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Abstract
Computationalmodeling of the human sequential design process and successful prediction
of future design decisions are fundamental to design knowledge extraction, transfer,
and the development of artificial design agents. However, it is often difficult to obtain
designer-related attributes (static data) in design practices, and the research based on
combining static and dynamic data (design action sequences) in engineering design is still
underexplored. This paper presents an approach that combines both static and dynamic
data for human design decision prediction using two different methods. The first method
directly combines the sequential design actions with static data in a recurrent neural
network (RNN)model, while the secondmethod integrates a feed-forward neural network
that handles static data separately, yet in parallel with RNN. This study contributes to
the field from three aspects: (a) we developed a method of utilizing designers’ cluster
information as a surrogate static feature to combine with a design action sequence in order
to tackle the challenge of obtaining designer-related attributes; (b) we devised a method
that integrates the function–behavior–structure design process model with the one-hot
vectorization in RNN to transform design action data to design process stages where the
insights into design thinking can be drawn; (c) to the best of our knowledge, it is the first
time that twomethods of combining static and dynamic data in RNN are compared, which
provides new knowledge about the utility of different combination methods in studying
sequential design decisions. The approach is demonstrated in two case studies on solar
energy system design. The results indicate that with appropriate kernel models, the RNN
with both static and dynamic data outperforms traditional models that only rely on design
action sequences, thereby better supporting design research where static features, such as
human characteristics, often play an important role.

Key words: deep learning, sequential decision-making, recurrent neural network, design
decision, design process

1. Introduction and overview
In engineering system design, designers make decisions and take corresponding
actions (operations) on design artifacts in a sequential and iterative manner
(Miller, Yukish & Simpson 2018). Effective sequential design strategies help to
reduce unnecessary design operations (Smith & Eppinger 1997) and minimize
potential design flaws, thereby improving design efficiency. So, knowledge
transfer of such beneficial strategies is of great interest to train novice designers
and to the creation of computer agents to imitate human designers for generating
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feasible design solutions and enable human–AI design collaboration. In either
case, in order to extract and integrate human design strategies, computational
modeling of sequential design decisions is the key.

Despite its great importance in many facets of design research, the study of
human sequential decision-making is challenging because decisions are hidden,
implicit and sometimes tacit (Brockmann & Anthony 1998). To fundamentally
understand designers’ sequential decision-making strategies, two essential
elements in a design process must be considered: design problem (i.e., the artifact
to be designed) and designer (Cross & Roy 1989). A well-defined design problem
typically outlines the design space where designers can search for the solutions.
The search is realized by actions/operations taken on the design artifact, such
as adding/deleting a component and modifying the values of corresponding
design variables. A designer, on the other hand, is the entity who actually makes
design decisions guided by his/her own design thinking and system thinking
(Greene, Gonzalez & Papalambros 2019) that are often influenced by prior
knowledge and experience. Based on the response to the present action taken
(e.g., whether adding a component violates the design constraints or not) as well
as the present resources (e.g., current budget), a designer will make the next
decision to navigate through the design space searching for acceptable solutions.
Therefore, to successfully model a designer’s sequential design decisions, two
classes of information must be acquired – the sequential actions (a decision
is a commitment to an action (Hazelrigg 2012)) taken by a designer and the
designer-related attributes that often form his/her design thinking and system
thinking. In this paper, we treat those sequential actions as dynamic data because
actions performed at different time steps are different and those designer-related
attributes as static data as they often do not change during the period when the
design is performed.1

However, even if existing work has used sequential design actions (i.e.,
dynamic data) to computationallymodel and study designers’ sequential decision-
making, for example, with the Markov Model and the Hidden Markov Model
(HMM) (Gero et al. 2011; McComb, Cagan & Kotovsky 2017b) (see Section 2
for details), we are aware of little research incorporating static data into the
modeling. We believe part of the reason could be the difficulties of obtaining
such information due to privacy issues. For example, in a design department
of a company, while designers’ operations (e.g., modification of codes) can be
automatically logged, employees’ demographics are typically not collected or not
allowed for research purposes. A more important reason is that it is not clearly
knownwhat exact designer-related attributes are useful and how such information
can be used in support of the computational modeling of a designer’s sequential
decisions.

The research objective of this paper is to combine both static and dynamic
data in modeling and predicting human sequential design decisions. To achieve
this objective, this paper presents a deep recurrent neural network (RNN) based
approach to predict a designer’s future design sequence by combining both
sequential data of design actions and static data reflecting designers’ sequential
design behavioral patterns. Specifically, we introduce two methods to realize such
a combination. In the first method, both static and dynamic data are directly

1 We assume designer-related attributes and design thinking would not change significantly during a
design process.
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taken as inputs for a typical RNN architecture. In the secondmethod, static data is
passed into a feed-forward neural network (FNN) and dynamic data is separately
passed into an RNN in the first place. Then, the outputs from the RNN and the
FNN are concatenated (a way of combination with matrix operation introduced
in Section 4) before the final model output is generated (see Figure 3 for details). It
is worth mentioning that this method is a new method developed from this study
that is different from the second method that is mostly seen in existing literature.
These two methods are tested with two RNN variants: long short-term memory
(LSTM) and gated recurrent unit (GRU). The proposed approach andmethods are
demonstrated in two case studies on solar energy system design, i.e., energy-plus
home design and solarized parking lot design.

