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1. Introduction

In the theory of semigroups of linear operators in Banach spaces, the Laplace trans-
form plays an important role. Although the original proofs by Hille and Yosida (see, for
example, [3]) of the generation theorem for strongly continuous semigroups were oper-
ator theoretic and did not involve the inversion of the Laplace transform explicitly, the
importance of the latter soon became evident. The first attempt at the generation of
semigroups using the inversion of the Laplace transform is due to Phillips [6]. The clas-
sical reference on the inversion of the Laplace transform is [8]. This reference deals with
scalar-valued functions and it was already remarked in [3] that it does not carry over to
arbitrary Banach space-valued functions (although it does hold for resolvents of densely
defined linear operators). A breakthrough came about in 1987 with the publication of
Arendt’s paper [1] (see also the systematic account given in the monograph [2]). In this
paper, the following characterization of Banach space-valued Laplace–Stieltjes transforms
is proved, using well-known results of Widder in the scalar case.

Theorem 1.1. Let r : (0, ∞) → X be a C∞ function. The following assertions are
equivalent.

(i) supλ>0 supn∈N0
‖λn+1r(n)(λ)/n!‖ � M .

(ii) There exists a function F : [0, ∞) → X such that F (0) = 0 with ‖F (t+h)−F (t)‖ �
Mh, t � 0, h � 0, and r(λ) =

∫ ∞
0 λe−λtF (t) dt, λ > 0.
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This result was applied to the abstract Cauchy problem leading to the introduction of
the concept of exponentially bounded n-times integrated semigroups. The Schrödinger
equation in Lp(RN ), p �= 2, is one example in which the classical semigroup theory fails
completely. Arendt’s result is by now the most general generation theorem that depends
solely on the behaviour of the resolvent on the real line.

Our main goal is to establish a real variable characterization of the local Laplace
transform. The concept of local Laplace transform was introduced and studied in Ljubich
[4] (see also [5]) in connection with the abstract Cauchy problem. A function F : (0, ∞) →
C is a local Laplace transform on [0, τ ] if there exist ϕ : [0, τ ] → C and ε : (0, ∞) → C

such that

F (λ) =
∫ τ

0
e−λtϕ(t) dt + ε(λ) with lim sup

λ→∞

1
λ

ln |ε(λ)| � −τ.

If ε vanishes identically, F is called the finite Laplace transform on [0, τ ].
Given a function F , we obtain conditions for such a representation to be possible

for some ϕ ∈ Lp[0, τ ]. The result is then lifted to the Banach space setting to give a
analogue of Theorem 1.1. In the scalar case and for 1 < p � ∞ the necessary and
sufficient conditions on F to be a finite Laplace transforms read as follows,

lim
λ→∞

F (λ) = 0,

and there exist constants Mτ and Lτ such that for all k ∈ N
+

‖Lk[F ]‖Lp[0,τ ] � Mτ and sup
0<µ<k/τ

|τ−kekµF (k)(µ)| � Lτ . (1.1)

Here,

Lk[F ](λ) =
(−1)k

k!

(
k

λ

)k+1

F (k)
(

k

λ

)

are the Widder operators. Application of the vector-valued version of this result is less
easy, since in this case, the relationship between the resolvent and the local Laplace
transform is less simple. We achieve the result by using the Phragmén–Doetsch inver-
sion formula. Details of applications to the abstract Cauchy problem will be given in a
subsequent paper.

The plan of the paper is as follows. In § 2, we give a characterization of local Laplace
transforms first for scalar-valued functions and then for Banach space-valued functions.
This result seems to be new even in the scalar case. We also obtain a characterization of
vector-valued finite Laplace transforms in terms of vector-valued moment sequences. As
a consequence, we obtain a new characterization of nilpotent semigroups.

2. The finite and local Laplace transforms

In this section we investigate finite and local Laplace transforms, which are the main tools
for the proof of the Hille–Yoshida Theorem for local convoluted semigroups. We provide
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characterizations of functions which are finite Laplace transforms of scalar-valued Lp-
functions. From this we derive the characterization of functions which are finite or local
Laplace–Stieltjes transforms of vector-valued Lipschitz-continuous functions. This result
is needed in subsequent sections. As an easy corollary we also obtain a characterization
of nilpotent semigroups.

Let us first recall the definitions of local and finite Laplace transforms, which are taken
from [4].

Definition 2.1. Let τ > 0, ω ∈ R. A function F : (ω, ∞) → X is called a finite
Laplace transform on [0, τ ] if there exists an integrable function f : [0, τ ] → X with

F (λ) =
∫ τ

0
e−λtf(t) dt, λ > ω.

