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Abstract

When p is a prime number, and k1, . . . , kt are natural numbers with 1≤ k1 < k2 < · · ·< kt < p, we

show that the simultaneous congruences
∑t

1x
k j
i ≡

∑t
1 y

k j
i mod p (1≤ j ≤ t) possess at most k1 · · · kt pt

solutions with 1≤ xi , yi ≤ p (1≤ i ≤ t). Analogous conclusions are provided when one or more of the
exponents ki is negative.
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1. Introduction

In a paper devoted to generalizations of Gauss sums published in 1932, Mordell [11]
obtained upper bounds for exponential sums over finite fields through estimates for
their mean values. Although eclipsed by Weil’s resolution of the Riemann hypothesis
for curves over finite fields (see [13]), Mordell’s approach motivates Vinogradov’s
use [12] of mean values in estimating Weyl sums and their generalizations, and as such
leaves an indelible mark on the literature. Weil’s estimates are worse than trivial when
the degree of the exponential sum is large compared to the associated prime modulus,
and in recent years much effort has been expended on deriving estimates that remain
nontrivial for larger degrees (see [1, 2, 4–7, 10, 16]). The bulk of this work revisits
Mordell’s original approach, and is based on an estimate for the number of solutions
of certain polynomial congruences equivalent to a mean value estimate (see [11,
Equation (16)]). Mordell’s proof of this estimate involves notions of independent
parameters and unstated elements of elimination theory that are vestiges of a bygone
era prior to the development of modern algebraic geometry. As such, the mathematical
reader of today will likely demand some renovation of this proof going beyond a lick
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262 T. D. Wooley [2]

of paint to a certain amount of structural reinforcement. Our object in this note is to
address the latter concerns, at the same time providing an estimate sharper than that
due to Mordell that is, in many respects, best possible. Improved estimates for certain
associated exponential sums are immediate corollaries of our sharper bounds.

Before announcing our conclusions, we must introduce some notation. When q is
a power of a prime number p, we denote by Fq the finite field having q elements.
Let t be a natural number, and suppose that k1, . . . , kt are positive integers. We write
Nt (q; k) for the number of solutions of the system of equations

x
k j
1 + · · · + x

k j
t = x

k j
t+1 + · · · + x

k j
2t (1≤ j ≤ t), (1.1)

with x ∈ F2t
q . In view of the relation aq

= a, valid for each element a of Fq , it is
apparent that there is no loss of generality in supposing that

1≤ k1 < k2 < · · ·< kt < q. (1.2)

Furthermore, since the characteristic of Fq is p, for each natural number l one has

(x l
1 + x l

2 + · · · + x l
t )

p
= x lp

1 + x lp
2 + · · · + x lp

t .

Thus we see that there is in addition no loss of generality in restricting attention to
systems (1.1) for which p - k j (1≤ j ≤ t).

THEOREM 1.1. Suppose that k1, . . . , kt are integers with p - k j (1≤ j ≤ t) and
satisfying the condition (1.2). Then

Nt (q; k)≤ k1k2 · · · kt q
t . (1.3)

In the situation in which q is a prime number, the estimate (16) of Mordell [11]
supplies the bound

Nt (q; k)≤
(2t)!

(t !)2
k1k2 · · · kt q

t .

Under the same circumstances, Cochrane and Pinner (see [6, Lemma 3.1]) provide
an estimate analogous to this upper bound of Mordell, save that the right-hand side
is multiplied by a factor 4/t2. Their proof avoids Mordell’s result, instead applying
a version of Bézout’s theorem for nonsingular solutions of polynomial congruences
due to the author [15], and as such provides a robust proof of Mordell’s estimate.
The conclusion of Theorem 1.1 is superior to both the estimates of Mordell and of
Cochrane and Pinner. Moreover, as is apparent from the discussion of [6, Exam-
ple 3.1], when k is a fixed natural number with k | (q − 1), and ki = ik (1≤ i ≤ t),
one has the lower bound

Nt (q; k)≥ k1k2 · · · kt (q
t
+ Ot (q

t−1)),

and thus inequality (1.3) is asymptotically sharp. In some sense, therefore, the
conclusion of Theorem 1.1 is best possible. We should note in this context that in the
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special case in which t = 2 and q is a prime number, the conclusion of Theorem 1.1 is
derived in [14, Lemma 7], and is also recorded rather later in [6, Lemma 3.2].

