the executions of well-typed source programs, thanks to static typing and
scoping rules, this cannot be seen by looking at the execution states once the reductions
have deleted all abstraction.

The Acute design involves many subtle issues relating to abstraction boundaries—when
a value marshalled within one abstraction boundary can be unmarshalled in another, the
semantics of withspec and likespec, etc. Accordingly, to establish greater confidence in
the internal coherence of the semantics, we arrange to preserve abstraction boundaries
throughout execution. Building on our previous work (Leifer et al. 2003a), which, in turn,
drew on (Grossman et al. 2000), we use coloured brackets to delimit subexpressions in
which sets egs of type equalities between abstract types and their representations can be
used. In addition, most type judgements, and the operational relations, are stated with
respect to such sets of equalities egs, reflecting which abstract types may be considered
transparent.

Coloured bracket expressions take the form [e]
by the grammar,

T

cqs» Where the type equations, generated

eqs = DMyt Tlht= Tlegs,eqs

record the representation types of abstract types (source-language projections from a
module identifier M, .t and compiled language projections from a module name h.t). From
the outside, [e]eTqS is of type T'; inside, the type equations egs can be used in typechecking
e, as formalised by the associated type rule:

E Fegs ok
Etg T : TYPE
Ebege:T

E l_eqs [e]Z;p’ . T
Note that brackets are not additive—the inner expression is typed with respect to egs’,
not the union of the ambient eqs and the eqs’; thus, the type equalities available when
evaluating code from a module are determined by the module itself, not the chain of
modules traversed on the call stack.

https://doi.org/10.1017/50956796807006442 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796807006442

Acute: High-level programming language design for distributed computation 599

Brackets and non-empty equation sets do not occur in user source-language programs,
and brackets could be erased in a production implementation. (Indeed, maintaining them
at run time would likely be very expensive, and even in our prototype implementation, we
added a “vacuous-bracket” optimisation that greedily suppresses semantically superfluous
brackets rather than have them be eliminated lazily, as defined in §16.11 of Sewell ef al.
2004.) In the semantics, brackets are introduced primarily when instantiating a module field
reference M),.x from a module M), that introduced some abstract types, as we illustrate
in the following example.

Consider the EvenCounter of §5, with fields start : EvenCounter.t and get
EvenCounter.t->int:

module EvenCounter :

sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
[...] [...]
end end

Expressions EvenCounter.start and EvenCounter. get will be instantiated, when they
appear in redex-position, to  [0]7-f_, = and [fun (x:int)->x]}-E27i0% respectively,
where h = hO_EvenCounter.t is the hash-generated module name of EvenCounter as
in §12.1.

The behaviour of brackets could be expressed either with a structural congruence or
with reductions. The former might be conceptually clearer, but the latter is easier to
implement, and so we adopt it to simplify our prototype implementation (in which we
do keep brackets at run time, to support the optional run-time typechecking of reachable
configurations). A further disadvantage of structural congruence is that it would complicate
progress and determinacy proofs by adding that obligation to show confluence with respect
to the directed reductions, something we were pleased to avoid in Leifer et al. (2003b).

Bracket reduction rules push brackets through values in cases where the outermost value
structure and the outermost type structure of the bracket type coincide, for example,

[of® o1 E Nt 1L [ofe T it

! "N T1#*T, 1T 1T,
[0 ot NI T S (10 021 ) 0 22

’ ST 1T, 1T
[Cn Uleqs U:qs ]e;s’ _’eqs Cn [qus ]gqls’ [Urqu ]eqs’

for other constructors C,, : Ty — ... > T,, —> 1)

As reduction can occur inside brackets, we index the reduction relation by a colour egs (as
seen above), which represents the equations provided by the innermost coloured bracket in
the surrounding evaluation context. The bracket reduction rules depend on the ambient
equations, as we see below, and so the notion of value is also dependent on a set of
equations: v¢? ranges over the expressions that are values at egs’, and v? ranges over
expressions that are values at the empty equation set.
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Bracket type revelation permits an abstract type that is transparent both inside and
outside coloured brackets to be replaced by its concrete representation:

[veas'|ht —egs [vess' 1T (ht~T)€ eqs n ht € dom(egs’)

eqs’ eqs’
while bracket elimination removes redundant nested brackets

[ A0 —egs [ 104, ht & dom(egs’)

(The side condition ensures that this rule does not form a critical pair with others, in
particular the revelation rule just above it.)