The scope of the research is focused on the design decisions made in a
CAD process for the ease of data collection, but our approach is generally
applicable in any design situation as long as designers’ sequential action data
can be collected. Since the design is conducted in a CAD environment, the
dynamic data refers to the sequence of CAD operations and the static data
refers to any information or attributes pertaining to designers who operate the
CAD. In both case studies, the k-fold cross-validation method is adopted for
model validation. In order to evaluate the models’ predictive performance, both
prediction accuracy (percentage of corrected predictions) and the area under the
receiver operating characteristics curve (AUROC) (Fawcett 2006) are adopted (see
Section 5.1 for details). In this paper, four models (2 combination methods × 2
RNNmodels) are compared in each case study.We hypothesize that by integrating
the static information, the prediction accuracy can be improved. The benchmark
is therefore the models’ counterpart without including the static data.

When implementing the proposed approach, in order to address the challenges
in collecting static data (e.g., designers’ demographics), we devise a novel
method that leverages clustering techniques to first cluster designers with similar
sequential design behaviors and then use the resulting cluster categories (i.e.,
cluster indexes) as a proxy of static information for modeling. There are several
advantages of doing this. First, the cluster information contains an aggregate-level
feature that implicitly combines the effects ofmanydesigner-related attributes. For
example, designers with similar education backgrounds and ages are more likely
to be clustered together. Therefore, this helps avoid diving into the investigation
of what static information shall be added to best capture a designer’s thinking,
which itself could be a research question. Second, from the methodological
point of view, this treatment is essential to use unsupervised learning (i.e., the
cluster methods) to produce additional features that can potentially enhance the
performance of supervised learning (i.e., the RNN model) for predicting human
decisions. This is especially useful to predict design decisions in the system design
context, where usually weak behavioral patterns exist in that different designers
may have different design strategies and the set of design actions to be taken vary
at different design phases (e.g., conceptual design and parametric design) that
often span a long period. Third, this treatment can help alleviate a major conflict
in design research that involves human subjects as it often suffers from a shortage
of subjects, meaning a lack of large-scale data for deep learning.

The remaining paper is organized as follows. In Section 2, a literature review
on the studies of sequential decision-making in engineering design is presented.
We also review state-of-the-art deep-learning models that use different methods
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to combine static and dynamic data in the disciplines beyond the engineering
design field. In Section 3, a technical background of the RNN is provided, which
is followed by the proposed research approach. Section 4 presents the two case
studies. In Section 5, the results are presented, the models are compared and the
pros and cons of each model and method are discussed. Finally, in Section 6, we
conclude our research with closing thoughts and provide the future direction of
the study.

2. Review of relevant literature
2.1. Sequential decision-making in engineering design
In the engineering design field, designers’ sequential decision-making is primarily
studied with probabilistic models. Among them, the Markov Chain (MC)
model and the HMM are considerably used for understanding sequential design
behaviors and identifying design patterns. For example, in configuration and
parametric design problems, first-order MC models have been used to extract
frequently occurring pairs of design actions (Yu et al. 2015) and study designers’
sequential learning process (McComb et al. 2017b). Rahman et al. (2018) also
combined different clustering methods with the MC model to identify sequential
design behavioral patterns. In other studies, second-order MC is implemented
in a design tool, called LINKOgrapher, to compare the design processes between
architects and software designers (Gero et al. 2011), and higher-orderMCmodels
are adopted in an agent-basedmodeling framework to study the effect of memory
on sequential behaviors (Kan & Gero 2009). Using the HMM, McComb, Cagan
& Kotovsky (2017a) identify four general hidden states on the basis of two
configuration design problems, where the first two hidden states are topological
operations, the third state is about spatial operations, and the fourth state is related
to parameter operations. In a later study, Raina, McComb & Cagan (2018) show
how human design strategy can be extracted by HMM to create and augment
computer agents to solve a truss design problem. The team also shows that design
strategies can be successfully transferred to a similar design problem, which
requires less time to complete the design task.