Consider next the situation analogous to that described in the preamble to
Theorem 1.1 in which the exponents k1, . . . , kt are now nonzero integers, but
potentially not all of the same sign. In this situation, we define Mt (q; k) to be the
number of solutions of the system of equations (1.1) with x ∈ (F×q )2t . Here, we may
suppose without loss of generality that

−q < k1 < k2 < · · ·< kt < q, (1.4)

that p - k j (1≤ j ≤ t), and further that

(q − 1) - (ki − k j ) (1≤ i < j ≤ t). (1.5)

Finally, it is convenient to put

li =

{
ki when ki > 0,

t |ki | when ki < 0,

and

mi =

{
ki when ki > 0,

(2t − 1)|ki | when ki < 0.

THEOREM 1.2. Suppose that k1, . . . , kt are integers with p - k j (1≤ j ≤ t) and
satisfying conditions (1.4) and (1.5). Then one has the estimates

Mt (q; k) ≤ m1m2 · · · mt (q − 1)t ,

Mt (q; k) ≤ 22t
|k1k2 · · · kt |(q − 1)t ,

Mt (q; k) ≤ (t + 1)l1l2 · · · lt (q − 1)t .

By way of comparison, when q is a prime number, estimate (16) of Mordell [11]
essentially provides the bound

Mt (q; k)≤
(2t)!

(t !)2
l1 · · · lt (q − 1)t . (1.6)

One may verify that the third estimate of Theorem 1.2 is superior to (1.6) for every
natural number t exceeding 1. Moreover, the second estimate of Theorem 1.2 will
be superior to the third whenever t > 2, and the number of the exponents ki that are
negative is more than about (2 log 2)t/log t . We should also remark that Lemma 3.2
of Cochrane and Pinner [6] establishes an estimate matching the first provided by
Theorem 1.2 in those special cases in which t = 2 and q is prime.

We finish by recording some consequences of Theorems 1.1 and 1.2 for exponential
sums. Let χ be a Dirichlet character modulo p, and write ep(z) for e2π i z/p.
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264 T. D. Wooley [4]

Then, when a ∈ (F×p )t , we define the Laurent polynomial f (x)= a1xk1 + · · · + at xkt ,
and also the mixed exponential sum

S(χ, f )=
∑

x∈F×p

χ(x)ep( f (x)).

COROLLARY 1.3. When k1, . . . kt are nonzero integers with p - k j (1≤ j ≤ t) and
satisfying 1≤ k1 < k2 < · · ·< kt < p, then

|S(χ, f )| ≤ (k1 · · · kt )
1/t2

p1−1/(2t). (1.7)

When instead −p < k1 < k2 < · · ·< kt < p and p - (ki − k j ) for 1≤ i < j ≤ t , then
one has the estimates

|S(χ, f )| ≤ (m1m2 · · · mt )
1/t2

p1−1/(2t),

|S(χ, f )| ≤ 22/t
|k1 · · · kt |

1/t2
p1−1/(2t), (1.8)

|S(χ, f )| ≤ (t + 1)1/t2
(l1 · · · lt )

1/t2
p1−1/(2t). (1.9)

For comparison, Theorem 1.1 of Cochrane and Pinner [6] provides the bound

|S(χ, f )| ≤ 22/t (l1 · · · lt )
1/t2

p1−1/(2t). (1.10)

This is weaker than estimate (1.9) in all cases, since t + 1< 4t for every positive
integer t . It is also weaker than (1.8) whenever there is a change of sign amongst the
ki . Finally, in circumstances where the ki are all of the same sign, estimate (1.7) yields
bounds superior to those of (1.10) by a factor 22/t . See [4, 5] for refinements in special
cases that may prove superior to the estimates of Corollary 1.3.

Although the conclusion of Theorem 1.1 is, in some sense, best possible, it is not
apparent what the truth may be for the analogous situation examined in Theorem 1.2,
in which the exponents are of mixed sign. Let w be a natural number, put t = 2w, and
write

a= (−w, 1− w, . . . ,−2,−1, 1, 2, . . . , w − 1, w).

Then by considering solutions x of (1.1) in which (xk
1 , . . . , xk

2w) is a permutation of
(xk

2w+1, . . . , xk
4w), one finds that, when q is large and k | (q − 1),

M2w(q; ka)≥ (2w)!k2w(q − 1)2w + Ok,w(q
2w−1).