F is called a finite Laplace–Stieltjes transform if there exists a function φ : [0, τ ] → X of
bounded variation with

F (λ) =
∫ τ

0
e−λt dφ(t), λ > ω.

If there exists a finite Laplace or Laplace–Stieltjes transform Φ such that F can be written
as

F (λ) = Φ(λ) + ε(λ), λ > ω,

with

lim sup
λ→∞

ln ‖ε(λ)‖
λ

� −τ,

then F is called a local Laplace transform or local Laplace–Stieltjes transform, respec-
tively.

A function F : [0, T ) → X is called a local Laplace or Laplace–Stieltjes transform on
[0, T ) if F is a local Laplace or Laplace–Stieltjes transform on [0, τ ] for each 0 < τ < T .

We note that ∫ τ

0
e−λt dφ(t) = e−λτφ(τ) − φ(0) + λ

∫ τ

0
e−λtφ(t) dt

also exists if φ is continuous.
Let us clarify some notation before we start with the characterization of finite Laplace–

Stieltjes transforms of scalar-valued functions.
By C∞[0, τ ] and C∞([0, τ ], X) we denote the space of infinitely differentiable functions

on [0, τ ] with values in C or X, respectively. The Widder operators Lk[F ] of a function
F ∈ C∞([0, τ ], X) are given by

Lk[F ](λ) =
(−1)k

k!

(
k

λ

)k+1

F (k)
(

k

λ

)
, λ > 0.

A function φ : [0, τ ] → X of bounded variation is called normalized if φ(0) = 0 and
φ(t) = (φ(t−)+φ(t+))/2 for all t ∈ (0, τ). By N we denote the natural numbers excluding
zero and we write N0 instead of N ∪ {0}.
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Proposition 2.2. Let F ∈ C∞(0, ∞). Then the following two statements are equiva-
lent.

(i) There exists a function φ : [0, τ ] → C of bounded variation such that

F (λ) =
∫ τ

0
e−λt dφ(t), λ > 0.

(ii) There exist constants Mτ and Lτ so that for all k ∈ N∫ τ

0
|Lk[F ](λ)| dλ < Mτ and sup

λ>τ
|τ−keτk/λF (k)(k/λ)| � Lτ .

For the proof of this proposition we need some lemmas.

Lemma 2.3. Let k ∈ N0. If 0 < τ < λ, then

sup
0�t�τ

tke−tk/λ = τke−τk/λ.

Proof. There is nothing to prove if k = 0. Let k ∈ N. Then

d
dt

(tke−tk/λ) = ktk−1e−kt/λ(1 − t/λ) � 0

for 0 � t � λ. Hence, t �→ tke−tk/λ is increasing in [0, λ]. Therefore, if τ � λ, it is also
increasing in [0, τ ], and the conclusion follows. �

Below we assume that τ is a fixed positive number.

Lemma 2.4. Let F ∈ C∞(0, ∞). If there exists Lτ > 0 such that

sup
k∈N

sup
λ>τ

|τ−keτk/λF (k)(k/λ)| � Lτ ,

then

sup
k∈N

∫ ∞

τ

|Lk[F ](λ)| dλ � Lτ .

Proof. ∫ ∞

τ

|Lk[F ](λ)| dλ =
∫ ∞

τ

1
k!

(
k

λ

)k+1∣∣∣∣F (k)
(

k

λ

)∣∣∣∣ dλ

� Lτ
1

(k − 1)!
(kτ)k

∫ ∞

τ

λ−k−1e−kτ/λ dλ

� Lτ
1

(k − 1)!

∫ ∞

0
µk−1e−µ dµ = Lτ .

�
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Lemma 2.5. Let F ∈ C∞(0, ∞). If there exists Lτ > 0 such that

sup
k∈N

sup
λ>τ

|τ−keτk/λF (k)(k/λ)| � Lτ ,

then, for all τ0 > τ ,

lim
k→∞

∫ ∞

τ0

|Lk[F ](λ)| dλ = 0.

Proof. Let σ = τ−1 and σ0 = τ−1
0 . Then the substitution λ = 1/µ yields

∫ ∞

τ0

|Lk[F ](λ)| dλ =
1
k!

∫ ∞

τ0

(
k

λ

)k+1∣∣∣∣F (k)
(

k

λ

)∣∣∣∣ dλ

� Lτ
1
k!

(
k

σ

)k+1 ∫ σ0

0
µke−kµ/σ

(
σ

µ

)
dµ

= Lτ
1
k!

