HILBERT CUSP FORMS AND SPECIAL VALUES OF DIRICHLET SERIES OF RANKIN TYPE

by MIN HO LEE

(Received 31 July, 1996)

1. Introduction. Let K be a totally real number field of degree n over \mathbb{Q} , and let c be an integral ideal of a maximal order \mathcal{O}_K of K. Given a nonnegative integer j and a Hecke character on the group \mathbb{A}_K^{\times} of ideles of K, let $\mathscr{P}(\mathfrak{c}, \psi)$ denote the space of Hilbert cusp forms of holomorphic type on \mathscr{H}^n of weight j, level c and character ψ , where \mathscr{H}^n is the n-th power of the Poincaré upper half plane \mathscr{H} . Let g be an element of $\mathscr{P}_l(\mathfrak{c}, 1)$, where **1** is the trivial character. If $\mathbf{u} \in S_k(\mathfrak{c}, \psi)$, then the product gu is an element of $S_{k+l}(\mathfrak{c}, \psi)$, and therefore we can consider the linear map $\Phi_g: \mathscr{P}_k(\mathfrak{c}, \psi) \to \mathscr{P}_{k+l}(\mathfrak{c}, \psi)$ sending u to gu. Let $\Phi_g^*: \mathscr{P}_{k+l}(\mathfrak{c}, \psi) \to \mathscr{P}_k(\mathfrak{c}, \psi)$ be the adjoint of the linear map Φ_g with respect to the Petersson inner product.

In this paper we study the Fourier coefficients of $\Phi_g^* \mathbf{f}$ associated to a Hilbert cusp form \mathbf{f} of holomorphic type in $\mathscr{G}_{k+l}(\mathbf{c}, \psi)$. We define Dirichlet series of Rankin type associated to the Fourier coefficients of \mathbf{g} and \mathbf{f} and express the Fourier coefficients of $\Phi_g^* \mathbf{f}$ in terms of special values of such Dirichlet series. Such a problem was treated by Kohnen [1] in the case of elliptic modular forms. In order to consider the Hilbert modular case we use holomorphic projection operators and Poincaré series of two variables used by Panchishkin [3] to prove the algebraicity of a certain expression.

2. Hilbert automorphic forms. In this section we review Hilbert automorphic forms using the language of adeles (see e.g. [2], [3] for details). Let K be a totally real number field of degree n over \mathbb{Q} , \mathbb{A}_K its ring of adeles, \mathcal{O}_K a maximal order, and I_K the group of fractional ideals of K. Let G be an algebraic group over \mathbb{Q} such that $G(\mathbb{Q}) = GL(2, K)$. If $\hat{\mathbb{O}}_K$ is the profinite completion of \mathcal{O}_K , then $\hat{K} \cong \hat{\mathcal{O}}_K \times_{\mathbb{Z}} \mathbb{Q}$ is the subring of \mathbb{A}_K of finite adeles and we have $\mathbb{A}_K = K_{\infty} \times \hat{K}$, where K_{∞} is the subring of \mathbb{A}_K of adeles at infinity. If \mathbb{A} is the ring of adeles of \mathbb{Q} , then we have

$$G(\mathbb{A}) = GL(2, \mathbb{A}_{K}) = G_{\mathfrak{x}} \times GL(2, \hat{K}),$$

where $G_x = GL(2, K_x)$. Since K is totally real we can identify $G_x = GL(2, K_x)$ with $GL(2, \mathbb{R})^n$. Under this identification, let G_x^+ be the subgroup of $GL(2, \mathbb{R})^n$ consisting of elements $\alpha = (\alpha_1, \ldots, \alpha_n)$ with

$$\alpha_j = \begin{pmatrix} a_j & b_j \\ c_j & d_j \end{pmatrix} \in GL(2, \mathbb{R}), \quad \det \alpha_j > 0$$

for all j = 1, ..., n. Let \mathcal{H}^n be the *n*-fold power of the Poincaré upper half plane

$$\mathcal{H} = \{ z \in \mathbb{C} \mid \text{Im } z > 0 \}.$$

Then each element $\alpha \in G_{\infty}^+$ acts on \mathcal{H}'' by

$$\alpha \cdot z = (\alpha_1 z_1, \ldots, \alpha_n z_n) \in \mathcal{H}^n$$

Glasgow Math. J. 40 (1998) 71-77.