Consequently, the bound

Mt (q; k)≤ Ct |k1 · · · kt |(q − 1)t

cannot hold in general when Ct <
( t
[t/2]

)
.
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2. Counting solutions of equations in finite fields

In this section we bound Nt (q; k) and Mt (q; k) by making use of rough data
available from modern versions of Bézout’s theorem, in combination with crude but
robust estimates for the number of Fq -rational points on algebraic varieties made
available only relatively recently. We begin with a direct consequence of Bézout’s
theorem. In this context, we write deg(W ) for the degree of a variety W , and Fq for
the algebraic closure of Fq .

LEMMA 2.1. Suppose that fi (x) ∈ Fq [x1, . . . , xs] is a polynomial of degree di for
1≤ i ≤ t . Let V1, . . . , Vh ⊂ As be the components of the complete intersection
defined by the system of equations fi (x)= 0 (1≤ i ≤ t). Then

h∑
i=1

deg(Vi )≤ d1d2 · · · dt .

PROOF. Let Y be a variety in Pn , and let H be a hypersurface not containing Y . Also,
let Z1, . . . , Zm be the irreducible components of Y ∩ H , and let i(Y, H ; Z j ) denote
the intersection multiplicity of the varieties Y and H along Z j . Then according to
Theorem 7.7 of Hartshorne [8, Ch. 1],

m∑
j=1

i(Y, H ; Z j )deg Z j = (deg Y )(deg H).

But i(Y, H ; Z j )≥ 1 for each j , and so it follows by induction that for the complete
intersection defined by the t polynomials in question,

h∑
i=1

deg(Vi )≤

t∏
i=1

deg( fi )= d1d2 · · · dt .

This concludes the proof. 2

Next we provide an upper bound for the number of Fq -rational points on a variety
of given degree and dimension.

LEMMA 2.2. Let V ⊂ As be an Fq -variety of dimension r ≥ 0 and degree δ. Then

card(V ∩ Fs
q)≤ δq

r

and
card(V ∩ (F×q )

s)≤ δ(q − 1)r .

PROOF. The first estimate is supplied by Lemma 2.1 of Cafure and Matera [3]. The
second estimate may be established using an immediate modification of the argument
of the proof of the latter lemma. For when 1≤ i ≤ s, we may take Wi ⊂ As to be
the Fq -hypersurface defined by xq−1

i − 1. Then V ∩ (F×q )s = V ∩W1 ∩ · · · ∩Ws ,
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and so from the argument underlying the proof of Proposition 2.3 of [9], we obtain
the inequality

card(V ∩ (F×q )
s)≤ deg(V ∩W1 ∩ · · · ∩Ws)≤ δ(q − 1)r .

This completes the proof of the lemma. 2

By combining Lemmas 2.1 and 2.2, we obtain an estimate for the number of
Fq -rational points on a complete intersection.

LEMMA 2.3. Suppose that fi (x) ∈ Fq [x1, . . . , xs] is a polynomial of degree di for
1≤ i ≤ t . Let V1, . . . , Vn be the components in Fs

q of the complete intersection V
defined by the system of equations fi (x)= 0 (1≤ i ≤ t), and denote by Ur the union
of the components V1, . . . , Vn having dimension not exceeding r. Then

card(Ur ∩ Fs
q)≤ d1d2 · · · dt q

r .

In the analogous situation in which we consider the complete intersection in (F×q )s ,
one has instead

card(Ur ∩ (F×q )
s)≤ d1d2 · · · dt (q − 1)r .

PROOF. Suppose that Vi1, . . . , Vil are the components of V having dimension not
exceeding r . Then Ur is the union of Vi1, . . . , Vil , so by first applying Lemma 2.2,
and then Lemma 2.1, we obtain

card(Ur ∩ Fs
q)≤

l∑
j=1

deg(Vi j )q
r
≤ qr

n∑
i=1

deg(Vi )≤ d1d2 · · · dt q
r .

The second conclusion of the lemma follows in like manner. 2

In order to discuss the singular locus of the complete intersection (1.1), we require a
lemma concerning the rank of matrices of Vandermonde type. Suppose that k1, . . . , kt
are distinct integers, and that s is a natural number with s ≥ t . When i1, . . . , it are
natural numbers with 1≤ i1 < i2 < · · ·< it ≤ s, we define the determinant

1i(x; k)= det(x
k j−1
il

)1≤ j,l≤t .

Also, when ki > 0 (1≤ i ≤ t), we define Xs(k) to be the set of points x ∈ Fs
q satisfying

the system of equations

1i(x; k)= 0 (1≤ i1 < i2 < · · ·< it ≤ s). (2.1)

Likewise, without conditions on k, we define Ys(k) to be the set of points x ∈ (F×q )s
satisfying the system of equations (2.1).

