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Abstract
An equidistant permutation array (EPA) is a v x r array defined on an r-set,
R, such that

(i) each row is a permutation of the elements of R and
(ii) any two distinct rows agree in A positions (that is, the Hamming

distance is (r—A)).
Such an array is said to have order v. In this paper we give several recursive
constructions for EPA's.

The first construction uses a resolvable regular pairwise balanced design of
order v to construct an EPA of order v. The second construction is a generali-
zation of the direct product construction for Room squares.

We also give a construction for intersection permutation arrays, which
arrays are a generalization of EPA's.

Subject classification (Amer. Math. Soc. (MOS), 1970): 05 B 30

1. Introduction

An equidistant permutation array (EPA), A(r, A; v), is a v x r array defined on the
elements of an r-set, R, such that

(i) each row is a permutation of the elements of R and
(ii) any two rows agree in A positions (that is, the Hamming distance between

any two rows is (r— A)).
Let R(r, A) be the maximum value for v such that there exists an A(r, A; v). Deza
(1976) has shown that R(r, A)sSmax(A+2,«2+/i +1), where « = r—A. Mullin and
Nemeth (to appear) have shown R(r, 1) </•(/•—4)— 1 for r>6. Recently, Heinrich
and van Rees (to appear) have shown that R(r, l)^2r—4 for r> 5. This implies

R(r,\)>2(r-X)-2 forr>5.

An EPA is said to be k-uniform, for some fixed natural number k, or, more
simply, uniform if each column of the array contains every element of R either k
times or zero times. For example, a Latin square of order n is an A(«,0;«). It
is also uniform since each element is contained in each column precisely once.
In this paper, recursive constructions for EPA's and for uniform EPA's are
described. These constructions are established using the language of regular
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2] Equidistant permutation arrays 21?

pairwise balanced designs and of generalized Room squares, both of which we now
lefine.

An (r, Xydesign is a collection, B, of subsets, called blocks, of a set V, whose
;lements are called varieties, such that

(i) each variety is contained in r blocks and
(ii) each (unordered) pair of varieties is contained in A blocks.

(r, A)-designs are also called regular pairwise balanced designs. An (r, A)-design is
said to be resolvable if the blocks of B can be partitioned into r sets, B1,B2, ...,Br,
called resolution classes, such that each variety is contained in precisely one block
of each resolution class. A resolvable (r, A)-design is said to be orthogonally
resolvable if the blocks can be partitioned into one collection of resolution classes,
Rv R2,..., Rr, and into a second collection of resolution classes C1} C2,..., Cr, such
that, for any i,j = 1,2, ...,r, \RinCi\ — Q or 1. An orthogonally resolvable
(r, A)-design defined on the elements of a r-set is denoted by OD(r, A; v) or, more
simply, by OD. Deza, Mullin and Vanstone (1976) have shown that the existence
of an OD(r, A; v) is equivalent to the existence of an A(r, A; v). An OD(r, A; v) is
said to be k-uniform or, more simply, uniform if every block has cardinality k.

A generalized Room square (GRS), S(r, A; v), of side r, index A and order v is
an r x r array of elements from a p-set, V, such that

(i) each cell of the array contains a subset (possibly empty) of V,
(ii) the subsets in each row and in each column are a partition of V and

(iii) every pair of elements of V is contained in precisely A of the cells of the
array.

Deza, Mullin and Vanstone (1976) have shown that the existence of an S(r, A; v)
is equivalent to the existence of an A(r, A; v) and an OD(r, A; v).

A Room square is an S(2n—1,1; 2«) in which every non-empty subset has
cardinality 2. Room squares have been extensively studied and it is known (see,
for example, Mullin and Wallis, 1975) that there is a Room square of side 2«—1
for all positive integers n except n = 2,3. There is no Room square of side 3 nor
of side 5. This implies there exists an A(2n — 1,1; 2«) for all positive integers n > 3,
as observed by Deza, Mullin and Vanstone (1976).

An S(r, A; y) is said to be k-uniform or, more simply, uniform if every non-empty
subset in the array has cardinality k.