In addition to MC and HMM models, other stochastic methods are also
utilized to develop sequential decision models. In order to understand human
design strategies during the sequential information acquisition decision-making,
the Gaussian Process is used to develop a probabilistic decision model of
choosing design parameters and stopping design searches (Chaudhari & Panchal
2019). Sha, Kannan & Panchal (2015) and Panchal, Sha & Kannan (2017)
integrate the Gaussian Process with a non-cooperative game-theoretic model
to understand human sequential design behaviors under competition and the
trade-off decisions between design cost and design quality. In a vehicle design
problem, Bayesian Optimization is used as a computational framework to mimic
human solution-searching strategy, and it is observed that themodel performance
can be improved when the parameters are learned from a human’s effective
searching strategies (Sexton & Ren 2017).

Other optimization techniques and theoretical models, such as the design
structure matrix (Yassine 2004), multi-objective optimization (Miller, Simpson &
Yukish 2017), expected value of perfect information (Griffin, Welton & Claxton
2010), genetic algorithm (Meier, Yassine & Browning 2007), and optimal learning
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(Duff & Barto 2002), have been also used to study the optimal design sequences.
However, they cast the design problem into a sequential decision process to be
optimized with normative models. They do not study the sequential decision-
making of human designers. In the above studies on human sequential decision-
making, either the models are trained for predicting or the model parameters that
characterize design strategies are estimated for an explanation of observed design
behaviors; the input data used are dynamic data only, e.g., the sequential data of
design actions taken at each time step. No static data of designers’ attributes and
characteristics are utilized.

2.2. Using recurrent neural network to model sequential data
The emerging success of deep-learning algorithms has brought a revolutionary
breakthrough in various engineering and science fields in recent years (Deng &
Yu 2014). The RNN, one of the deep-learning models, is particularly effective for
handling sequential or dynamic data for machine learning. For example, Almeida
& Azkune (2018) propose a deep-learning architecture based on the LSTM, a
variant of RNN, to predict users’ future activities during a day, such as sleeping,
walking, and eating, with sensor data collected from wearable devices. The
model can successfully predict a user’s next action and help identify anomalous
behaviors.

While predicting future events, the majority of the RNN-based models merely
utilize dynamic data. There are only a few studies that use both static and dynamic
data for prediction by leveraging a separate algorithm, such as the FNNor random
forest model. For example, Esteban et al. (2016) present a deep-learning approach
that takes static information (i.e., gender, blood group) into an FNN and dynamic
information (patients’ visits at different times) into an RNN to predict future
clinical events. The model is applied to the data collected from kidney failure
patients and predict among three possible endpoints that would occur after kidney
transplantation. In a similar study (Makris et al. 2017), but in musical research, a
deep-learning architecture is developed by combining LSTMand FNN to generate
drum sequences. In this architecture, drum sequences, i.e., the dynamic data,
collected from three bands, are fed into an LSTM layer while the FNN takes
the bass information as static data. The outputs of both layers are then merged
to produce the final sequence. To automatically recognize hand-written digits,
Sharma (2015) extracted static data and dynamic data from digit images. The
static data includes white in a square, i.e., a horizontally, vertically and diagonally
divided region in the pixel. The dynamic features are extracted from the drawing
order of the corresponding image of the digit. The support vector machine is used
to classify the digit with these concatenated sets of features for the recognition of
hand-written digits.

Table 1 shows the summary of the studies that use both static and dynamic data
in the deep-learning methods. But none of them is related to engineering design.
More importantly, there are some fundamental differences between the existing
studies and the present work, particularly in the following three aspects.

(i) There could be a large number of design actions and the actions can
be different types in engineering design problems. On one hand, this
causes high-dimensional text data, which challenges the modeling and deep
learning. On the other hand, each action is chosen by the designers and thus
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Table 1. Comparison of the studies that combine static data and dynamic data

References Dynamic data Static data Text
vectorization
& dimension
reduction

Comparative
study
included

(Esteban et al. 2016) Clinical log
event

Patients’
demographics

Word
embedding

Yes

(Makris et al. 2017) Drum
sequence

Bass
information

No dimension
reduction

No

(Sharma 2015) Drawing order
of images

Pixel location No dimension
reduction

No

reflect their thinking/objectives the moment when they made such a choice.
This feature requires the knowledge of an appropriate design process model
to abstract the design action to the level of the design process in order to
better study human design thinking and behaviors.

(ii) The complexity associated with the sequential data in engineering design is
more than that of the data handled in the existing literature. For example,
in Esteban et al. (2016), each data in the sequence represents one of the
three endpoints that a kidney patient may face after kidney transplantation,
i.e., kidney rejection, kidney loss and death of the patient. The inputs are
laboratory analysis results obtained at different dates. Such sequential data
are objective values and do not indicate any human thinking. Thus they do
not require a meta-model of design thinking for characterization.

(iii) In engineering design, while design actions can be automatically logged
from tools that designers interact with, their demographic information and
attributes are often not collected or very limited. This is different from the
existing literature, for example, in the application of clinical events, patients’
information can be readily obtained because their personal information
needs to be provided at the time of visit. Little study was conducted in the
design field that provides a solution to combine both types of data for the
prediction of sequential design decisions. There is a knowledge gap that
must be filled in order to better facilitate design research where much static
information of human factors cannot be neglected.