LEMMA 2.4.

(i) Suppose that k1, . . . , kt are integers with 1≤ k1 < · · ·< kt < q, and that s ≥ t .
Then the components of the complete intersection Xs(k) have dimension at most
t − 1.
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(ii) Suppose that k1, . . . , kt are integers with −q < k1 < · · ·< kt < q, and further
that (q − 1) | (ki − k j ) for no indices i and j with 1≤ i < j ≤ t . Then for s ≥ t ,
the components of the complete intersection Ys(k) have dimension at most t − 1.

PROOF. The proof of part (ii) of the lemma may be applied, mutatis mutandis, to
establish part (i); all that is required is to include 0 as a possible value of each
coordinate. We therefore consider only part (ii), and assume the hypotheses ambient
in that part of the lemma.

Consider the subset Ys(k)⊂ (F
×

q )
s defined by the vanishing of all the (t × t)-

determinants (2.1). The elements x of Ys(k) may be classified according to the di-

mension of the linear space spanned by the column vectors (x
k j−1
i )1≤ j≤t for 1≤ i ≤ s.

This space must have affine dimension at most t − 1 for every element x of Ys(k), for
if the dimension were larger, then one could find a nonvanishing (t × t)-determinant
1i(x; k), contradicting the definition of Ys(k).

Let m be an integer with 1≤ m ≤ t − 1, consider indices il (1≤ l ≤ m) with

1≤ i1 < i2 < · · ·< im ≤ s, (2.2)

and suppose that the column vectors (x
k j−1
il

)1≤ j≤t are linearly independent for 1≤
l ≤ m. Write Tm(i) for the set of points x ∈Ys(k) satisfying the property that

for 1≤ i ≤ s, all of the column vectors (x
k j−1
i )1≤ j≤t belong to the linear space

spanned by vectors of the above type, and let Y(m)
s (k) denote the union of the sets

Tm(i) over all choices of i satisfying (2.2). Then one finds that Ys(k) is the union
of Y(1)

s (k),Y(2)
s (k), . . . ,Y(t−1)

s (k). Moreover, for 1≤ m ≤ t − 1, the set Tm(i)
is determined by the nonvanishing of at least one (m × m)-determinant involving
the variables xi1, . . . , xim , together with the vanishing of all ((m + 1)× (m + 1))-
determinants obtained by adjoining another variable xi with i 6∈ {i1, . . . , im}. The
determinants in question here are of submatrices of the matrix

(x
k j−1
i )1≤ j≤t

1≤i≤s
.

It follows that each xi with i 6∈ {i1, . . . , im} satisfies a nontrivial polynomial equation
determined by xi1, . . . , xim . We therefore deduce that the components of Y(m)

s (k)
have affine dimension at most m, whence the components of Ys(k) have affine
dimension at most t − 1. This completes the proof of the lemma. 2

We are now equipped to establish the principal conclusions of this note.

PROOF OF THEOREM 1.1. Suppose that k1, . . . , kt are natural numbers such that
1≤ k1 < k2 < · · ·< kt . Recall from the discussion in the preamble to the statement
of Theorem 1.1 that we may suppose, without loss of generality, that kt < q and
p - ki (1≤ i ≤ t). Consider the complete intersection Z defined by the simultaneous

equations (1.1) with x ∈ F2t
q . Note that Z is defined by a system of t polynomial
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268 T. D. Wooley [8]

equations, of respective degrees k1, . . . , kt , in 2t variables. Let Z1, . . . , Zd be the
distinct components of Z . We claim that the affine dimension of each component Zi
is at most t . If such were not the case for the component Zi , then the intersection (1.1)
would be improper, and Zi would belong to the singular locus of Z . The latter is

contained within the set of points x ∈ F2t
q satisfying the simultaneous equations

det(k j x
k j−1
il

)1≤ j,l≤t = 0,

with 1≤ i1 < i2 < · · ·< it ≤ 2t . Since p - k j (1≤ j ≤ t), it follows that this singular
locus is contained in the set X2t (k) defined in the preamble to Lemma 2.4. It therefore
follows from Lemma 2.4(i) that the component Zi in question must have dimension at
most t − 1, contradicting our earlier hypothesis.

We have shown that the components Z1, . . . , Zd of Z each have dimension at
most t , and so we may infer from Lemma 2.3 that

Nt (q; k)= card(Z ∩ F2t
q )≤ k1k2 · · · kt q

t .