for $z = (z_1, \ldots, z_n) \in \mathcal{H}^n$, where

$$\alpha_j z_j = (a_j z_j + b_j)(c_j z_j + d_j)^{-1} \in \mathcal{H}, \qquad j = 1, \ldots, n.$$

For $k \in \mathbb{Z}$ and $z = (z_1, \ldots, z_n) \in \mathcal{H}^n$, we set

$$\mathbf{e}(z) = e^{2\pi i (z_1 + \ldots + z_n)}, \qquad \mathcal{N}(z)^k = z_1^k \ldots z_n^k.$$

Given a function $f: \mathcal{H}^n \to \mathbb{C}$ and $\alpha \in G_{\infty}^+$ we define the function $f|_k \alpha : \mathcal{H}^n \to \mathbb{C}$ by

$$(f|_k\alpha)(z) = \mathcal{N}(cz+d)^{-k}f(\alpha z)\mathcal{N}(\det \alpha)^{k/2}$$

for all $z \in \mathcal{H}^n$, where $cz + d = (c_1z_1 + d_1, \dots, c_nz_n + d_n) \in \mathcal{H}^n$.

Let $c \subset \mathcal{O}_K$ be an integral ideal, and for each place \mathfrak{p} of K let $c_{\mathfrak{p}} = c\mathcal{O}_{\mathfrak{p}}$ be its \mathfrak{p} -part. Let \mathfrak{d} be the different of K, and let $\mathfrak{d}_{\mathfrak{p}} = \mathfrak{d}\mathcal{O}_{\mathfrak{p}}$ be the associated local different at \mathfrak{p} . We define the open subgroup W = W(c) of $G(\mathbb{A})$ by

$$W=G^+_{\infty}\times\prod_{\mathfrak{p}}W(\mathfrak{p}).$$

where

$$W(\mathfrak{p}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, K_{\mathfrak{p}}) \mid b \in \mathfrak{d}_{\mathfrak{p}}^{-1}, c \in \mathfrak{d}_{\mathfrak{p}}c_{\mathfrak{p}}, a, d \in \mathcal{O}_{\mathfrak{p}}, ad - bc \in \mathcal{O}_{\mathfrak{p}}^{\times} \right\}.$$

If K_{+}^{\times} denotes the multiplicative group of all totally positive elements of K, then the quotient I_K/K_{+}^{\times} is the ideal class group of K. Let $h = |I_K/K_{+}^{\times}|$ be the class number of K, and let $\{t_1, \ldots, t_h\}$ be the set of ideles such that their images \tilde{t}_v in \mathcal{O}_K form a complete system of representatives for I_K/K_{+}^{\times} and

$$(t_{\nu})_{\infty} = 1, \qquad \tilde{t}_{\nu} + \mathfrak{m}_{0} = \mathcal{O}_{K}, \qquad \mathfrak{m}_{0} = \prod_{\mathfrak{q} \in \mathcal{S}_{K}} \mathfrak{q}$$

for $1 \le v \le h$, where S is a finite set of primes and S_K is the set of primes p dividing each element of S. Then we have

$$G(\mathbb{A}) = \bigcup_{\nu=1}^{h} G(\mathbb{Q}) x_{\nu} W = \bigcup_{\nu=1}^{h} G(\mathbb{Q}) x_{\nu}^{-\nu} W,$$

where $x_v = \begin{pmatrix} 1 & 0 \\ 0 & t_v \end{pmatrix}$ and *i* denotes the involution of 2 × 2 matrices given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\prime} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