(
k

σ

)k+1 ∫ ∞

0
µke−kµ/σψ(µ) dµ,

with ψ(µ) = χ[0,σ0](µ) · σ/µ. Hence [8, Theorem VII.3c] gives

lim
k→∞

∫ ∞

τ0

|Lk[F ](λ)| dλ � ψ(σ) = 0,

since σ0 < σ. �

Now we are in the position to prove Proposition 2.2.

Proof of Proposition 2.2. (i) ⇒ (ii). If we assume (i), then it follows from [8, The-
orem VII.12a] that

sup
k∈N

∫ τ

0
|Lk[F ](λ)| dλ � sup

k∈N

∫ ∞

0
|Lk[F ](λ)| dλ � Var(φ).

Here, Var(φ) denotes the total variation of φ. Moreover, by Lemma 2.3,

sup
λ>τ

∣∣∣∣τ−kekτ/λF (k)
(

k

λ

)∣∣∣∣ � τ−kekτ/λ

∣∣∣∣
∫ τ

0
tke−kt/λ dφ(t)

∣∣∣∣ � Var(φ).

(ii)⇒ (i). From Lemma 2.4 it follows that (ii) implies∫ ∞

τ

|Lk[F ](λ)| dλ � Lτ , k ∈ N.

Consequently, ∫ ∞

0
|Lk[F ](λ)| dλ � Lτ + Mτ .
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Therefore, it follows from [8, Theorem VII.12a] that there exists a normalized function
ψ : [0, ∞) → C of bounded variation such that

F (λ) =
∫ ∞

0
e−λt dψ(t), λ > 0.

Now, [8, Theorem VII.7a] implies

ψ(t) − ψ(0+) = lim
k→∞

∫ t

0
Lk[F ](λ) dλ, t > 0.

Consequently, if τ < t0 < t1, we obtain from Lemma 2.5

ψ(t1) − ψ(t0) = lim
k→∞

∫ t1

t0

Lk[F ](λ) dλ = 0,

i.e. ψ is constant on (τ, ∞). Hence, letting

φ(t) =

{
ψ(t) if 0 � t < τ,

ψ(τ+) if t = τ,

we obtain
F (λ) =

∫ τ

0
e−λt dφ(t).

�

We can now prove the following characterization of finite Laplace transforms of scalar-
valued Lp-functions, where p > 1. Below, Lp[0, τ ] stands for the usual Lp-space of
complex-valued functions. We also introduce the notation eλ(t) := e−λt = exp(−λt).

Proposition 2.6. Let 1 < p � ∞, M > 0. For any F ∈ C∞(0, ∞) the following two
statements are equivalent.

(i) F is the finite Laplace transform of some function f ∈ Lp[0, τ ] with ‖f‖Lp[0,τ ] = M .

(ii) limλ→∞ F (λ) = 0, supk∈N ‖Lk[F ]‖Lp[0,τ ] = M , and

sup
k∈N

sup
λ>τ

|τ−keτk/λF (k)(k/λ)| < ∞.

Proof. If F is the finite Laplace transform of a function f ∈ Lp[0, τ ], then

F (λ) =
∫ ∞

0
e−λtg(t) dt, where g(t) =

{
f(t), 0 � t � τ,

0, t > τ.

Since ‖g‖Lp[0,∞) = ‖f‖Lp[0,τ ] it follows from [8, Theorem VII.15a] that F vanishes at
infinity, and

sup
k∈N

‖Lk[F ]‖Lp[0,τ ] � sup
k∈N

‖Lk[F ]‖Lp[0,∞) � ‖f‖Lp[0,τ ] = M.
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The second condition
sup
k∈N

sup
λ>τ

|τ−keτk/λF (k)(k/λ)| < ∞

follows from Proposition 2.2, since F is the finite Laplace transform of the L1-function f .
Conversely, if F fulfils (ii), then it follows from Proposition 2.2 that F is the finite

Laplace–Stieltjes transform of a function of bounded variation. Consequently, F is the
Laplace–Stieltjes transform of a normalized function φ : [0, ∞) → C of bounded variation,
and φ is constant on (τ, ∞). Furthermore, φ(0+) = limλ→∞ F (λ) = 0. Therefore, [8,
Theorem VII.7a] implies

lim
k→∞

∫ t

0
Lk[F ](s) ds = φ(t), 0 � t < ∞.

On the other hand, the family (Sk[F ]) given by

Sk[F ](t) =
∫ t

0
Lk[F ](s) ds, 0 � t � τ,

is bounded and equicontinuous on [0, τ ]. This follows from the estimate

|Sk[F ](t1) − Sk[F ](t2)| �
∫ t2

t1

|Lk[F ](s)| ds

� (t1 − t2)1/q‖Lk[F ]‖Lp[0,τ ] � M(t1 − t2)1/q.