Since the non-empty cells of a Room square are pairs, there exists a two-uniform
S(2n-1 ,1 ; 2n) for In-1 > 5 and thus a two-uniform A(2n-1,1; In) for 2 « - 1 > 5.

An S(r, A; v) is said to be full if it has no empty cells. A Latin square of order «
is a full S(«,0; n). An OD(r, A; v) is said to be full if each resolution class contains r
blocks or, equivalently, if | B\ = r2. An A(r, A; v) is said to be full if every column
contains all v of the elements. It is conjectured that if an S(r, A; v) is full, then it
is an S(r,0; r); that is, it is a Latin square of order r.

https://doi.org/10.1017/S1446788700020218 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020218


218 P. J. Schellenberg and S. A. Vanstone [3]

2. A recursive construction for uniform EPA's

Suppose we have a resolvable (r, A)-design, say R, on the set V such that no
resolution class has more than t blocks. Let S be an (s, ju)-design on a /-set
7"= {1,2, ...,t}. From these two designs we can construct an (rs, Av+(r— A)^>
design, say U, on the set Fas follows. Let Ax,A2,...,Ag, s^t,be the blocks of any
resolution class of R. Let As+1 = As+2 = ... = At = 0. We construct a new block
corresponding to each block, B, of S; namely, the block

ieB

This is repeated for each resolution class of R. The resultant set of blocks can be
shown to constitute U, an (rs, Xs+(r—A) ̂ -design on the set V.

It can also be shown that if S is resolvable, so is U. Furthermore, if 5 is an OD,
then so is U. Thus we have

THEOREM 2.1. If there is a resolvable (r, X)-design, R, on variety set V with at
most t blocks in any resolution class and if there is an orthogonally resolvable (s,[i)-
design, S, on t varieties then there is an orthogonally resolvable (rs,Xs+(r-X)[j,)-
design on variety set V.

COROLLARY 2.2. If the blocks ofR all have the same cardinality (that is, if R is a
BIBD), and ifS is a uniform OD, then U is a uniform OD as well.

This follows immediately from Theorem 2.1. The above construction and its
applications have been studied by Lonz and Vanstone (unpublished manuscript).

THEOREM 2.3. Ifn = 2fc>4, then there is a In-uniform OD(«2-l,2n—1; n2).

PROOF. For n = 2k>4, there is a BIBD with parameters (n2,n2+n,n+l,n, 1),
namely, the affine plane of order n. Since n is even and greater than 6, there is a
uniform OD(« — 1,1; n); namely a Room square of order n. Thus, by Corollary 2.2,
there is a 2n-uniform OD(«2— 1, In—1; n2).

We define a vxr intersection permutation array (IPA), A4(r, A; v), of degree t
and index A to be a set of v permutations on the symbols 1,2, ...,r such that any t
of the permutations agree in precisely A positions. Clearly an IPA of degree 2 is
an EPA. Not every IPA is an EPA as is demonstrated in the following example.

15342687
12543876
12354768 A3(8,l;5)
52341678
14235678

This is a 5 x 8 IPA of degree 3 and index 1, but it is not an EPA.
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Let v = R/r, A) be the maximum value of v such that there exists an A£r, A; »).
To the best of our knowledge, this function has not been investigated.

A regular t-wise balanced design, Dt(r, \;v) is a collection of subsets, called
blocks, of a f-set, V, in which every variety is contained in r blocks and every
f-set of varieties is contained in A, blocks. Let OD,(r, A,; v), or more simple ODj,
denote an orthogonally resolvable regular /-wise balanced design. A k-uniform,
or more simply a uniform, D,(r, \t; v) is a t-design (see Hughes, 1965) with para-
meters t-(v, k, A,). Since every block of a fc-uniform D,(r, A,; v), R, has cardinality k,
it follows (Hughes, 1965) that, for 1 < s<t, R is also a fc-uniform Ds(r, As; v) where

The corresponding result for non-uniform D4(r, A,; v)'s is not in general true.

The following theorem describes a construction for OD3's.