The semantics must also suitably bracket expressions used in substitutions to ensure they
retain their original type equations. One sees this in the rule for pushing brackets through
As:

T//
eqs’

T'—T"

[function (x : T') — e]]; —gs  function (x : 7") — [{[x]],./x }e]

To understand the extra brackets added in the substitution, consider any type derivation of
the left-hand side. The binder would be placed in the environment as x : 7". On the right-
hand side, it appears as x : 7', thus breaking type preservation if x were to be used in a
subexpression of e for which T and 7’ were not equivalent. The brackets in the substitution
prevent this by giving [x] equ, the type T, since T and 7’ are indeed equivalent in eqs’.
(Our colleague Gilles Peskine has proposed a different strategy (Peskine forthcoming),
involving adding colours to the bindings in type environments; at the expense of some
added complexity in the typing judgements, he can simplify some of the reduction rules, in
particular function application, for which he can dispense with the extra brackets present
in our system.)
In the reduction axiom for function application

(function (x : T) — e) 0" —y  {[v°]0 /x]}e

(and similarly for recursive functions), the value v°#* is well typed in eqs but not necessarily
in other colour contexts where x is used in e, so v°?® is protected by brackets in the
substitution on the right-hand side.

At several points it is necessary to take a value at some equations eqs and construct a
value that makes sense at the empty set of equations &, for example, when marshalling a
value, passing a value to a primitive operator or an OS call, etc.

Example

Below we show an example reduction sequence for the expression EvenCounter.get
EvenCounter.start. This is a top-level reduction sequence, with reduction steps at
the empty equation set &, but the derivations of several reductions involve reductions at
{h.t = int}, where h is the hash of EvenCounter.

EvenCounter [My] .get EvenCounter[My].start

— 4 instantiate EvenCounter [My] . get
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[(function (x : int) -> x) 1}° 7 i%,  EvenCounter([M].start

— 4 push brackets through lambda

(function (x:h.t) -> [[xI{’, _ 10y 175 - ine)) EvenCounter([Mo].start

— instantiate EvenCounter [My] . start
(function (x:h.t) -> [[x] ]{J;Ltt = int} :{l:r;btt = int}) (o] ?htt = int}

— substitute the value into the body of the function, rebracketing it to preserve its colour
L e b A R AR | AN

= substitution
(t £ro ]?htt = int} ]%t ?)lft = int} ?;Ltt = int}

— g bracket elimination for the inner two brackets

Lt Lo ’Ehtt = int} ]]{I;Ltt = int}]?}l:t = int}
— 4 bracket type revelation for the inner brackets
(L Lo ]{;m; = int} ]]{I;Ltt = int}]?;zf:t = int}

— 4 bracket pushing for the inner brackets through the constructor 0
[ [ 0 int int

{h.t = int}- {h.t = int}

— 4 bracket pushing for the inner brackets through the constructor 0
[ 0 int

{h.t = int}

— 4 bracket pushing for the inner brackets through the constructor 0
0

Store- and name-related bracket dynamics

Bracket handling for store and name operations is subtle. Notice, for example, that a
module may return a location to its caller at an abstract type, and allow the caller to store
abstract values in it, and then internally pull them out at the concrete one. Worse, a module
may create a ref cell, and return its location twice, once at an abstract type and once at a
concrete type. There seems no good reason to prohibit this arbitrary aliasing of pointers,
where each alias may have different type transparency depending on the locally available
eqs. In this respect, we differ from Grossman et al. (2000, §4.2).