This completes the proof of Theorem 1.1. 2

PROOF OF THEOREM 1.2. Suppose now that k1, . . . , kt are nonzero integers with
−q < k1 < k2 < · · ·< kt < q for which (q − 1) - (ki − k j ) for 1≤ i < j ≤ t . There
is again no loss of generality in supposing that p - ki (1≤ i ≤ t). We suppose that
ki < 0 for 1≤ i ≤ u and ki > 0 for u + 1≤ i ≤ t . Here, there is no loss of generality in
supposing that u ≥ 1 and t > u, for otherwise the conclusion of Theorem 1.1 delivers
the desired estimate, if necessary by replacing xi by x−1

i for 1≤ i ≤ 2t . It is convenient
for the purpose of concision to introduce the notational device of writing

x̌i =
∏

1≤l≤2t
l 6=i

xl (1≤ i ≤ 2t).

In addition, we write κ j for −k j . Then by clearing denominators, it is apparent that
Mt (q; k) counts the number of solutions of the system

t∑
i=1

x̌
κ j
i =

2t∑
i=t+1

x̌
κ j
i (1≤ j ≤ u), (2.3)

t∑
i=1

x
k j
i =

2t∑
i=t+1

x
k j
i (u + 1≤ j ≤ t), (2.4)

with x ∈ (F×q )2t . Notice here that, in view of the definition of x̌i , the degree of the j th
equation in (2.3) is (2t − 1)|k j | = m j .

The system (2.3), (2.4) is defined by a system of t polynomial equations, of
respective degrees m1, . . . , mt , in 2t variables. Let Z be the complete intersection
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[9] Simultaneous congruences 269

defined by the system (2.3), (2.4) with x ∈ (F×q )2t , and let Z1, . . . , Zd be the distinct
components of Z . We claim that the affine dimension of each component Zi is at
most t . If such were not the case for the component Zi , then the intersection defined
by (2.3), (2.4) would be improper, and Zi would belong to the singular locus of Z .
Notice that if 1≤ j ≤ u, then

∂

∂yi

( t∑
l=1

y̌
κ j
l −

2t∑
l=t+1

y̌
κ j
l

)
= κ j y−1

i

( t∑
l=1

y̌
κ j
l −

2t∑
l=t+1

y̌
κ j
l − ω y̌

κ j
i

)
,

where ω is 1 for 1≤ i ≤ t , and −1 for t + 1≤ i ≤ 2t . Thus, when x satisfies (2.3),
(2.4), we find that

[
∂

∂yi

( t∑
l=1

y̌
κ j
l −

2t∑
l=t+1

y̌
κ j
l

)]
y=x
=−ωκ j x−1

i x̌
κ j
i =−ωκ j x

k j−1
i (x1x2 · · · x2t )

κ j .

Consequently, by considering the Jacobian determinants arising from the system (2.3),
(2.4), and noting that x1x2 · · · x2t 6= 0, we find that the singular locus of Z is contained
within the set of points x ∈ (F×q )2t satisfying the simultaneous equations

k1k2 · · · kt det(x
k j−1
il

)1≤l, j≤t = 0, (2.5)

with 1≤ i1 < i2 < · · ·< it ≤ 2t . According to Lemma 2.4(ii), the set of points
x ∈ (F×q )2t satisfying (2.5) has dimension at most t − 1, contradicting our earlier
hypothesis.

We have shown as before that the components Z1, . . . , Zd of Z each have
dimension at most t , and so we may infer from Lemma 2.3 that

Mt (q; k)= card(Z ∩ (F×q )
2t )≤ m1m2 · · · mt (q − 1)t .

This completes the proof of the first estimate of Theorem 1.2.
We next seek to establish the third estimate of Theorem 1.2. On this occasion, we

introduce the notational device of writing

x̂i =
∏

0≤l≤t
l 6=i

xl (1≤ i ≤ t)

and

x̂i =
∏

t+1≤l≤2t+1
l 6=i

xl (t + 1≤ i ≤ 2t).
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We again write κ j for −k j . Finally, we define L t (q; k) to be the number of solutions
of the system of equations

t∏
i=0

xi =

2t+1∏
i=t+1

xi , (2.6)

t∑
i=1

x̂
κ j
i =

2t∑
i=t+1

x̂
κ j
i (1≤ j ≤ u), (2.7)

t∑
i=1

x
k j
i =

2t∑
i=t+1

x
k j
i (u + 1≤ j ≤ t), (2.8)

with x ∈ (F×q )2t+2. Notice here that in view of the definition of x̂i , the degree of the
j th equation in (2.7) is t |k j | = l j .