In our previous study (Rahman, Xie & Sha 2019), we developed an approach
that integrates the function–behavior–structure (FBS) based design processmodel
and different artificial neural network models, such as LSTM and FNN, to predict
designers’ future design process stages in a system design context. The objective
of that study was to compare the deep learning-based approach with the models
(e.g., MC andHMM) that have been traditionally used in design research to study
human sequential decisions.Moreover, our previous study uses dynamic data only
for model training and does not combine any static information in the model. So,
those models developed in our previous study will serve as the benchmark for
evaluating the performance of the models presented in this paper.
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(a) Vanilla RNN

(b) Long Short-Term Memory (LSTM)

(c) Gated Recurrent Unit (GRU)

Figure 1. The structures of RNN, LSTM, and GRU.

3. Technical background and research approach
In this section, we first provide an overview on the technical background of
the RNN. Next, we present the approach that combines both designers’ static
information and dynamic design process data to model and predict human
sequential decisions in engineering design. To realize such a combination, two
methods are developed and these methods are introduced in Sections 3.2.2.

3.1. Technical background of recurrent neural network
The RNN is a class of deep neural networks, which consist of artificial neurons
with one or more feedback loops (Lipton, Berkowitz & Elkan 2015) designed for
pattern recognition in sequential data. A typical RNN consists of three layers: an
input layer, a recurrent hidden layer, and an output layer. The feedback loop in the
recurrent hidden layer enables the RNN to keep the memory of past information.
Figure 1(a) shows a standard RNN structure. Given a sequential data with T time
steps {x1, . . . , x t , . . . , xT }, at time step t , the hidden state of the RNN is computed
by

ht = fRNN(ht−1, x t ), (1)

where x t ∈ RN is the vector of the tth input; ht−1 ∈ RM is the hidden state of the
last time step. Hence, by taking the previous hidden state ht−1 and the up-to-date
information x t as the input, at each time step, the hidden state ht encodes the
sequence information up to x t . Then, given the hidden state ht , the output layer
is computed as

ŷ t = g(W Oht + bO), (2)
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where ŷ t is the predicted output at the tth step.W O ∈ RK×M and bO ∈ RK are the
model parameters as well, whichwill be updated during training. g(·) is the output
function that adopts the sigmoid function for binary classification and the softmax
function for multi-class classification. The objective of the RNN is to make the
predicted sequence close to the observed (true) sequence. By using the observed
data as the supervised signal, the RNN is trained via backpropagation through a
time algorithm (Werbos 1990).However, the classical RNNmodel suffers from the
problem of vanishing gradient (Bengio, Simard & Frasconi 1994). To alleviate this
problem, two variants of the RNN, i.e., LSTM (Hochreiter & Schmidhuber 1997)
and GRU (Cho et al. 2014), are proposed by incorporating the gate mechanism.

The LSTMcontains special units calledmemory blocks in the recurrent hidden
layer. Each memory block contains an input gate, a forget gate, and an output gate
to control the flow of information (see Figure 1(b)). The LSTM uses the following
equations as the form of fRNN defined in Eq. (1) to compute the hidden state ht :

f t = σ(W f x t + U f ht−1 + b f ),

č t = tanh(W cx t + U čht−1 + bč),

it = σ(W ix t + U iht−1 + bi ),

c t = f t � c t−1 + it � čt ,

ot = σ(W ox t + U oht−1 + bo),

ht = ot � tanh(c t ),

(3)

where x t is the input at the t time step; � indicates the element-wise product; it ,
f t , and ot are the input gate, forget gate, and the output gate, respectively; c t is the
cell state vector;W , U and b are the model parameters.

Another variant of the classical RNN is the GRU, which has fewer parameters
compared with the LSTM. Figure 1(c) shows a GRU unit. The GRU adopts the
following equations as the form of fRNN defined in Eq. (1) to compute the hidden
state ht :

r t = σ(W rx t + U rht−1 + br ),

z t = σ(W zx t + U zht−1 + bz),

h̃t = tanh(W hx t + r t � U hht−1 + bh),

ht = z t � ht−1 + (1− z t )� h̃t ,

(4)

where r t is the reset gate, while z t indicates the update gate. It decides how much
of the previous information shall be kept.

3.2. The research approach
In this subsection, we present the approach that integrates RNNs as well as
clustering techniques to combine both static and dynamic data for predicting
human sequential design decisions.