Consequently, by the Theorem of Arzela–Ascoli, (Sk[F ]) has a subsequence (Skl
[F ]) which

is uniformly convergent on [0, τ ]. Without loss of generality we assume that (Sk[F ]) itself
converges uniformly. Since the pointwise limit φ is the uniform limit of this sequence, we
conclude that φ is continuous on [0, τ ]. But then φ must be continuous on [0, ∞), since
φ is normalized and constant on (τ, ∞). Hence, for λ > 0 we obtain

lim
k→∞

∫ τ

0
e−λtLk[F ](t) dt = lim

k→∞

∫ τ

0
e−λt dSk[F ](t) =

∫ τ

0
e−λt dφ(t) = F (λ). (2.1)

Now we define linear functionals Tk ∈ Lq[0, τ ]∗ by

Tkg =
∫ τ

0
g(t)Lk[F ](t) dt.

By assumption, ‖Tk‖ = ‖Lk[F ]‖Lp[0,τ ] � M . Moreover, limTkg exists for each g in the
set {eλ : λ > 0}, which is a total subset of Lq[0, τ ]. Consequently, the sequence (Tk)
converges pointwise to a linear functional T ∈ Lq[0, τ ]∗ with ‖T‖ � supk∈N ‖Tk‖ � M .
Hence there exists f ∈ Lp[0, τ ] with ‖f‖Lp[0,τ ] = ‖T‖ � M and Tg =

∫ τ

0 g(t)f(t) dt for
all g ∈ Lq[0, τ ]. In particular,∫ τ

0
e−λtf(t) dt = T eλ = lim

k→∞
Tkeλ = F (λ),

and the proof is complete. �
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From the characterization of finite Laplace transforms of scalar-valued L∞-functions
we now deduce a characterization of finite Laplace–Stieltjes transforms of Banach space-
valued functions. If φ : [0, τ ] → X is Lipschitz continuous, then

‖φ‖Lip[0,τ ] = sup
{

‖φ(s) − φ(t)‖
s − t

: 0 � t < s � τ

}

denotes the Lipschitz norm of φ.

Theorem 2.7. Let M > 0. For any F ∈ C∞((0, ∞), X) the following two statements
are equivalent.

(i) F is the Laplace–Stieltjes transform of some function φ ∈ Lip([0, τ ], X) with
‖φ‖Lip[0,τ ] = M .

(ii) sup
k∈N0

sup
µ∈(k/τ,∞)

∥∥∥∥µk+1

k!
F (k)(µ)

∥∥∥∥ = M and sup
k∈N

sup
µ∈(0,k/τ)

‖τ−keµτF (k)(µ)‖ < ∞.

Proof. (i) ⇒ (ii). The function x∗ ◦ φ is for every x∗ ∈ X∗ with ‖x∗‖ � 1 a scalar-
valued Lipschitz-continuous function with ‖x∗ ◦ φ‖Lip[0,τ ] � M . Therefore, x∗ ◦ φ is dif-
ferentiable almost everywhere, ‖(x∗ ◦ φ)′‖L∞[0,τ ] � M and

(x∗ ◦ F )(λ) =
∫ τ

0
e−λτ (x∗ ◦ φ)′(t) dt.

Consequently, [8, Theorem VII.16a] yields

sup
‖x∗‖�1

sup
k∈N0

sup
µ∈(k/τ,∞)

∣∣∣∣µk+1

k!
(x∗ ◦ F )(k)(µ)

∣∣∣∣ � M,

and from Proposition 2.6 we obtain

sup
‖x∗‖�1

sup
k∈N

sup
µ∈(0,k/τ)

|τ−keµτ (x∗ ◦ F )(k)(µ)| < ∞.

(ii)⇒ (i). Let x∗ ∈ X∗. Then (ii) implies that x∗ ◦ F fulfils the conditions in Propo-
sition 2.6 (ii) with a constant Mx∗ = M‖x∗‖. Therefore, x∗ ◦ F is the finite Laplace
transform of some function fx∗ ∈ L∞[0, τ ] with

‖fx∗‖L∞[0,τ ] � M‖x∗‖. (2.2)

Moreover, since the finite Laplace transform is one-to-one on L∞[0, τ ], the function fx∗

is unique. Therefore, we can define an operator

S : X∗ → L∞[0, τ ] by Sx∗ = fx∗ .