In the value grammar we allow names and locations to be wrapped in brackets in order
to express the variety of type transparency that aliases of the name or location may have.
Thus, if we have a bracketted (!) or (:=), we pull the brackets outside, changing the type
annotations accordingly. The goal is to peel away the brackets surrounding a location so as
to expose the location itself to dereference or assignment:

!T [Ueqs’]zqfs/ref —>egs [!T’ Uegs,]g;g/
— ' p— ;
[U/eqs ]eTqS/ref =7 peds _)eqs [v/eqs = [Ueqs]equ]g;;:r

When bracket pulling through !7 it may not be immediately obvious why the bracket on
the right-hand side is at 77 and not 7'. The rule as written is correct (even though the type

https://doi.org/10.1017/50956796807006442 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796807006442

602 Sewell et al.

of the whole expression must be 7") because we may deduce from the left-hand side that
E by T = T', and it is necessary because we cannot deduce E Fegs T = T’, which
would be needed in order to type the alternative.

Values in the store are always with respect to the empty equation set (v2). When we
have exposed a raw location, !7 can dereference it:

Ey 5 (Es, (5,1 — 09), definitions, |7 1) —s En 3 (Es, (5,1 v?), definitions, v?)

(Note that the correctness of this rule relies on the fact that typing is monotonic with
respect to the egs set. By hypothesis, Ey, Es Fg 02 : Ty, where E¢(l) = Ty and E,, E +
eqs ok and E,,, E -4y To ~ T. This implies E,, E; ey v? : Ty, hence E,, E, Fegs v?
T as desired.)

For assignment, when we have exposed a raw location, :=7 prepares the value to be put
in the store by wrapping it in ambient equation set brackets; when that becomes a value
with respect to &, perhaps involving several bracket reductions, we can install it in the
store:

eqs eqs1T

/ T U _)eqsl :=/T [U eqs
E, 5 (Es, (s, — v'9), definitions, | :=lp v?) — . En 3 (Es, (s, v?), definitions, ())

=

For names, there is no other argument to which the brackets must be transferred; instead,
we define all operators that operate on names to ignore brackets surrounding those names.
It is unclear whether this is truly satisfactory, but in any case there is a basic tension:
the polytypic name operations can intrinsically be used to partially see through some
abstraction boundaries.

Type normalisation

An abstraction-preserving semantics sheds light on type normalisation and marshalling
within abstraction boundaries (c.f. §8.5). In any given type environment E and colour egs,
each semantic type may be represented by any member of an equivalence class of syntactic
types defined by the provable type equivalence relation E F,, 7 &~ T'. Our compilation
ensures that the syntactic type chosen is always the canonical type from the relevant
equivalence class. The canonical type is the one that is most concrete: it is the normal form
under the rewrites {X.t ~» T|(X.t~T) € eqs}, (M.t ~»T|M:Sig€E rnt:EQ(T) €
Sig}, and {t~» T|t:EQ(T)€ E}. This is important because in certain circumstances
the syntactic representative chosen for a semantic type is significant; especially, our
marshal/unmarshal type equality check is a check of equality of normalised types, not of
provable equality, so that type equations and brackets need not be maintained at run time.

Reflections on brackets

The bracket machinery required to make the semantics abstraction preserving was
nontrivial, so one may ask whether the benefits were worth the complexity. On the
whole, we believe they were the semantics makes clear, at all syntactic points in all
configurations reachable by reduction, what type equations are in scope. Furthermore, the
type preservation property for an abstraction-preserving semantics is a much stronger test
that it is internally coherent than it would be for an abstraction-erasing semantics. This
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(as realised by our run-time configuration typechecking) brought several misconceptions
to light during development of the language.

13 Implementation

The implementation is written in FreshOCaml (Shinwell et al. 2003), currently around
25,000 lines of code (we later also ported it to OCaml). It has been developed together
with the language definition. By and large, the definition has led, with extensions and
changes to the definition being followed by implementation work to match. This exposed
many ambiguities and errors in the semantics. In a few cases, the implementation led, with
changes propagated back into the definition afterwards. An automated testing framework
helped ensure the two are in sync, with tests of compilation and execution that can be rerun
automatically.