3.2.1. Using RNN to predict sequential design decisions
The proposed approach consists of three parts, data preprocessing, data analysis
and preparation, and modeling, machine learning & prediction, as shown in
Figure 2. In the preprocessing step, we collect raw design behavioral data, which
reflect designers’ sequential decisions. The rawdata can be collected fromdifferent
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sources such as CAD logs (Gopsill et al. 2016), design journal of the engineering
design process, and documents/sketches generated from thinking-aloud protocol
studies (Suwa & Tversky 1997). The raw data includes a detailed description of
design processes generally including both design actions (or design operations)
at each time step and associated values of design parameters at that moment. For
example, in this study, we focus on the action taken at each step, such as adding a
component, deleting a component or changing the parameters of the components,
so that sequential decision information is extracted from the raw data.

With the collected sequential data of design actions, a design process model
is applied to convert design actions into particular design process stages. This
proposed step is important and necessary for two reasons. First, the design process
model generalizes the design actions to understand designers’ behaviors. In the
system design task, designers use various design actions, which are actually the
reflection of the design-thinking process. Moreover, design actions in different
design tasks are different. A design process model at the ontological level (e.g.,
the FBS model) captures the context-independent essences of design thinking
regardless of a particular design task being studied. That helps conduct a better
probe into designers’ thought processes and decision-making in system design
(Goldschmidt 2014). Second, system design requires a large variety of actions
to complete the task. When we want to computationally model these large
design actions, it creates a high dimensionality of data. As a consequence, the
vectorization of those text data of design actions, e.g., one-hot vectorization,
becomes ineffective as the resulting matrix will be very sparse. The design process
model at a higher level of description can reduce the dimensionality significantly.

After obtaining the sequential data characterized as design process stages, we
adopt the RNN tomodel the decision-making process and predict the next design
process stage that a designer would enter. But before the step of modeling, on one
hand, the sequential decision data of design process stages are treated as dynamic
data and fed into the RNN. On the other hand, the sequential decision data will
be used to cluster designers into different groups, where each group contains
the designers sharing similar decision-making behaviors (Rahman et al. 2018).
Each resulting cluster category is an aggregated reflection of the attributes (e.g.,
knowledge background, age, etc.) of designers in the same cluster that collectively
form their cognitive skills and thinking, which, in turn, inform their sequential
design decisions. The clustering indexes will be used as the static data input of the
RNN. It is worth noting that our approach does not limit researchers to only use
clustering information as static data. In this study, we propose to use clustering for
generating static data with the motivation of addressing data scarce issues due to
limited access to designers’ demographics in regular design activities. Researchers
can always append additional designers’ attributes as the static behavioral feature
information to further enhance themodel performance. Then, both the clustering
information and the sequential design process information are used to train the
RNN models.

Finally, the trained RNNmodels will be able to predict the next design process
stage that a designer would enter.We consider the prediction of the design process
stage as a multi-class classification problem, where each design process stage is a
class in ourmodel.We aim to accurately predict the next design process stage given
the historical input. The results will be compared and assessed against baseline
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Figure 2.The approach of combining static data and dynamic data in RNN to predict
sequential design decisions.

models through prediction accuracy. In the following subsection, we introduce
two methods of combining the static and dynamic data in RNN.

3.2.2. Two methods of integrating static and dynamic data in RNN
First method: Direct input

In the first method, we combine static data with the dynamic data as one single
input to the RNN via the concatenation operation. Figure 3(a) shows the structure
of the first method. Formally, given a designer i , let x i denote the static data of
the designer and x t indicate the design stage at the tth step of that designer. The
concatenation of the static information and dynamic information is represented
as

x t,i = [x t , x i ]. (5)

To compute the hidden state of the network, we pass x t,i as the input to the
RNN,

ht,i = fRNN(x t,i , ht−1), (6)

where in our experiments, LSTM or GRU is adopted as fRNN to model the user
decision-making sequences. Finally, we adopt the softmax function as the output
layer to predict the next design process stage at time step t + 1. The softmax
function outputs a vector of probabilities for each design process stage. After
training, we choose the design process stage with the highest probability as the
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Figure 3. (a) First method: Direct input. (b) Second method: Indirect input.

predicted design process stage. The softmax function is defined as

P(ŷ t+1,i = k|ht,i ) = softmax(ht,i ) =
exp(wkht,i + bk)∑K

k′=1 exp(wk′ht,i + bk′)
, (7)

where K is the number of design process stages; ŷ t+1,i is the predicted design
process stage of the i th user at time t+1;wk and bk are the parameters of softmax
function for the kth class.