Given a solution x of the system (1.1) counted by Mt (q; k), one has both
x1 · · · xt 6= 0 and xt+1 · · · x2t 6= 0. Then given x0 ∈ F×q , there is a unique element
x2t+1 in F×q for which equation (2.6) holds. Given such a (2t + 2)-tuple x, we may
multiply the equations of (1.1) with 1≤ j ≤ u by the nonzero factor (x0x1 · · · xt )

κ j

on the left-hand side, and by (xt+1 · · · x2t x2t+1)
κ j on the right-hand side. In view

of relation (2.6), this is the same nonzero factor, and so we obtain the equivalent
equations (2.7). In this way we find not only that the system (2.6)–(2.8) is satisfied,
but further that

L t (q; k)= (q − 1)Mt (q; k). (2.9)

Recall the definition of the integers li (1≤ i ≤ t) given in the preamble to the
statement of Theorem 1.2. Then keeping in mind the definition of x̂i , we find that
the system (2.6)–(2.8) is defined by a system of t + 1 polynomial equations, of
respective degrees t + 1 and l1, . . . , lt , in 2t + 2 variables. Let Z be the complete
intersection defined by (2.6)–(2.8) with x ∈ (F×q )2t+2, and let Z1, . . . , Zd be the
distinct components of Z . We claim that the affine dimension of each component Zi
is at most t + 1. If such were not the case for the component Zi , then the intersection
defined by (2.6)–(2.8) would be improper, and Zi would belong to the singular locus
of Z . Notice that if x satisfies (2.6), then[

∂

∂yi

( t∏
l=0

yl −

2t+1∏
l=t+1

yl

)]
y=x
= ωx−1

i

t∏
l=0

xl ,

where ω is 1 for 0≤ i ≤ t , and−1 for t + 1≤ i ≤ 2t + 1. Next, when 1≤ j ≤ u and x
satisfies (2.6)–(2.8), write

λ j (x)=
t∑

l=1

x̂
κ j
l =

2t∑
l=t+1

x̂
κ j
l .
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Then, when 1≤ i ≤ t ,[
∂

∂yi

( t∑
l=1

ŷ
κ j
l −

2t∑
l=t+1

ŷ
κ j
l

)]
y=x
=

[
κ j y−1

i

( t∑
l=1

ŷ
κ j
l − ŷ

κ j
i

)]
y=x

= κ j x−1
i λ j (x)− κ j x

k j−1
i (x0x1 · · · xt )

κ j .

Likewise, when t + 1≤ i ≤ 2t , one finds that[
∂

∂yi

( t∑
l=1

ŷ
κ j
l −

2t∑
l=t+1

ŷ
κ j
l

)]
y=x
=−κ j x−1

i λ j (x)+ κ j x
k j−1
i (x0x1 · · · xt )

κ j .

In addition, [
∂

∂y0

( t∑
l=1

ŷ
κ j
l −

2t∑
l=t+1

ŷ
κ j
l

)]
y=x
= κ j x−1

0 λ j (x).

We extend the definition of λ j (x) by setting λ j (x)= 0 for u + 1< j ≤ 2t . Then,
when 1≤ i1 < i2 < · · ·< it ≤ 2t , we define the determinant 4(i)=4k(x; i) by

4(i)= det
(

x−1
0 uT

v A

)
,

where u and v are the column vectors

u= (x−1
il
)1≤l≤t , v= (x−1

0 λ j (x))1≤ j≤t ,

and
A = (−x

k j−1
il

(x0x1 · · · xt )
κ j + x−1

il
λ j (x))1≤l, j≤t .

Given a singular point x ∈ (F×q )2t+2 on Z , the determinant 4k(x; i) must vanish for
1≤ i1 < i2 < · · ·< it ≤ 2t . In order to see this, one has only to note that x0x1 · · · xt =

xt+1 · · · x2t x2t+1 6= 0, and to observe that the Jacobian determinant, corresponding to
the partial derivatives indexed by x0, xi1, . . . , xit , vanishes if and only if 4(i)= 0.
For 1≤ l ≤ t , we may subtract the first column multiplied by x0x−1

il
from the (l + 1)th

column. In this way we find that

4(i)= det
(

x−1
0 O
v B

)
,

where
B = (−x

k j−1
il

(x0x1 · · · xt )
κ j )1≤l, j≤t .