THEOREM 2.4. If there is a resolvable D3(r, A3; v), R, which is also a D2(r, \ ; v)
and each resolution class has cardinality at most t and if there is an OD3(s, y^; t), S,
which is also an OD2(s,n2; t) then there is an OD3(rj,%; v), U, which is also an
OD2(ry,i?2; v) where

7]3 = A3J+3(A2-A3) JLi2+(r-3A2+2A3) i t t 3

and
772= V + t r

PROOF. We use the construction described above which was used to establish
Theorem 2.1. Theorem 2.1 implies Uis an OD2(rs,r)2; v).

Now consider any three varieties of R, say {a, b, c}. There are A3 blocks which
contain all three of these elements. The corresponding A3 resolution classes, in
turn, give rise to A35 blocks in U which contain all three of a, b and c.

Now consider those resolution classes of R in which no block contains all three
of a, b and c but some block contains a pair of them. The number of such resolution
classes is 3^—X^. These resolution classes give rise to 3(Ag—A^/^ blocks in
U which contain all three of a, b and c.

Finally, we have those resolution classes in which a, b and c are in distinct blocks.
The number of such resolution classes is ( r—3\- \ -2 \^ and these classes, in turn,
give rise to (r—3A2+2A3)/x3 blocks of U which contain all three of a, b and c.

Thus, Uis also an OD3(rs,7)3; v) with

% = A3S+3(A2-A3)/x2+(r-3A2+2A3)/i3.

This completes the proof.

COROLLARY 2.5. If there is a resolvable k-uniform D3(r, \ ; v), R, and if there is an
l-uniform OD3(^, j ^ ; t), S, where t = v/k, then there is a kl-uniform OD3(rs, ij3; v), U.
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PROOF. Hughes (1965) has shown R is a A>uniform D2(r, X^; v) where
Aa = A3(i;-2)/(k-2) and Sis an /-uniform OD2(.y, /JL2; t) where /x2 = /n3(/-2)/(/-2).
Thus, by Theorem 2.4, Uis a A7-uniform OD3(rs,rj3; v) with % as denned above.
This completes the proof.

We now use this corollary to establish

THEOREM 2.6. Ifv = 2tk>6k, then there is a 2k-uniform

where

PROOF. If v = 2tk there is a resolvable ^-uniform

consisting of all A:-sets of a i>set (Baranyai, 1975). Each resolution class has 2/
blocks. Since 2t> 6, there is a Room square of side 2t—l which is a two-uniform
OD3(2f-l,0; 2?). Corollary 2.5 now yields the result.

3. Multiplying orders

In this section we describe a recursive construction for generalized Room squares
in which the order of the resultant square is the product of the orders of the two
component squares. This construction is a generalization of the recursive con-
struction of Stanton and Horton (1972) for Room squares.

We begin by establishing some notation. Suppose L1,L2,...,Lm is a set of
pairwise orthogonal Latin squares (POLS) of order s (see Ryser, 1963). Let
L± ©Z<2 © ... ®Lm denote the array obtained if the m POLS are superimposed to
form a single sxs array in which each cell contains an ordered set of m elements.
If L is a Latin square of order s and p is an arbitrary symbol, let (L,p) denote the
Latin square of order s obtained from L by replacing each element a in L by the
ordered pair (a,p). If R is a generalized Room square and/? is an arbitrary symbol,
let (R,p) denote the generalized Room square obtained from R by replacing each
element a of R by the ordered pair (a,p). Finally a generalized Room square
S(r, A; v) is said to have a complete set of singletons if there exist v cells in the
array each containing a single element with no two cells containing the same
element.
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THEOREM 3.1. If there is an S(r, A; v), T, which contains a complete set of singletons
and in which no cell has more than m elements, if there is an S(s, A; s), U, and if
there are m POLS of order s, L^,L2, ...,Lm, then there is an S(rs, A; vs), V.

PROOF. Let U, 1^,1^, ...,Lm all be defined on the same set of elements. V is
constructed from T by replacing each cell of T by an s x s array as follows. Each
empty cell of T is replaced by an s x s array of empty cells. The cell of the complete
set of singletons containing a is replaced by the sxs array (£/,a). Every other cell
contains a subset of elements. If {alta2, ...,ar} is in cell (ij), replace this cell by
(Li, a^ 0 (L2, aa) 0 ... 8 (Lr, ar).