DEFINITION 2.1. Let $c \subset \mathcal{O}_K$ be an integral ideal as above, and let $\psi: A_K^{\times} \to \mathbb{C}^{\times}$ be a Hecke character. A *Hilbert automorphic form* of weight k, level c, and character ψ is a function $\mathbf{f}: G(\mathbb{A}) \to \mathbb{C}$ satisfying the following conditions:

(i) $\mathbf{f}(s\alpha x) = \psi(s)\mathbf{f}(x)$ for all $x \in G(\mathbb{A}), s \in \mathbb{A}_K^{\times}$ and $\alpha \in G(\mathbb{Q})$;

(ii)
$$\mathbf{f}(xw) = \psi(w')\mathbf{f}(x)$$
 for $w \in W$ with $w_{\infty} = 1$;

(iii) $\mathbf{f}(xw(\theta)) = \mathbf{f}(x)e^{-ik(\theta_1 + \dots + \theta_n)}$ for all $x \in G(\mathbb{A})$ and

$$w(\theta) = (w_1(\theta_1), \ldots, w_n(\theta_n)) \in W,$$

72

where

$$w_j(\theta_j) = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}, \quad j = 1, \dots, n.$$

A Hilbert cusp form is a Hilbert automorphic form satisfying the additional condition that

$$\int_{\mathcal{A}_{K}/K} \mathbf{f}\left(\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}g\right) dt = 0$$

for all $g \in G(\mathbb{A})$.

DEFINITION 2.2. A Hilbert automorphic (resp. cusp) form of holomorphic type is a Hilbert automorphic (resp. cusp) form such that for any $x \in G(\mathbb{A})$ with $x_{\infty} = 1$ there exists a holomorphic function $g_x: \mathcal{H}^n \to \mathbb{C}$ with $\mathbf{f}(xy) = (g_x|_k y)(\mathbf{i})$ for all $y \in G_{\infty}^+$, where $\mathbf{i} = (i, \ldots, i) \in \mathcal{H}^n$. We denote by $\mathcal{M}_k(c, \psi)$ (resp. $\mathcal{S}_k(c, \psi)$) the space of such Hilbert automorphic (resp. cusp) forms of weight k, level c and character ψ of holomorphic type.

For
$$\mathbf{f} \in \mathcal{M}_k(c, \psi)$$
 and $1 \le v \le h$, set $f_v = gx_v^{-i}$, and let
 $\Gamma_v = \Gamma_v(c) = x_v W x_v^{-1} \cap G(\mathbb{Q})$
 $= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G^+(\mathbb{Q}) \mid b \in \tilde{t}_v^{-1} \mathfrak{d}^{-1}, c \in \tilde{t}_v \mathfrak{d}c, a, d \in \mathcal{O}_K, ad - bc \in \mathcal{O}_K^{\times} \right\}.$

Then f_v is a Hilbert modular form of weight k and character ψ for the congruence subgroup Γ_v . Thus it satisfies $f_v|_k \gamma = \psi(\gamma)f_v$, and has a Fourier expansion of the form

$$f_{\nu}(z) = \sum_{\xi} a_{\nu}(\xi) \mathbf{e}(\xi z),$$

where $0 < \xi \in \tilde{t}_v$ or $\xi = 0$. If $\mathcal{M}_k(\Gamma_v, \psi)$ denotes the space of Hilbert modular forms of weight k and character ψ for Γ_v , then the map $\mathbf{f} \mapsto (f_1, \ldots, f_h)$ determines a canonical isomorphism

$$\mathcal{M}_k(\mathfrak{c},\psi)\cong \bigoplus_{\nu=1}^h \mathcal{M}_k(\Gamma_\nu,\psi)$$