But then 4(i)= x−1
0 det(B), and hence 4(i) vanishes if and only if

det(x
k j−1
il

)1≤l, j≤t = 0.
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From the above discussion, we find that if Zi has dimension exceeding t + 1, then
the set of points (x1, x2, . . . , x2t ) ∈ (F

×

q )
2t for which (x0, x1, . . . , x2t+1) lies on Zi

must be contained in Y2t (k). From Lemma 2.4(ii), this set has dimension at most
t − 1. But the equation (2.6) ensures that x0 is uniquely determined from x2t+1
together with a given choice of (x1, x2, . . . , x2t ), and so Zi can have dimension at
most (t − 1)+ 1= t . This contradicts our earlier hypothesis that dim(Zi ) > t + 1.

We have shown on this occasion that the components Z1, . . . , Zd each have
dimension at most t + 1, so by Lemma 2.3 we deduce that

L t (q; k)= card(Z ∩ (F×q )
2t+2)≤ (t + 1)l1l2 · · · lt (q − 1)t+1.

Consequently, relation (2.9) delivers the estimate

Mt (q; k)≤ (t + 1)l1l2 · · · lt (q − 1)t ,

and this confirms the third estimate of Theorem 1.2.
An alternative approach is required to establish the second estimate of Theorem 1.2.

Given a solution x ∈ (F×q )2t of the system (1.1), there is a unique element y ∈ (F×q )2t

for which xi yi = 1 (1≤ i ≤ 2t). Consequently, if we define Kt (q; k) to be the number
of solutions of the system of equations

t∑
i=1

(y
κ j
i − y

κ j
t+i ) = 0 (1≤ j ≤ u), (2.10)

t∑
i=1

(x
k j
i − x

k j
t+i ) = 0 (u + 1≤ j ≤ t), (2.11)

xl yl = 1 (1≤ l ≤ 2t), (2.12)

with x, y ∈ (F×q )2t , then one finds that

Kt (q; k)= Mt (q; k). (2.13)

Let Z be the complete intersection defined by the system (2.10)–(2.12) with
x, y ∈ (F×q )2t . Let Z1, . . . , Zd be the distinct components of Z . We claim that the
affine dimension of each component Zi is at most t . If such were not the case,
then the intersection defined by (2.10)–(2.12) would be improper, and Zi would
belong to the singular locus of Z . The Jacobian determinants corresponding to the
system (2.10)–(2.12) are not particularly simple to describe, and so we must introduce
some additional notation. The system (2.10)–(2.12) possesses 3t equations and 4t
variables. Let h1, . . . , ht be integers with 1≤ h1 < h2 < · · ·< ht ≤ 2t , and write
H= {h1, . . . , ht } and define I = I(H) by I = {1, . . . , 2t} \H. Then I is a set of
integers i1, . . . , it with 1≤ i1 < · · ·< it ≤ 2t . For each set H of the above type, we
define the Jacobian determinant ϒ(H)= ϒk(x;H) by

ϒ(H)= det


A O B
O C O
O O F
D E O

,
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where A, B, C are the diagonal matrices

A = diag(yh)h∈H, B = diag(xh)h∈H, C = diag(yi )i∈I(H),

and D, E , F are the generalized Vandermonde matrices

D = (k j x
k j−1
hl

) 1≤l≤t
u+1≤ j≤t

, E = (k j x
k j−1
il

) 1≤l≤t
u+1≤ j≤t

, F = (κ j y
κ j−1
hl

) 1≤l≤t
1≤ j≤u

.

Thatϒ(H) is indeed a Jacobian determinant may be seen by rearranging the equations
comprising (2.10)–(2.12) to correspond to the rows of ϒ(H), so that the first t
equations become xh yh = 1 (h ∈H), the next t become xi yi = 1 (i ∈ I(H)), and the
final t become the t equations of (2.10) and (2.11). Likewise, we rearrange the partial
derivatives so that the first t columns of ϒ(H) correspond to the partial derivatives
∂/∂xh (h ∈H), the second t correspond to the partial derivatives ∂/∂xi (i ∈ I(H)),
and the third t correspond to the partial derivatives ∂/∂yh (h ∈H). It follows, in
particular, that if Zi has dimension exceeding t , then its points satisfy the system of
equations xi yi = 1 (1≤ i ≤ 2t), and

ϒ(H)= 0 (H= {h1, . . . , ht } ⊂ {1, 2, . . . , 2t}).

One has

det(ϒ(H))= det(C) det

A B
O F
D O

.
For 1≤ l ≤ t , we may subtract xhl y−1

hl
times the lth column of the last determinant

from the (t + l)th column, without affecting its value. In this way, we find that

det(ϒ(H))= det(C) det

A O
O F
D G

,
where

G = (k j x
k j
hl

y−1
hl
) 1≤l≤t
u+1≤ j≤t

.