Clearly each row and each column of V contains every element of V. Suppose a
and b are any two distinct elements from T and suppose x and y are two (not
necessarily distinct) elements from U. {a, b} is contained in A cells of T. Suppose
that in one such cell a and b are replaced by (Liy a) and (£,-, b), i ̂ j. Since L< and
Lj are orthogonal Li®Li contains the pair (x,y). Thus (L{, a) © (L,-, b) contains
((x,a),(y,b)). Thus each pair {(x,a),(y,b)}, a=£b, is in the array A times. Now
suppose x and y are two distinct elements of U. {x,y} is contained in A cells of U.
Thus, for any a of T, {(x,a),(y,a)} is contained in A cells of (U,a). Thus Fis an
S(rs, A; vs).

Heinrich and van Rees (to appear) have shown that if n > 5, there is an
S(n, 1; 2ra—4) with a complete set of singletons and the largest block is of length
n—2. For any odd integer s such that there are n—2 POLS of side s, there is an
S(s, 1; s), namely one obtained by deleting a variety from the Room square of
side s. Thus by Theorem 3.1, there is an S(ns, 1; 2ns—4s). Now, the Heinrich-Rees
result implies the existence of an S(ns, 1; 2ns—4) whose order is greater than
2ns-4s which suggests that Theorem 3.1 is of little or no use. However, it could
conceivably be of great use. For example, at present it is not known if there is an
S(«, 1; 2n) for any integer n> 1. McCarthy and Mullin (unpublished manuscript)
have shown that R(7,1) = 13 and R(8,1)^15. If just one S(«, 1; 2«) with a complete
set of singletons is constructed (say by a computer search) then Theorem 3.1
would imply the existence of an S(n, 1; 2n) for an infinity of values of n.

4. Some direct constructions

We conclude this paper by listing briefly some direct constructions for EPA's
which appear in the literature. These results establish lower bounds for R(r, A).

Heinrich and van Rees (to appear) use self-orthogonal Latin squares to establish

THEOREM 4.1. For r>5, there exists an A(r, 1; 2r—4).

Heinrich, van Rees and Wallis (preprint) use sets of POLS to establish

THEOREM 4.2. If there are X+2POLS of order n, then there is an
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The final result quoted here is a generalization by Vanstone (to appear) of a
result ofWoodall (unpublished manuscript). A group divisible design,

GD(v;k,m; A^),

is a collection of ^-subsets, called blocks, of a r-set, V, whose elements are called
varieties, such that

(a) V is partitioned into /w-subsets, called groups, and
(b) any pair of varieties from the same group is contained in \ blocks and any

pair of varieties from different groups is contained in \ blocks.
For the following result we require orthogonally resolvable (see Section 1) group

divisible designs. However, the blocks of these designs need not all have the same
cardinality nor need the groups all be of the same cardinality. Let us denote such
an orthogonally resolvable group divisible design by OGD(r; \,\;P,v) where
r is the number of resolution classes and

P = {P1,P2,...,P8}

represents the partition of Finto PX,P%,...,PS.

THEOREM 4.3. If there is an OGD (rx; \ , A2; P,v) and an OGD(r2; y^,^; P,v)
such that \+firy = AJ+JU^, then there is an A(rx+r2, A ^ / ^ ; v).

PROOF. The union of these two designs is an OD(rt+r2, ^+1^; v).

Woodall (unpublished manuscript) uses a complete set of POLS of order n
(that is, a set of (n-1) such POLS) to construct an OGD(3«; 0,3; P,n(n-l)).
In this design each group has cardinality n. He uses the design consisting of all
(«—2) subsets of an (fl-1) set to construct an OGD(«; n,n—3; P,n(n—\)). Then
Theorem 4.3 implies

THEOREM 4.4. If n is a prime power, there is an A(4«,n; n(n— 1)).

Vanstone (to appear) uses finite projective geometries to construct two ortho-
gonally resolvable group divisible designs with the required properties to estabhsh

THEOREM 4.5. Ifq is a prime power andn is a positive integer, there exists an

A ( q-\
 + g > q-\ +q'q ('g~

Observe that for n = 2, Theorem 4.5 is precisely Theorem 4.4.
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