The main priority for the implementation was to be rather close to the semantics, to
make it easy to change as the definition changed (and easy to have reasonable confidence
that the two agree), while being efficient enough to run moderate examples. The runtime is
essentially an interpreter over the abstract syntax, finding redexes and performing reduction
steps as in the semantics. For efficiency, it uses closures and represents terms as pairs of
an explicit evaluation context and the enclosed term (roughly as in §1.3.1, Ex. 1 of Rémy
2002) to avoid having to re-traverse the whole term when finding redexes. Marshalled
values marshalled(E,, E;, s, definitions, e, T') are represented simply by a pretty-print of
their abstract syntax. Numeric hashes use a hash function applied to a pretty-print of their
body; it is thus important for this pretty-print to be canonical, choosing bound identifiers
appropriately. Acute threads are reduced in turn, round robin. A pool of OS threads is
maintained for making blocking system calls. A genlib tool makes it easy to import
(restricted versions of) OCaml libraries, taking OCaml .m11i interface files and generating
embeddings and projections between the OCaml and internal Acute representations. It
does not support higher order functions, which would be challenging in the presence of
concurrency.

To give a very crude idea of performance, the initialisation phase of the blockhead.ac
game performs about 220,000 steps (roughly corresponding to reduction steps) in 4.5
seconds, without run-time typechecking and with the vacuous-bracket optimisation. The
naive Fibonacci function of 25 involves about 1.6 million steps and takes 18 seconds,
again without run-time typechecking and with vacuous-bracket optimisation. Running the
same code in the OCaml toplevel takes 0.0056 seconds, so the Acute implementation
is around 3,000 times slower. Turning on run-time typechecking in Acute (and using
definitions_lib_small.ac) for Fibonacci of 15 takes the execution time from 0.16 to
495 seconds (11,000 steps), a slowdown of another factor of 3,000. These figures are all for
a 3.20-GHz Pentium 4. In practice, this level of performance has been reasonable for the
examples we have considered to date. The blockhead and minesweeper games are playable,
and three sample communication infrastructures, based on Nomadic Pict, Distributed
Join Calculus, and Ambients, all execute tolerably well. While it would be good if run-
time typechecking were feasible for these larger examples, it is, in fact, mostly useful for
more focussed test cases—for which one wishes to observe the individual reduction steps
in any case.

https://doi.org/10.1017/50956796807006442 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796807006442

604 Sewell et al.

14 Related work

There is extensive related work on module systems, dynamic binding, dynamic type tests,
and distributed process calculi. For most of this, we refer the reader to the discussion
in our earlier papers (Sewell 2001; Bierman et al. 2003; Leifer et al. 2003a), confining
our attention here to some of the most relevant distributed programming language
developments. Many address distributed execution, with type-safe interaction within a
single program that forks across the network, but there has been little work on distributed
development, on typed interaction between programs, or on version change. (Several
languages, including JoCaml and Nomadic Pict, have ad hoc “traders” for establishing
initial connections between programs.)

Early work on adding local concurrency to ML resulted in Concurrent ML (Reppy
1999) and the initial Facile, both based on the SML/NJ implementation. Facile was later
extended with rich support for distributed execution, including a notion of location and
computation mobility (Thomsen et al. 1996). dML (Ohori & Kato 1993) was another
distributed extension of ML, implementable by translation into remote procedure calls
without requiring communication at higher types. Erlang (Armstrong et al. 1996) supports
concurrency, messaging, and distribution, but without static typing.