We shall identify $\mathcal{M}_k(\mathfrak{c}, \psi)$ with $\bigoplus_{\nu=1}^h \mathcal{M}_k(\Gamma_\nu, \psi)$ so that $\mathbf{f} = (f_1, \ldots, f_h)$. Similarly, we have

$$\mathscr{S}_{k}(\mathfrak{c},\psi)=\bigoplus_{\nu=1}^{h}\mathscr{S}_{k}(\Gamma_{\nu},\psi),\qquad \mathscr{S}_{k}(\Gamma_{\nu},\psi)=\mathscr{S}_{k}(\mathfrak{c},\psi)\cap\mathscr{M}_{k}(\Gamma_{\nu},\psi).$$

If $\mathbf{f} = (f_1, \ldots, f_h) \in \mathcal{G}_k(\mathfrak{c}, \psi)$ and $\mathbf{g} = (g_1, \ldots, g_h) \in \mathcal{M}_k(\mathfrak{c}, \psi)$, then the Petersson inner product is defined by

$$\langle \mathbf{f}, \mathbf{g} \rangle = \sum_{\nu=1}^{h} \int_{\Gamma_{\nu} \setminus \mathscr{H}^{n}} \overline{f_{\nu}(z)} g_{\nu}(z) \mathcal{N}(y)^{k} d\mu(z), \tag{1}$$

where $z = (z_1, ..., z_n), z_j = x_j + iy_j (1 \le j \le n)$, and

$$d\mu(z) = \prod_{j=1}^n y_j^{-2} \, dx_j \, dy_j$$

is a G^+_{∞} -invariant measure on \mathscr{H}^n .

DEFINITION 2.3. A C^{∞} Hilbert automorphic form of weight k, level c, and character ψ is a function $F: G(\mathbb{A}) \to \mathbb{C}$ satisfying the following conditions:

- (i) F satisfies the conditions (i), (ii) and (iii) in Definition 2.1.
- (ii) For each $x \in G(\mathbb{A})$ with $x_{\infty} = 1$ there exists a C^{∞} function $g_x: \mathscr{H}^n \to \mathbb{C}$ with $F(xy) = (g_x|_k y)(\mathbf{i})$ for all $y \in G_{\infty}$.

We shall denote by $\tilde{\mathcal{M}}_k(\mathfrak{c}, \psi)$ the space of all such C^{∞} Hilbert automorphic forms.

For $1 \le v \le h$, let $F_v = g_{xv'}$. Then F_v is a C^{∞} Hilbert modular form on \mathcal{H}^n of weight k and character ψ relative to the congruence subgroup Γ_v . In particular, it satisfies $(F_v|_k \gamma) = \psi(\gamma)F_v$ for each $\gamma \in \Gamma_v$ and has a Fourier expansion of the form

$$F_{\nu}(z) = \sum_{\xi \in \tilde{\iota}_{\nu}} a_{\nu}(\xi, y) \mathbf{e}(\xi x),$$

where the maps $y \mapsto a_v(\xi, y)$ are C^{∞} functions on

$$(\mathbb{R}_+)^n = \{y = (y_1, \dots, y_n) \mid y_j > 0 \text{ for all } j\}.$$

If $\mathcal{M}_k(\Gamma_v, \psi)$ denotes the space of all C^{∞} Hilbert modular forms of weight k and character ψ for Γ_v , then we have

$$\tilde{\mathcal{M}}_k(\mathfrak{c},\psi)\cong \bigoplus_{\nu=1}^h \tilde{\mathcal{M}}_k(\Gamma_\nu,\psi).$$

As in the case of $\mathcal{M}_k(\mathfrak{c}, \psi)$ and $\mathcal{G}_k(\mathfrak{c}, \psi)$, we shall identity $F \in \tilde{\mathcal{M}}_k(\mathfrak{c}, \psi)$ with its image (F_1, \ldots, F_h) in $\bigoplus_{\nu=1}^h \tilde{\mathcal{M}}_k(\Gamma_\nu, \psi)$ under this isomorphism. The Petersson inner product in (1) can be extended to elements $\mathbf{f} \in \mathcal{G}_k(\mathfrak{c}, \psi)$ and $F \in \tilde{\mathcal{M}}_k(\mathfrak{c}, \psi)$.