Second method: Indirect input
In the second method, as shown in Figure 3(b), we use the static and dynamic

data separately for the model input. The key idea is to first model the static data
through an FNNand the dynamic data through anRNN. Since the hidden states of
the FNN and the RNN capture the users’ static information and dynamic design
decision data separately, we adopt the concatenation operation to combine the
hidden states of both the FNN and the RNN so that the concatenated hidden
state encodes both static and dynamic data information. Finally, we adopt the
concatenated hidden state to predict the next design stage. Specifically, the hidden
state of the static data can be represented as follows:

hi = fFNN(x i ), (8)

where fFNN represents an FNN. The hidden state for the dynamic input is
calculated by the RNN:

ht = fRNN(x t , ht−1). (9)

In this method, we combine the hidden states of static and dynamic data via
the concatenation operation:

ht,i = [ht , hi ]. (10)

Since ht,i captures the hidden information of both static and dynamic data,
similar to the first method, we adopt Eq. (7) to predict the next design process
stage. In this work, we consider the prediction of the next design process stage
as a classification task. Hence, we adopt the categorical cross-entropy method
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(a) (b)

Figure 4. Design examples from one participant: (a) energy-plus home design;
(b) solarized parking lot design.

(Goodfellow, Bengio & Courville 2016) as the loss function to train the neural
networks:

L = −
1
N

N∑
i=1

T∑
t=1

y t,i log(ŷ t,i ), (11)

where N is the number of users, T is the length of the sequence, ŷ is the predicted
design process stage and y is the actual stage.

4. Predicting sequential design decisions in solar
system design – two case studies

In this section, we introduce the design challenges for data collection and data
processing procedures for implementing the proposed approach in the context of
solar energy system design. The sequential data of design actions are collected
from two design challenges. In the first challenge, the task is to design an energy-
plus home, while in the second challenge, the task is to design a solarized parking
lot at the University of Arkansas. These two design problems exhibit different
levels of design complexity (Summers & Shah 2010). For example, the energy-plus
home design is more complex in the sense that it has more design variables and
more complex couplings between variables than those of the parking lot design
problem. Therefore, they are useful in testing the generality of the proposed
approach and methods.

4.1. The design challenges
4.1.1. The energy-plus home design and the solarized parking lot design
In the energy-plus homedesign, the objective is tomaximize the annual net energy
(ANE) of a homewith a budget of $200,000. The problem is well defined, meaning
that both the design objective and constraints are given. Note that the conceptual
part of this design is still an openproblem.Therefore, designers need to go through
almost the whole design process from conceptual design to embodiment design,
and to analysis and evaluation. Figure 4(a) shows an example of the energy-plus
home design accomplished by one of the participants.

In the solarized parking lot design, the context becomes more authentic.
Participants are asked to solarize the Bud Walton Arena parking lot at the
University of Arkansas, as shown in Figure 4(b). In this design, the objective is still
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Table 2. Design requirements of the design challenges

Design
challenges

Design variables Design constraints

Energy-plus
home design

Story
Number of windows
Size of windows
Number of doors
Size of doors (width
height)
Height of wall
Distance between
ridge and panel

1
>4
>1.44 m2

1
>1.2 m× 2 m

>2.5 m
>0

Solarized
parking lot
design

Base height
Tilt angle
Solar panel rack

Pole of rack

>3.5 m
620
Shall not produce any hindrance to
the pedestrian zone and driveways
Shall be placed along with the
parking lot line marker

to maximize the ANE, but the budget is $1.5M. Similarly, we provide participants
with design requirements. The design requirements of both of the design problems
are shown in Table 2.

Both design tasks are conducted in Energy3D, a CAD software for solar
energy systems, developed by the co-author (Xie et al. 2018) and was recently
extended to a research platform for design-thinking studies (Rahman et al. 2019).
Energy3D has several features that are particularly useful for design research.
For example, Energy3D logs every design action and design snapshots (the
CAD models, not images) at a fine-grained resolution. These data represent the
smallest transformation possible on a design artifact. So, the design process can be
entirely reconstructedwithout losing any important details. Energy3Dhas built-in
modules of engineering analysis and financial evaluation that can support the full
cycle design of a solar energy system seamlessly. This supports the data collection
during both intra- and inter-stage design iterations. Energy3D stores data in a
standard data format as JavaScript Object Notation (JSON), which facilitates the
postprocessing and analysis. The rich data obtained in time scale is essential to the
training of the deep-learning model.

In a JSON file, one action is logged in one line. The information contains
the timestamp, the design action and its corresponding parameters such as the
coordinates of the object, the ANE output, construction cost etc. The following
box shows two lines of data as an example:
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Figure 5. Transformation of the sequential data of design actions to the sequential
data of design process stages based on FBS design process model.

4.1.2. The human-subject experiment
The experiment is conducted as a form of design challenge because there is a
competitionmechanism to incentivize the participants to explore the design space
as much as possible. Specifically, the mechanism relates the final reward of a
participant to the quality of his/her own design. One design challenge consists of
three phases: pre-session, in-session, and after-session. The pre-session lasts about
30minutes and is designed for familiarizing studentswith the Energy3Doperating
environment, the design problem, and basic solar science concepts. The purpose is
to mitigate the effect of the learning curve andminimize the potential bias caused
by different levels of pre-knowledge of participants. The data generated in the
pre-session are abandoned and not used in the case study. During the in-session,
participants work on the design problem based on the instruction, including the
design statement and the requirements mentioned above. A record sheet is also
provided for participants to record the design objective values for feedback and
reinforcement of decision-making. The in-session lasts about 90 minutes. The
after-session, which lasts about 10 minutes, is for participants to claim rewards
and sign out the challenge.