The Pict experiment (Pierce & Turner 2000) investigated how one could base a
usable programming language purely on local concurrency, with a -calculus core instead
of primitive functions or objects. The Distributed Join Calculus (Fournet et al. 1996)
and subsequent JoCaml implementation (Conchon & Le Fessant 1999) modified the
m-primitives with a view to distribution, and added location hierarchies and location
migration. The runtime involved a complex forwarding-pointer distributed infrastructure
to ensure that, in the absence of failure, communication was location-independent.
(Polyphonic C#, Benton et al. 2002, adds the Join Calculus local concurrency primitives
to a class-based language.) Other works in the 1990s were also aimed at providing
distribution transparency, notably Obliq (Cardelli 1995), with network-transparent remote
object references above Modula3’s network objects.

Distribution transparency, while perhaps desirable in tightly coupled, reliable networks,
cannot be provided in systems that are unreliable or span administrative boundaries. Work
on Nomadic Pict (Sewell ez al. 1999; Unyapoth & Sewell 2001) adopted a lower level of
abstraction, showing how a wide variety of distributed infrastructure algorithms, including
one similar to that of the JoCaml implementation, could be expressed in a high-level
language; one was proved correct. The low level of abstraction means the core language
can have a clean and easily understood failure semantics; the work is a step toward the
argument of §2.

A distinct line of work has focussed on typing the entire distributed system to prevent
resource access failures, for Dnt (Hennessy et al. 2004) and with modal types (Murphy et al.
2004). Even where this is possible, however, one must still deal with low-level network
failure.

Work on Alice (Rossberg 2003; Rossberg et al. 2006) is perhaps closest to ours, with
ML modules, support for marshalling (“pickling”) arbitrary values, and run-time fresh
generation of abstract type names, but without rebinding, our distributed type and term
naming, or version control. Furuse and Weis support type-safe, but not abstraction-safe,
marshalling of non-functional values in OCaml (2000).
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Both Java and .NET have some versioning support, though neither is integrated with
the type system. Java serialisation, used in RMI, includes serialVersionUIDs for classes
of any serialised objects. These default to (roughly) hashes of the method names and types,
not including the implementation. Class authors can override them with hashes of previous
versions. Linking for Java, and in particular binary compatibility, has been studied by
Drossopoulou et al. (1999). The .NET framework supports versioning of assemblies (Dot03
2003). Sharable assemblies must have strong names, which include a public key, file
hashes, and a major.minor.build.revision version. Compile-time assembly references can
be modified before use by XML policy files of the application, code publisher, and machine
administrator; the semantics is complex (Buckley ez al. 2005).

Explicit versioning is common in package management, however. For example, both
RedHat and Debian packages can contain version constraints on their dependencies, with
numeric inequalities and capability-set membership. ELF shared objects express certain
version constraints using pathname and symlink conventions. Vesta (Heydon et al. 2006)
provides a rich configuration language.

As discussed in §3, Acute addresses the case in which complex values must be
communicated and the interacting runtimes are not malicious. Much other works apply
to the untrusted case, with various forms of proof-carrying code and wire-format ASN.1
and XML typing.

15 Conclusions and future work

We have addressed key issues in the design of high-level programming languages for
distributed computation, discussing the language design space and presenting the Acute
language. Acute is a synthesis of an OCaml core with several novel features: dynamic
rebinding, global fresh and hash-based type and term naming, versions, type- and
abstraction-safe marshalling, etc. It is not intended as a proposal for a production language,
but rather a vehicle for experimentation and a starting point for debate—several necessary
but relatively straightforward features have been omitted, and substantial problems remain
for future work (especially, some of the questions of §4). Nonetheless, we believe that our
examples demonstrate that the combination of the above features is much of what is needed
to bring the benefits of ML-like languages to the programming of large-scale distributed
systems, supporting typed, higher order, distributed computation.