THEOREM 2.4. Let $F = (F_1, \ldots, F_h) \in \tilde{\mathcal{M}}_k(\mathfrak{c}, \psi)$ be a C^{∞} Hilbert automorphic form of moderate growth such that for each v the Fourier expansion

$$F_{\nu}(z) = \sum_{\xi \in \tilde{\iota}_{\nu}} a_{\nu}(\xi, y) \mathbf{e}(\xi x)$$

contains only terms with totally positive $\xi \in \tilde{t}_{v}$. For $1 \le v \le h$, we set

$$a_{\nu}(\xi) = \frac{(4\pi)^{n(k-1)} (\mathcal{N}\xi)^{k-1}}{\Gamma(k-1)^n} \int_{(\mathbb{R}_+)^n} a_{\nu}(\xi, y) \mathbf{e}(i\xi y) y^{k-2} \, dy, \tag{2}$$

where $\Gamma(k-1)$ is the value of the gamma function

$$\Gamma(s) = \int_0^\infty e^{-y} y^{s-1} \, dy$$

at s = k - 1. If $F^{H} = (F_{1}^{H}, ..., F_{h}^{H})$ with

$$F_{\nu}^{H}(z) = \sum_{0 < \xi \in \tilde{\iota}_{\nu}} a_{\nu}(\xi) \mathbf{e}(\xi z)$$

for each v, then F^{H} is a Hilbert automorphic form of holomorphic type in $\mathcal{M}_{k}(\mathfrak{c}, \psi)$ and

$$\langle g, F \rangle = \langle g, F^H \rangle \tag{3}$$

for all $g \in \mathcal{G}_k(\mathfrak{c}, \psi)$.

Proof. See Proposition 4.7 in [3, Chapter 4]. \Box

3. Fourier coefficients. Let $\mathbf{g} = (g_1, \dots, g_h)$ be an element of $\mathcal{G}_l(\mathfrak{c}) = \mathcal{G}_l(\mathfrak{c}, \mathbf{1}) = \bigoplus_{\nu=1}^h \mathcal{G}_k(\Gamma_\nu, \mathbf{1})$, where 1 denotes the trivial character, and let $\mathbf{u} = (u_1, \dots, u_h) \in \mathcal{G}_k(\mathfrak{c}, \psi) = \bigoplus_{\nu=1}^h \mathcal{G}_k(\Gamma_\nu, \psi)$. Then the product $\mathbf{g}\mathbf{u}$ is an element of $\mathcal{G}_{k+l}(\mathfrak{c}, \psi)$. Thus we can consider the linear map $\Phi_{\mathbf{g}}: \mathcal{G}_k(\mathfrak{c}, \psi) \to \mathcal{G}_{k+l}(\mathfrak{c}, \psi)$ sending $\mathbf{u} \in \mathcal{G}_k(\mathfrak{c}, \psi)$ to $\mathbf{g}\mathbf{u} \in \mathcal{G}_{k+l}(\mathfrak{c}, \psi)$. Let

 $\Phi_{\mathbf{g}}^*:\mathscr{G}_{k+l}(\mathfrak{c},\psi)\to\mathscr{G}_k(\mathfrak{c},\psi)$

be the adjoint of the linear map Φ_g with respect to the Petersson inner product. For $1 \le v \le h$ let $P_{k,v}^{\psi}$ be the Poincaré series of two variables given by

$$P_{k,v}^{\psi}(z,w,s) = \sum_{\gamma \in \Gamma_{v}} \psi(\gamma) J(\gamma,z)^{-k} |J(\gamma,z)|^{-2s} (\gamma s+s)^{k} |\gamma s+s|^{-2s},$$
(4)

for $z, w \in \mathcal{H}^n$, where $J(\gamma, z) = \det \gamma^{-1/2}(cz + d)$ for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_v$. The series in (4) converges absolutely and uniformly on any compact subset of $\mathcal{H}^n \times \mathcal{H}^n$ for $k + \operatorname{Re}(2s) > 2$ (see [3, p. 139]).