It is clear that S is linear, and (2.2) implies that S is bounded with ‖S‖ � M . Now we
consider the operator

T = S∗
|L1[0,τ ] : L1[0, τ ] → X∗∗.
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Applying the operator T to the function eλ gives

〈T eλ, x∗〉 = 〈eλ, Sx∗〉 =
∫ τ

0
e−λtfx∗(t) dt = 〈F (λ), x∗〉.

In particular, T eλ = F (λ) belongs to X for every λ > 0. Since the set {eλ : λ > 0} is
total in L1[0, τ ], it follows that the image of T belongs to X. Hence, by [7] there exists
a function φ ∈ Lip([0, τ ], X) with ‖φ‖Lip[0,τ ] = ‖T‖ such that

Tg =
∫ τ

0
g(t) dφ(t), g ∈ C[0, τ ].

In fact we have φ(t) = T (1[0,t)).
Taking g = eλ finally yields

F (s) = T eλ =
∫ τ

0
e−λt dφ(t).

�

Remark. We proved Theorem 2.7 only for the case where φ is Lipschitz continuous,
although a similar theorem is true for a wider class of functions, i.e. the functions of
bounded p-variation.

Definition 2.8. Let I ⊂ R be a closed interval with left end point a ∈ R and non-
empty interior, and let φ : I → X be a function. For 1 � p < ∞ we define the p-variation
of φ by

‖φ‖Vp
= sup

{( n−1∑
k=0

‖φ(tk+1) − φ(tk)‖p

(tk+1 − tk)p−1

)1/p ∣∣∣∣ n ∈ N

a � t0 < t1 < · · · < tn, tj ∈ I

}
,

and the ∞-variation of φ by

‖φ‖V∞ = sup
{

‖φ(s) − φ(t)‖
s − t

∣∣∣∣ a � s < t, s, t ∈ I

}
.

For 1 � p � ∞ the normed linear space Vp(I, X) consists of all functions φ : I → X of
bounded p-variation with φ(a) = 0.

Antiderivatives of Lp-functions are of bounded p-variation. If X is reflexive and p > 1,
then Vp-functions are exactly the antiderivatives of Lp-functions.

For all p, a function φ ∈ Vp([0, ∞), X) satisfies

lim
t→∞

φ(t)
rt

= 0

for all r > 1. In particular, the Riemann–Stieltjes integral∫ ∞

0
e−λt dφ(t) = λ

∫ ∞

0
e−λtφ(t) dt

exists for all Re λ > 0. (Here Re λ denotes the real part of λ.)
With the techniques used in [7] it is easy to deduce from Proposition 2.6 the following

theorem.
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Theorem 2.9. Let 1 < p � ∞, M > 0. For any F ∈ C∞((0, ∞), X) the following two
statements are equivalent.

(i) F is the Laplace–Stieltjes transform of some function φ : [0, τ ] → X of bounded
p-variation, where the p-variation of φ equals M .

(ii) limλ→∞ F (λ) = 0,

sup
k∈N

‖Lk[F ]‖Lp([0,τ ],X) = M and sup
k∈N

sup
λ∈(τ,∞)

‖τ−keτk/λF (k)(k/λ)‖ < ∞.

By Lipω([0, τ ], X) we denote the space of functions φ : [0, τ ] → X which are repre-
sentable as

φ(t) =
∫ t

0
eωs dψ(s), 0 � t � τ, (2.3)

for some ψ ∈ Lip([0, τ ], X). We define, furthermore, ‖φ‖Lipω
= ‖ψ‖Lip. Note that this

definition is not ambiguous since the representation (2.3) is unique.
The characterization of local Laplace–Stieltjes transforms which is needed in the sub-

sequent sections is now a straightforward corollary of Proposition 2.7.

Corollary 2.10. Let ω ∈ R and M � 0. For every F ∈ C∞((ω, ∞), X) the following
two assertions are equivalent.

(i) F is the local Laplace–Stieltjes transform of a function φ ∈ Lipω([0, τ ], X) with
‖φ‖Lipw[0,τ ] � M .

(ii) There exist functions Φ ∈ C∞((ω, ∞), X) and ε : (ω, ∞) → X with

F (λ) = Φ(λ) + ε(λ), λ > ω,

such that

lim sup
λ→∞

ln ‖ε(λ)‖
λ

� −τ,

sup
k∈N0

sup
µ>ω+k/τ

∥∥∥∥ (µ − ω)k+1

k!
Φ(k)(µ)

∥∥∥∥ � M, (2.4)

and

sup
k∈N

sup
ω<µ<ω+k/τ

‖τ−keµτΦ(k)(µ)‖ < ∞. (2.5)

Before proving this corollary we give the following definition.