In the energy-plus home design, 52 students from the University of Arkansas
participated. The participants are indexed based on their registered sessions and
laptop numbers. For example, A02 indicates a participant who was in session
A and used laptop #2. On average, each participant spends 1500 actions (CAD
operations) to accomplish the task. Some actions, such as adjusting camera view,
adding human, that do not essentially affect the design artifact, are removed.With
this treatment, each participant uses 335 valid design actions on average among
which 115 actions are unique. In the solarized parking lot design, there were 41
participants. After removing trivial actions, each participant uses an average of
350 design actions, among which 72 actions are unique.

4.2. Data preparation and combination of static and dynamic
data

4.2.1. Transformation of design action sequence to design process stages
After obtaining the raw sequential CAD log data, the design actions, such as ‘Add
rack’ and ‘Add solar panel’, are extracted as the sequential data for training the
RNN models. As introduced in Section 3.2, a design process model is needed to
transform the design action sequence to the sequence of design process stages for
better understanding designers’ thinking and decision-making at a higher level
of cognition. In this study, the FBS-based design process model (Gero 1990) is
adopted and the coding scheme in Table 3 is used to categorize each design action
into one of the seven design process stages, including Formulation (F), Synthesis
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Table 3. The FBS model and the proposed coding scheme for design actions
(Rahman et al. 2019)

Design process Definition and
interpretation

Types of design action

Formulation Generate Function from
Requirement and from
Function to Expected
Behavior.

Add any components

Analysis The process generated from
Structure.

Analysis of annual net energy

Synthesis Generate and tune
Structure based on the
Expected Behavior.

Edit any components

Evaluation The comparison between
the Expected Behavior and
the behavior enabled by the
actual structure.

Cost analysis

Reformulation 1 The transition from one
structure to a different
structure.

Remove structure

Reformulation 2 The transitions from
Structure to Expected
Behavior.

Remove solar device

Reformulation 3 The transition from
Structure to Function.

Remove other components

(S), Analysis (A), Evaluation (E), Reformulation 1 (R1), Reformulation 2 (R2),
and Reformulation 3 (R3). The FBS-based process model is adopted as it is a
well-accepted design ontology that can be used universally to represent a system’s
design process regardless of the application context (Kan & Gero 2009). Also, it
is evident that the FBS ontology well represents design-thinking strategies with
its constructs that capture the actions to be taken for achieving design objective
and evaluating design performance (Gero & Kannengiesser 2004). Figure 5 shows
an example of one segment of a design sequence from a participant and its
transformation to the design process stages after encoding with the FBS model.

4.2.2. Using clustering analysis to obtain static behavioral data
With the sequential data of the design process stages, we perform the clustering
analysis to categorize participants into different classes representing different
sequential decision-making behavioral patterns. This analysis helps to obtain the
static data pertaining to each designer.

In this study, the MC-based approach proposed in our previous study
(Rahman et al. 2018) is adopted for the clustering analysis. As a quick summary,
the first-orderMCmodel is applied on eachdesigner’s sequential data to obtain the
7× 7 transition matrix, which is then converted to a 49× 1 vector. By combining
the transition vectors of all the N participants, we obtain a 49×N matrix that will
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Figure 6. Hierarchical clustering of four groups for the energy-plus home design
dataset. X-axis label indicates the participants who are clustered together in different
colored boxes.

be used for clustering analysis. In total, we test three clustering methods including
K-means clustering, hierarchical agglomerative clustering and network-based
clustering, and eachmethod is tested with three options of the number of clusters,
i.e., 4, 5 and 6, which are suggested by the elbow plot (Kodinariya & Makwana
2013). Based on the metric of effectiveness defined in (Rahman et al. 2018), it is
found that for the energy-plus home design dataset, hierarchical agglomerative
clustering with 4 clusters performs best while for the solarized parking lot design
dataset, network-based clustering with 5 clusters measured performs best. For
the details of clustering analysis approaches and their implementation, refer to
(Rahman et al. 2018). Figure 6 shows an example of the results of hierarchical
agglomerative clustering with 4 clusters for the energy-plus home design dataset.

The clustering analysis gives every designer an index that is used as the static
information to be combined with the dynamic data (i.e., the sequential data of
design process stages) for training the RNN models. In the following subsection,
we introduce two different methods for realizing such a combination.