LEMMA 3.1. If
$$g_{\nu} \in \mathscr{G}_{l}(\Gamma_{\nu}, \mathbf{1})$$
 and $f_{\nu} \in \mathscr{G}_{k+l}(\Gamma_{\nu}, \psi)$, then the function
 $f_{\nu}(z)\overline{g_{\nu}(z)}\mathcal{N}(\operatorname{Im} z)'$

is a C^* Hilbert modular form in $\tilde{\mathcal{M}}_k(\Gamma_v, \psi)$ of moderate growth.

Proof. For each $\gamma \in \Gamma_{\nu}$ we have

$$f_{\nu}(\gamma z) = \psi(\gamma) J(\gamma, z)^{k+l} f_{\nu}(z), \qquad \overline{g_{\nu}(\gamma z)} = \overline{J(\gamma, z)^{l}} \overline{g_{\nu}(z)}.$$

Since $\mathcal{N}(\operatorname{Im} \gamma z)' = |J(\gamma, z)|^{-2l} \mathcal{N}(\operatorname{Im} z)'$, it follows that

$$f_{\nu}(\gamma z)\overline{g_{\nu}(\gamma z)}\mathcal{N}(\operatorname{Im} \gamma z)' = \psi(\gamma)J(\gamma, z)^{k}f_{\nu}(z)\overline{g_{\nu}(z)}\mathcal{N}(\operatorname{Im} z)'.$$

Furthermore, from the cusp conditions for f_v and g_v it follows that $f(z)\overline{g(z)}\mathcal{N}(\operatorname{Im} z)'$ is of moderate growth. \Box

PROPOSITION 3.2. Let $\mathbf{g} \in \mathcal{G}_{l}(\mathfrak{c}) = \mathcal{G}_{l}(\mathfrak{c}, \mathbf{1})$, $\mathbf{f} \in \mathcal{G}_{k+l}(\mathfrak{c}, \psi)$, and let $F^{H} \in \mathcal{G}_{k}(\mathfrak{c}, \psi)$ be the Hilbert automorphic form of holomorphic type associated to the C^{∞} Hilbert automorphic form

$$F(z) = \mathbf{f}(z)\overline{\mathbf{g}(z)}\mathcal{N}(\operatorname{Im} z)'.$$

Then we have $\Phi_{\mathbf{g}}^*(\mathbf{f}) = F^H$.

Proof. Let $\mathbf{f} = (f_1, \ldots, f_h) \in \mathcal{G}_{k+l}(\mathfrak{c}, \psi)$, $\mathbf{g} = (g_1, \ldots, g_h) \in \mathcal{G}_l(\mathfrak{c})$, and let $P_{k,v}^{\psi}$ be the Poincaré series given by (4). Then for $1 \le v \le h$ we have

$$\begin{split} \langle P_{k,\nu}^{\psi}(-\bar{z},w,s), (\Phi_{g}^{*}f_{\nu})(w) \rangle &= \langle \Phi_{g}P_{k,\nu}^{\psi}(-\bar{z},w,s), f_{\nu}(w) \rangle \\ &= \langle g_{\nu}(w)P_{k,\nu}^{\psi}(-\bar{z},w,s), f_{\nu}(w) \rangle \\ &= \int_{D_{\nu}} \overline{g_{\nu}(w)P_{k,\nu}^{\psi}(-\bar{z},w,s)} f_{\nu}(w) \mathcal{N}(v)^{k+l} d\mu(w) \\ &= \int_{D_{\nu}} \overline{P_{k,\nu}^{\psi}(-\bar{z},w,s)} (f_{\nu}(w)\overline{g_{\nu}(w)}\mathcal{N}(v)^{l}) \mathcal{N}(v)^{k} d\mu(w) \\ &= \langle P_{k,\nu}^{\psi}(-\bar{z},w,s), F_{\nu}(w) \rangle, \end{split}$$