Making use of the relations xi yi = 1 (1≤ i ≤ 2t), we find that

det(ϒ(H)) = ±det(A) det(C) det(k j x
k j
hl

y−1
hl
)1≤l, j≤t

= ±k1 · · · kt

(∏
h∈H

xh

)( ∏
i∈I(H)

yi

)
det(x

k j−1
hl

)1≤l, j≤t .

From the above discussion, we find that if Zi has dimension exceeding t , then the
set of points x ∈ (F×q )2t for which (x, y) lies on Zi must be contained in Y2t (k). But
Lemma 2.4(ii) shows that the latter has dimension at most t − 1. Since for (x, y) ∈ Zi
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one has xi yi = 1 (1≤ i ≤ 2t), each coordinate yi is uniquely determined from xi ,
whence Zi itself can have dimension at most t − 1, contradicting our earlier
hypothesis.

The components Z1, . . . , Zd of Z therefore each have dimension at most t , whence
by Lemma 2.3 we obtain the estimate

Kt (q; k)= card(Z ∩ (F×q )
4t )≤ 22tκ1 · · · κuku+1 · · · kt (q − 1)t .

In view of (2.13), the second estimate for Mt (q; k) asserted by Theorem 1.2 follows
on recalling that κi =−ki . This completes our account of the proof of Theorem 1.2. 2

The conclusions of Corollary 1.3 follow at once from Theorems 1.1 and 1.2 by
means of the argument of Theorem 1.2 of Cochrane and Pinner [6]. Under the
hypotheses of Corollary 1.3, the estimate of Cochrane and Pinner shows that

|S(χ, f )|< (p − 1)1−2/t p1/(2t)M1/t2
,

where M = Nt (p; k) when ki > 0 (1≤ i ≤ t), and otherwise M = Mt (p; k). In the
first instance, Theorem 1.1 delivers the bound

|S(χ, f )|< p1−3/(2t)(k1k2 · · · kt pt )1/t2
= (k1 · · · kt )

1/t2
p1−1/(2t).

If the exponents ki are not all positive, then one obtains in like manner the remaining
estimates of Corollary 1.3 as immediate corollaries of Theorem 1.2.
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trinomial exponential sums’, J. Théor. Nombres Bordeaux 18 (2006), 59–72.

[6] T. Cochrane and C. Pinner, ‘An improved Mordell type bound for exponential sums’, Proc. Amer.
Math. Soc. 133 (2005), 313–320.

[7] T. Cochrane, C. Pinner and J. Rosenhouse, ‘Bounds on exponential sums and the polynomial
Waring problem mod p’, J. Lond. Math. Soc. (2) 67 (2003), 319–336.

[8] R. Hartshorne, Algebraic Geometry (Springer, Berlin, 1977).
[9] J. Heintz and C.-P. Schnorr, ‘Testing polynomials which are easy to compute’, in: Logic and

Algorithmic (Zurich, 1980), Monographies de l’Enseignement Mathématique, 30 (Univ. Genève,
Geneva, 1982), pp. 237–254.

https://doi.org/10.1017/S1446788710000121 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000121


[15] Simultaneous congruences 275

[10] A. A. Karatsuba, ‘Estimates of complete trigonometric sums’, Mat. Zametki 1 (1967), 199–208.
[11] L. J. Mordell, ‘On a sum analogous to Gauss’s sum’, Q. J. Math. Oxford 3 (1932), 161–167.
[12] I. M. Vinogradov, ‘New estimates for Weyl sums’, Dokl. Akad. Nauk SSSR 8 (1935), 195–198.
[13] A. Weil, ‘On some exponential sums’, Proc. Natl. Acad. Sci. USA 34 (1948), 204–207.
[14] T. D. Wooley, ‘On simultaneous additive equations, III’, Mathematika 37 (1990), 85–96.
[15] T. D. Wooley, ‘A note on simultaneous congruences’, J. Number Theory 58 (1996), 288–297.
[16] H. B. Yu, ‘Estimates for complete exponential sums of special types’, Math. Proc. Cambridge

Philos. Soc. 131 (2001), 321–326.

TREVOR D. WOOLEY, School of Mathematics, University of Bristol,
University Walk, Clifton, Bristol BS8 1TW, UK
e-mail: matdw@bristol.ac.uk, Trevor.Wooley@bristol.ac.uk

https://doi.org/10.1017/S1446788710000121 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000121