Definition 2.11. We say a function F fulfils the local Widder conditions on [0, τ ]
with constants M and ω if F fulfils (ii) of Corollary 2.10.
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Proof of Corollary 2.10. It is enough to show that a function Φ is the finite Laplace–
Stieltjes transform of a Lipschitz-continuous function φ with ‖φ‖Lipω

= M if and only if
Φ fulfils the estimates in (2.4) and (2.5).

But this is an easy consequence of Proposition 2.7 together with the following obser-
vations. If Φ is the Laplace–Stieltjes transform of a function φ, where

φ(t) =
∫ t

0
eωs dψ(s), with ‖ψ‖Lip � M,

then
Φ(µ + ω) =

∫ τ

0
e−(µ+ω)t dφ(t) =

∫ τ

0
e−µt dψ(t).

On the other hand, if Φ fulfils the estimates (2.4) and (2.5), then

sup
k∈N0

sup
µ>k/τ

∥∥∥∥µk+1

k!
Φ(k)(µ + ω)

∥∥∥∥ = sup
k∈N0

sup
µ>ω+k/τ

∥∥∥∥ (µ − ω)k+1

k!
Φ(k)(µ)

∥∥∥∥ = M

and

sup
k∈N

sup
0<µ<k/τ

‖τ−keµτΦ(k)(µ + ω)‖ = sup
k∈N

sup
ω<µ<ω+k/τ

e−ωτ‖τ−keµτΦ(k)(µ)‖ < ∞.

�

If F fulfils the local Widder conditions on [0, τ ] for every τ > 0 with constants M and
ω independent of τ , then F is not necessarily a global Laplace–Stieltjes transform, as the
following lemma shows. The proof is straightforward from our previous considerations
and we therefore omit it.

Lemma 2.12. Let ω ∈ R and M > 0. For every F ∈ C∞((ω, ∞), X) the following
assertions are equivalent.

(1) There is a φ ∈ Lipω([0, ∞), X) with ‖φ‖Lipω
� M and a function ε : (ω, ∞) → X

with

lim
λ→∞

ln ‖ε(λ)‖
λ

= −∞

such that
F (λ) =

∫ ∞

0
e−λt dφ(t) + ε(λ) for all λ > ω.

(2) For all τ > 0 the function F fulfils the local Widder conditions on [0, τ ] with
constants M and ω (independent of τ).

(3) For every τ > 0 the function F is the local Laplace–Stieltjes transform of a function
φτ ∈ Lipω([0, τ ], X) with ‖φτ‖Lipω [0,τ ] � M .

With the techniques used in the proofs of Theorem 2.7 and Corollary 2.10, one can
easily prove Theorem 1.1 in another way as Arendt [1] did (he only used the global
Widder result in the scalar case and the uniqueness theorem for Laplace transforms). We
will need this result below and therefore recall it in a slightly generalized version as the
following corollary.
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Corollary 2.13. Let ω ∈ R and M > 0. For every F ∈ C∞((ω, ∞), X) the following
two assertions are equivalent.

(i) F is the Laplace–Stieltjes transform of a function φ ∈ Lipω([0, ∞), X) with
‖φ‖Lipω [0,∞) � M .

(ii)

sup
k∈N0

sup
λ>ω

∥∥∥∥ (λ − ω)k+1

k!
F (k)(λ)

∥∥∥∥ � M,

i.e. F fulfils the (global) Widder conditions with constant M .

3. Laplace–Stieltjes transforms and moment sequences

Although we restricted ourselves to complex-valued functions and complex Banach
spaces, all the results obtained so far are equally valid also in the real case. In con-
trast, the following result requires the complex number system as the underlying scalar
field, since we are dealing with holomorphic functions.

A scalar- or vector-valued sequence (ηn)n=0,1,... is called a moment sequence if there
exists a scalar- or vector-valued function φ of bounded variation on [0, 1] such that

ηn =
∫ 1

0
tn dφ(t), n = 0, 1, . . . .

If the function φ is not only of bounded variation, but is also Lipschitz continuous, then
we call (ηn) an ∞-moment sequence. The function φ is called the representing function
of the moment sequence η.

We now give a characterization of finite Laplace–Stieltjes transforms of vector-valued
Lipschitz-continuous functions via ∞-moment sequences.

Proposition 3.1. Let F : U → X, U ⊆ C a region. Let µ ∈ U . Then the following
three statements are equivalent.