where $w = (w_1, ..., w_n)$, $w_j = u_j + iv_j$ and $d\mu(w) = \prod_{j=1}^n v_j^{-2} du_j dv_j$. If $F^H = (F_1^H, ..., F_n^H)$, then by (3) we obtain

$$\langle P_{k,\nu}^{\psi}(-\bar{z},w,s), (\Phi_{g}^{*}f_{\nu})(w) \rangle = \langle P_{k,\nu}^{\psi}(-\bar{z},w,s), F_{\nu}^{H}(w) \rangle$$

Thus it follows from [3, p. 139] that

$$c(k,s)\Phi_{g}^{*}f_{v}(z) = c(k,s)F_{v}^{H}(z)$$

for $1 \le v \le h$, where

$$c(k,s) = 2^{n(2-s-k)}i^{-nk}\pi^n(k+s-1)^{-n}$$

Hence we have

$$\Phi_{\mathbf{g}}^* f_{\mathbf{v}}(z) = F_{\mathbf{v}}^{H}(z)$$

for all v, and therefore the proposition follows. \Box

By Proposition 3.2, given $\mathbf{f} \in \mathcal{G}_{k+l}(\mathfrak{c}, \psi)$, we have

$$\Phi_{\mathbf{g}}^*\mathbf{f} = F^H = (F_1^H, \dots, F_h^H) \in \mathcal{G}_k(\mathfrak{c}, \psi),$$

and each $F_{\nu}^{H} \in \mathcal{G}_{k}(\Gamma_{\nu}, \psi)$ has a Fourier expansion of the form

$$F_{\nu}^{H}(z) = \sum_{0 < \xi \in \tilde{\iota}_{\nu}} a_{\nu}(\xi) \mathbf{e}(\xi z).$$
(5)

Let $\mathbf{f} = (f_1, \dots, f_h)$ and $\mathbf{g} = (g_1, \dots, g_h)$ be as in Proposition 3.2 with

$$f_{\nu}(z) = \sum_{0 < \xi \in \tilde{t}_{\nu}} A_{\nu}(\xi) \mathbf{e}(\xi x), \qquad g_{\nu}(z) = \sum_{0 < \xi \in \tilde{t}_{\nu}} B_{\nu}(\xi) \mathbf{e}(\xi x)$$
(6)

for $1 \le v \le h$. Then for $\xi \in \tilde{t}_v$ we define the Dirichlet series $L_v(\mathbf{f}, \mathbf{g}, \xi, s)$ of Rankin type by

$$L_{\nu}(\mathbf{f}, \mathbf{g}, \xi, s) = \sum_{0 < \eta \in \tilde{i}_{\nu}} \frac{A_{\nu}(\xi + \eta)B_{\nu}(\eta)}{\mathcal{N}(\xi + \eta)^{s}}.$$
(7)

THEOREM 3.3. Let $\mathbf{f} \in \mathcal{G}_{k+l}(\mathfrak{c}, \psi)$ and $\mathbf{g} \in \mathcal{G}_l(\mathfrak{c})$ be as above, and let $a_v(\xi)$ be the Fourier coefficients of the component F_v^H of $\Phi_{\mathbf{g}}^*\mathbf{f}$ given in (5). Then we have

$$a_{\nu}(\xi) = \frac{\Gamma(k+l-1)^{n} (\mathcal{N}\xi)^{k-1}}{(4\pi)^{n/\Gamma} (k-1)^{n}} L_{\nu}(\mathbf{f}, \mathbf{g}, \xi, k+l-1)$$

for $1 \le v \le h$ and $0 \le \xi \in \tilde{t}_v$.