The new constructs should also admit an efficient implementation. The two main
points are the tracking of run-time type information, and the implementation of redex-
time reduction and rebinding. For the first, note that an implementation does not need to
have types for all run-time values, but only (hashes of) the types that reach marshal and
unmarshal points. The second would be a smooth extension of OCaml’s existing CBV
implementation: OCaml currently maintains each field reference M. x as a pointer until it
is in redex position, whereupon it is dereferenced. Since field references inside a thunk
remain as pointers, they could easily be rebound with only modest changes to the run-
time. A preliminary experiment has confirmed that this is feasible (Billings 2005). This
involved adapting the OCaml bytecode run-time to support marshalling of closures and
simple rebinding, and replacing the Acute run-time by a simple compiler from a fragment
of Acute to this bytecode. Performance for local computation was roughly two to three
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times slower than OCaml bytecode, and there is doubtless much scope for optimisation.
Of course, compile-time inlining optimisations between parts of code separated by a mark
would no longer be straightforward. Our more recent work on HashCaml (Billings ef al.
2006) integrated core features of Acute into the OCaml implementation, with encouraging
results.

A great deal of future work remains. In the short term, more practical experience
in programming in Acute is needed, and there are unresolved semantic issues in
the interaction between explicit polymorphism, coloured brackets, and marshalling.
Straightforward extensions would ease programming: user-definable type operators and
recursive datatypes, first-order functors, and richer version languages. A more efficient
implementation run-time may be needed for larger examples. Improved tool support for
the semantics would be of great value, for meta-typechecking, for conformance testing,
and for proofs of soundness. More fundamentally:

e We must study more refined low-level linking for negotiation and for access control
(escaping the linear mark/module structure). This may demand recursive modules.

e The Acute operational semantics is rather complex, as is the definition of
compilation. In part, this seems inevitable—the semantics deals with dynamic
linking, marshalling, concurrency, thunkify, and colored brackets, all of which
are dynamically intricate (and few of which are covered by existing large-scale
definitions). In addition, our focus has been on a direct semantics of the user
language, rather than a combination of a simpler core and a translation, and Acute
has evolved through several phases. It should be possible to make the compilation
semantics less algorithmic by appealing explicitly to type canonicalisation. The
operational semantics for a language with lower-level linking might well be simpler
than that presented here, factoring out the algorithmic issues of resolvespecs, for
example.

e Subtyping is needed for many version-change scenarios, perhaps with corresponding
subhash relations (Deniélou & Leifer 2006). As mentioned in §10, the proper
integration of this with polymorphism is challenging, as is the question of what
subtype information needs to be propagated at run time.

e The Acute constructs for local concurrency are very low level, and it is unclear
what should be added. Join patterns, CML-style events, m-style channels, explicit
automata, and software transactional memory all are useful idioms.

e Some distributed abstractions, such as libraries of distributed references with
distributed garbage collection, may challenge the type system.

e The constructs we have presented should be integrated with support for untrusted
interaction.

A combination of what has been presented in Acute with solutions to these problems would
well support a wide range of distributed programming.
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APPENDIX

Acute syntax summary

This appendix gives most of the Acute syntax for reference. This is the fully type-annotated source
language, including sugared forms, together with other non-source constructs that are needed to
express the semantics. The implementation can infer many of the type annotations, and the mode,
withspec, likespec, vce, vne, and resolvespec annotations on module and import default to
reasonable values, if omitted. The internal parts M, ¢, and x of identifiers M), t,, and X, are
inferred by scope resolution. Novel source features are | highlighted with a light background ‘ and

novel non-source constructs are | highlighted with a dark background |

Abstract names Store locations / Standard library constants (with arity) x"

Kinds
K = TYPEEQ(T)

Types

T ::=int|bool|string|unit/char|void|T} * .. * T,|Ty + ..+ T,|T — T'|T list|T option|
T reflexnMy.t|t|V t.T|3t.T|
‘ T name|T tie|thread|mutex|cvar|thunkifymode|thunkkey| |thunk|et|h.t|n|

Constructors Cy ::= ... Cp = ..