(i) F is the Laplace–Stieltjes transform of some function φ ∈ Lip([0, τ ], X).

(ii) The sequence (ηn)n=0,1,... given by

ηn =
(−1)nF (n)(µ)

τn

is an ∞-moment sequence.

(iii) sup
k∈N0

sup
m=0,...,k

(k + 1)
(

k

m

)∥∥∥∥
k−m∑
r=0

(
k − m

r

)
F (k−r)(µ)

τk−r

∥∥∥∥ = M < ∞.

We will see that the proof of the equivalence (i)⇔ (ii) is very elementary, whereas the
proof of (ii)⇔ (iii) requires the following result of Widder [8, Theorem III.6].
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Theorem 3.2. A (complex) sequence (ηn)n=0,1,... is an ∞-moment sequence if and
only if

sup
k∈N0

sup
m=0,1,...,k

(k + 1)|Λk,m[η]| = M < ∞,

where

Λk,m[η] = (−1)k−m

(
k

m

) k−m∑
r=0

(−1)r

(
k − m

r

)
ηk−r.

In this case, ‖φ‖Lip = M , where φ is the representing function of (ηn).

Proof of Proposition 3.1. (i) ⇒ (ii). Statement (i) implies

F (n)(µ) =
∫ τ

0
(−1)nsne−µs dφ(s) = (−1)nτn

∫ 1

0
tne−µtτ dφ(tτ),

which gives
(−1)nF (n)(µ)

τn
=

∫ 1

0
tn dψ(t),

where ψ is given by

ψ(t) =
∫ t

0
e−µsτ dφ(sτ).

Since φ is Lipschitz continuous it follows that ψ is Lipschitz continuous. Therefore, (ηn)
given by ηn = (−1)nF (n)(µ)/τn is an ∞-moment sequence.

(ii)⇒ (i). If (ηn) is an ∞-moment sequence, then there exists a Lipschitz continuous
ψ : [0, 1] → X with

(−1)nF (n)(µ)
τn

=
∫ 1

0
tn dψ(t).

Let

φ(t) =
∫ t/τ

0
eµsτ dψ(s), 0 � t � τ,

and put

G(λ) =
∫ τ

0
e−λt dφ(t), λ ∈ C.

The function φ is Lipschitz continuous since ψ is Lipschitz continuous. Moreover,

G(n)(µ) = (−1)nτn

∫ 1

0
tne−µtτ dφ(tτ)

= (−1)nτn

∫ 1

0
tne−µtτeµtτ dψ(t) = F (n)(µ).

Since both G and F are holomorphic in the region U it follows that F (λ) = G(λ) in U .
Consequently,

F (λ) =
∫ τ

0
e−λt dφ(t), λ ∈ U.
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(ii)⇒ (iii). If (ii) holds, then it follows from Theorem 3.2 that

sup
k∈N0

sup
0�m�k

(k + 1)‖Λk,m[η]‖ = sup
‖x∗‖�1

sup
k∈N0

sup
0�m�k

(k + 1)|Λk,m[x∗ ◦ η]| < ∞.

(iii)⇒ (ii). Condition (iii) implies

sup
‖x∗‖�1

sup
k∈N0

sup
0�m�k

(k + 1)|Λk,m[x∗ ◦ η]| � M,

where (ηn) is defined as in (ii). Hence, by Theorem 3.2, there exists for every x∗ ∈ X∗ a
function fx∗ ∈ L∞[0, 1] with ‖fx∗‖∞ � M‖x∗‖ and 〈ηn, x∗〉 =

∫ 1
0 tnfx∗(t) dt. Moreover,

the function fx∗ is uniquely determined. This follows, for example, from the fact that
the monomials (tn) are a total subset in L1[0, 1]. Therefore, we can define an operator

S : X∗ → L∞[0, 1] by Sx∗ = fx∗ .

This operator is linear and bounded, and its norm can be estimated by ‖S‖ � M . Now,
consider the operator

T = S∗
|L1[0,1] : L1[0, 1] → X∗∗.

If γn(t) = tn is a monomial, then

〈Tγn, x∗〉 = 〈γn, Sx∗〉 =
∫ 1

0
tnfx∗(t) dt = 〈ηn, x∗〉.

In particular, Tγn = ηn belongs to X for every n ∈ N0. Since {γn : n ∈ N0} is total in
L1[0, 1], it follows that Tg belongs to X for each g ∈ L1[0, 1]. By [7] we can now find a
Lipschitz-continuous function φ : [0, 1] → X with

Tg =
∫ 1

0
g(t) dφ(t), g ∈ C[0, 1],

and we obtain finally

ηn = Tγn =
∫ 1

0
tn dφ(t), n = 0, 1, . . . .