Proof. By (2) we have

$$a_{\nu}(\xi) = C \int_{(\mathbb{R}_+)^n} a_{\nu}(\xi, y) \mathbf{e}(i\xi y) y^{k-2} \, dy,$$

where

$$C = \frac{(4\pi)^{n(k-1)} (\mathcal{N}\xi)^{k-1}}{\Gamma(k-1)^n}.$$
(8)

Since $F_{\nu}(z) = f_{\nu}(z)\overline{g_{\nu}(z)}\mathcal{N}(\operatorname{Im} z)'$, if A_{ν} and B_{ν} are as in (6), we have

$$F_{\nu}(z) = \sum_{\nu} a_{\nu}(\xi, y) \mathbf{e}(\xi x)$$
$$= \sum_{\xi, \eta} A_{\nu}(\mu) \overline{B_{\nu}(\eta)} \mathbf{e}((\mu - \eta)x) \mathbf{e}(i(\mu + \eta)y) \mathcal{N}y'.$$

Using $\xi = \mu - \eta$ or $\mu = \xi + \eta$ we obtain

$$a_{\nu}(\xi, y) = \sum_{\eta} A_{\nu}(\xi + \eta) \overline{B_{\nu}(\eta)} \mathbf{e}(i(\xi + 2\eta)y) \mathcal{N}y'.$$

Hence it follows that

$$a_{\nu}(\xi) = C \int_{(\mathbb{R}_{+})^{n}} \sum_{\eta} A_{\nu}(\xi + \eta) \overline{B_{\nu}(\eta)} \mathbf{e}(2i(\xi + \eta)y) \mathcal{N}y^{k+l-2} dy$$
$$= C \sum_{\eta} A_{\nu}(\xi + \eta) \overline{B_{\nu}(\eta)} \int_{(\mathbb{R}_{+})^{n}} e^{-4\pi \sum_{j=1}^{n} (\xi_{j} + \eta_{j})y_{j}} \mathcal{N}y^{k+l-2} dy$$
$$= C \sum_{\eta} A_{\nu}(\xi + \eta) \overline{B_{\nu}(\eta)} \prod_{j=1}^{n} \int_{0}^{\infty} e^{-4\pi (\xi_{0} + \eta_{j})y_{j}} y_{j}^{k+l-2} dy_{j}.$$

Thus, using $v_i = 4\pi(\xi_i + \eta_i)y_i$ for $1 \le j \le n$, we have

$$a_{\nu}(\xi) = C \sum_{\eta} A_{\nu}(\xi + \eta) \overline{B_{\nu}(\eta)} \prod_{j=1}^{n} \left(\int_{0}^{\infty} e^{-v_{j}} v_{j}^{k+l-2} dv_{j} \right) \prod_{j=1}^{n} (4\pi(\xi_{j} + \eta_{j}))^{-k-l+1}$$
$$= C \sum_{\eta} A_{\nu}(\xi + \eta) \overline{B_{\nu}(\eta)} \Gamma(k+l-1)^{n} (4\pi)^{n(-k-l+1)} \mathcal{N}(\xi + \eta)^{-k-l+1}.$$

Hence the theorem follows from this and the relations (7) and (8). \Box

REFERENCES

1. W. Kohnen, Cusp forms and special values of certain Dirichlet series, Math. Z. 207 (1991), 657-660.

2. Y. Manin, Non-archimedean integration and Jacquet-Langlands p-adic L-functions, Russian Math. Surveys 31 (1976), 5-57.

3. A. Panchishkin, Non-archimedean L-functions of Siegel and Hilbert modular forms, Springer-Verlag, New York, 1991.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF NORTHERN IOWA CEDAR FALLS, IOWA 50614 U.S.A. e-mail: lee@math.uni.edu