Expressions

e ::= Cy|Cy eley ::eyl(ey, .., e,)|function mtch|fun mtch|l|op” e ... e,|x" e ... e,
x|My; x|if e; then e, else e;|while e¢; do e, done|e; && esleq || exler 3 ez
ey ex|!rele; :=7 e;lmatch e with mtch|let p =¢' in €’
let x : T pi.p, =¢' in ¢"|let rec x : T = function mtch in e|
let rec x : T p;.p, =€’ in ¢"|raise e|try e with mtch]|
At —ele T|{T,e}as T'|let {t,x} =e; in e

marshal ¢; e, : T|unmarshal e as 7| ‘

fresh |cfreshy |hash(X .x)7|hash(7, ;)7 |hash(T, e, e;) 7|

swap e¢; and e, in esle; freshfor ezlsupportTeH

M, @x|name_of _tie ¢|val of tie e| |

namecase ¢; with {t,(x;,x2)} when x; = e — e, otherwise — esle;]||es] ‘
nr|h.x|e; :=} exJmarshalz s e : T|RET7|[SLOWRET ;| TERM| |

op(op")" ey .. e,|op(x")" ey .. e,|[e]! ] |

resolve(M,;.x, M'y;/, resolvespec)|resolve_blocked(M,; .x, M'y;+, resolvespec) |
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Operators
op = refr|(=7)|(QULS)IE)IE)HNIIEIN)] = (@7)|(O)]
mod|land |lor|Ixor|lsl|Isr|asr|
create_thread [self |kill| create_mutex|lock|try_lock|unlock|
create_cvar|wait|signal|broadcast|exit 7|
‘ compare_name ;| thunkify| | unthunkify |
Matches and patterns
mtch = p —e|(p — e|mtch)
p = (:T)l(x :T)ColCy plpr 22 p2l(prs s a)l(p = T)

Signatures and structures

sig :==empty |val x, : T sig|type t; : K sig Sig ::=sig sig end
str :=empty |let x, : T py..p, = e str|type t, = T str Str ::=struct str end

Version and version constraint expressions

avne := n|N|h|myname avce ::= ahvceln
vne ;= avne|avne.vne dvce == avce|n—n'|-n|n—| * |avce.dvce
ahvce == N|h|My vce == dvce|lname = ahvce

Source definitions and compilation units

sourcedefinition ::=module mode M), : Sig version vne = Str withspec
import mode M, : Sig version vce likespec by resolvespec = Mo
mark MK
module M, : Sig = M)/

mode ::= hash|cfresh|fresh|hash!|cfresh!
withspec ::=empty | with legs
likespec ::=empty | like M, | like Str
resolvespec ::=empty |
STATIC_LINK, resolvespec|
HERE_ALREADY, resolvespec|
URI , resolvespec
Mo ::= M), |UNLINKED

compilationunit ::=empty |e|sourcedefinition 33 compilationunit |
includesource sourcefilename ;3 compilationunit |
includecompiled compiledfilename ;3 compilationunit

Compiled definitions and compiled units

definition ::= cmodule...|cimport....module fresh...import fresh.... mark MK
compiledunit ::=empty |e|definition ;3 compiledunit

Marshalled value contents (marshalled values are strings that unmarshal to these)

mv == marshalled(E,, E;, s, definitions, e, T)
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Module names (hashes and abstract names)

h  ::= hash(hmodule,; M : Sig, version vne = Str)|
hash(himport M : Sig, version vc like Str)|
n

X = Mylh

Expression name values

n = nr|hash(h.x)7 hash(7”,s)7 hash(7",s,n)r

(In the implementation all & and n forms can be represented by a long bit string taken from H,
ranged over by N.)

Type equation sets (the M, forms occur in the source language)

eqs = leqs,Xt~T

Type environments (for identifiers and store locations—not required at run-time in the
implementation)

E = empty|E,x : T|E,l : T ref|lE,t : K|E,M,, : Sig

Type Environments (for global names—not required in the implementation)

E, ::=empty |E,,n : TYPE|E,,n : T name|
E,,n : nmodule,,; M : Sig, version vne = Str|
E,,n : nimport M : Sig, version vc like Str

Processes

’ P ::= 0|(P{|Py)|n : definitions e|n : MX(b)|n : CV ‘

Single-machine configurations

’ config = E,; (Es, s, definitions, P) ‘
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