�

4. Nilpotent semigroups

We want to use the results obtained for a characterization of the generators of nilpotent
semigroups. The following lemma is needed as a preparation.

Lemma 4.1. Let ∅ �= R ⊆ U be open sets. Assume, furthermore, that U is connected
and R ⊆ ρ(A). If F : U → L(X) is a holomorphic function with F (λ) = (λ − A)−1 for
all λ ∈ R, then U ⊆ ρ(A) and F (λ) = (λ − A)−1 for all λ ∈ U .
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Proof. Assume there exists z ∈ U \ ρ(A). Since R is non-empty we can pick λ ∈ R,
and since U is connected we can find a continuous path p : [0, 1] → U with p(0) = λ and
p(1) = z. We let

α = sup{β ∈ [0, 1] : p(β) ∈ ρ(A)}.

Then α > 0 since ρ(A) is open, and α � 1 since z /∈ ρ(A). There is some open set
V ⊂ U such that p(t) ∈ V for all t ∈ [0, 1] and F (λ) = R(λ, A) for all λ ∈ V ∩ ρ(A)
since F and R(·, A) are both holomorphic and coincide on V ∩ R. Now, take a strictly
increasing sequence (αn) ⊆ [0, 1] with limαn = α. Then p(αn) ∈ ρ(A) and F (p(αn)) =
(p(αn) − A)−1 for all n. Consequently, since F is continuous, we obtain for every x ∈ X

lim
n→∞

F (p(αn))x = F (p(α))x and lim
n→∞

(p(αn) − A)F (p(αn))x = x. (4.1)

Since A has non-empty resolvent set we know that A is closed. Equation (4.1) therefore
implies F (p(α))x ∈ D(A) and (p(α) − A)F (p(α))x = x. Moreover, if x ∈ D(A), then

F (p(α))(p(α) − A)x = lim
n→∞

F (p(αn))(p(αn) − A)x = x.

Consequently, p(α) ∈ ρ(A), which contradicts the choice of α, since the resolvent set
is open. Hence U ⊆ ρ(A), and since both F and the resolvent of A are holomorphic
functions on U we can conclude F (λ) = (λ − A)−1 for all λ ∈ U . �

Proposition 4.2. Let A be a closed densely defined operator on X. Then the following
statements are equivalent.

(i) A generates a nilpotent C0-semigroup T with T (t) = 0 for every t � τ .

(ii) (0, ∞) ⊆ ρ(A) and the resolvent fulfils the following estimates:

sup
k∈N

sup
µ∈(k/τ,∞)

‖µk(µ − A)−k‖ < ∞

and

sup
k∈N

sup
µ∈(0,k/τ)

‖τ−keµτk!(µ − A)−(k+1)‖ < ∞.

(iii) There exists µ ∈ ρ(A) such that

sup
k∈N0

sup
m=0,...,k

(k + 1)
(

k

m

)∥∥∥∥
k−m∑
r=0

(
k − m

r

)
(µ − A)−(k−r+1)

τk−r

∥∥∥∥ < ∞.

Proof. That (i) implies (ii) and (iii) is an immediate consequence of Propositions 2.7
and 3.1, using the Uniform Boundedness Principle, since

R(λ, A)x =
∫ τ

0
e−λtT (t)x dt for λ > 0 and x ∈ X.
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If we assume (ii), then it follows from Proposition 2.7 that the resolvent R(λ, A) is the
finite Laplace–Stieltjes transform of a Lipschitz-continuous function φ : [0, τ ] → L(X),
and therefore A fulfils the Hille–Yosida estimates. Since A is densely defined, it follows
that A generates a C0-semigroup T . But then∫ ∞

0
e−λtT (t)x dt = R(λ, A)x =

∫ τ

0
e−λt dΦ(t)x,

and the uniqueness of the Laplace–Stieltjes transform implies that T is supported on
[0, τ ].

Now, assume (iii). Then, by Proposition 3.1, there exists φ ∈ Lip([0, τ ], L(X)) with

R(λ, A) =
∫ τ

0
e−λt dφ(t)

for all λ in a ball with centre µ. Since the right-hand side of this equation defines an entire
function, it follows from Lemma 4.1 that the spectrum of A is empty, and the resolvent is
the finite Laplace transform of φ on the whole complex plane. Therefore, we can conclude
as above that A generates a C0-semigroup T which is supported on [0, τ ]. �
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