WHY IS IC 4642 OF SUCH HIGH-EXCITATION CLASS?

C.J. Penn, D.R. FlowerDepartment of Physics, University of DurhamM.J. Barlow, M.J. SeatonDepartment of Physics & Astronomy, University College LondonL.H. Aller

Department of Astronomy, University of California, Los Angeles

We have observed IC 4642 with the AAT and the IUE. It is of exceptionally high-excitation class, as judged by ratios such as He II/H β and (Ne V)/He II.

We compare IC 4642 with the high-excitation planetary NGC 7662. They are found to have similar chemical compositions and both have central stars with T_{Z} (He II) \simeq 113 000 K. Values of T_{Z} (H I) are much smaller indicating that they are optically thin for H I. We assume similar nebular masses. The two stars are then found to have similar luminosities and the ratio of nebular radii is found to be R(IC 4642)/ R(NGC 7662) = 1.35.

That IC 4642 is of higher excitation class than NGC 7662 can be explained as a consequence of the difference in radii. The optical depths $\tau(v)$ for photo-ionization of He II are estimated using observed strengths of He I and He II lines and the following results obtained:

				NGC 7662	IC 4642
Threshold	for		photo-ionization	23 4	2.5 0.4 .

In both nebulae most quanta beyond the He II threshold are absorbed; it follows that the He II/H β ratios are proportional to \mathbb{R}^3 which explains the difference in observed ratios. Beyond the Ne IV threshold NGC 7662 remains optically thick in the He II continuum but IC 4642 becomes optically thin; in consequence more quanta are available for the ionization of Ne IV in IC 4642 and the Ne V/Ne IV ratio is much larger.