4.2.3. Combining static and dynamic data
Before combining the static and dynamic data for RNN modeling, we transform
the static and dynamic text data to one-hot vectors because neural networkmodels
cannot work with text data directly. Since the FBS model has already helped
reduce the dimensionality of sequential data from the action level to the process
stage level, one-hot vector under this circumstance is an appropriate and efficient
method to vectorize the data.

In the first method, we combine the static data directly with the dynamic data,
as shown in the schematic diagram in Figure 7. In this example, the designer is
from cluster 2 (identified by the hierarchical agglomerative algorithm) and its
corresponding one-hot vector is appended behind each one-hot coded sequential
design process stage. Since the cluster index does not change over time, the same
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Figure 7.The cluster information is added directly to the sequential data of a designer
who is in Cluster #2.

one-hot vectors are appended as long as the sequential data are for the same
person. Then, the combined vectors are fed into the RNN layers in the same
manner as done by a normal RNN training process.

Different from the first method, the second method allows static data and
dynamic data to be processed in separate layers. This means the cluster data
and the sequential data are handled separately during the input and are trained
by different models, and the resulting outputs from the hidden layer are then
combined before sending to the output layer for backpropagation. For example,
as shown in Figure 8, the one-hot vector of the cluster index of number 2 is passed
as the input of the hidden layer, i.e., an FNNmodel. At the same time, the one-hot
encoded sequential data are passed as the input of the hidden layer, i.e., an RNN
with LSTM layers. Then, the results from both the FNN layer and the LSTM layer
are combined and then passed to the output layer for training.

With both methods, we train the models and then use the trained model
to predict the next design process stage. In the following section, we compare
the results of the prediction accuracy from both methods. We also perform the
sensitivity analysis to investigate how the prediction accuracy would change with
different model configurations and experimental settings.

5. Model implementation and evaluation
In this section, we first present the model setup and the method of evaluating the
models’ predictive performance. Then, the results are of the prediction accuracy
for both methods in two case studies are presented and discussed.
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Figure 8. Combining the cluster data into the sequential data in separate layers.
Cluster data are the input of an FNN layer and sequential data are the input of an
LSTM layer.

5.1. Mode setup and evaluation method
Baseline: The RNN models that use the sequential data of design process stages
only without using static data are chosen as the baseline model for comparison
and evaluation.
Cross-validation: We conduct k-fold cross-validation (Yadav & Shukla 2016)
to evaluate the performance of the models. In the k-fold cross-validation, the
dataset is split into k partitions, {C1,C2, . . . ,Ck}, where k is the total number of
validation folds. Then, k rounds of training and testing are performed in away that
in each iteration the model is trained on partitions {C1, . . . ,Ci−1,Ci+1, . . . ,Ck}

and evaluated on the Ci partition. In this study, we adopt the 4-fold cross-
validation technique to evaluate the models. In order to split the dataset into
4 folds, two different split procedures are used as there are two different data
combination methods. In the first method, we directly add cluster information
to the corresponding designer’s sequential data. Then we split each dataset into 4
folds. In the secondmethod, we split both the sequential data and cluster data into
4 folds, separately.
Hyperparameter: In order to find the best hyperparameter settings of the RNN
models for training, we trial and error different settings and choose the best one
to measure the accuracy. As we compare those models with the baseline models,
we run different settings on the sequential data without combining the cluster
information first in order to obtain the best configuration. Then, these settings
are adopted in the models combining both static and dynamic data for a fair
comparison.

We implemented the models using LSTM and GRU, respectively. The
dimension of the hidden layer is 256. To prevent overfitting, we use 20% dropout
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regularization (Srivastava et al. 2014).We trained each of the settings for 50 epochs
although after 30 epochs the accuracies are not significantly improved. Adaptive
moment estimation (Adam) is adopted as the stochastic optimization algorithm
for the estimation of parameters in backpropagation (Kingma & Ba 2014). The
computation is performed with the Keras deep-learning library (Chollet 2018).
The metrics for predictive performance: As previously mentioned, we get the
prediction of the tth design process stage using the previous t − 1 design process
stages. Therefore, for a design sequence with n actions, the model will produce
n − 1 predictions. These predictions are compared with the observed data, and
the total number of correct predictions (ncp

i ) can therefore be obtained. The
prediction accuracy can be therefore defined in Eq. (12) by averaging the scores
from each round of the cross-validation.

Prediction Accuracy =
1
R

R∑
i=1

(
ncp

i
nmax

i − 1

)
, (12)

where R is the number of rounds (i.e., iterations) in the cross-validation and
nmax

i is the length of the longest design sequence in the round i . In this paper,
only the prediction accuracy of the testing data (i.e., the testing accuracy) is
reported. To account for the uncertainties, we conduct 4-fold cross-validation
twice for each of the four models. As a result, in total, we obtain eight results of the
prediction accuracy for eachmodel. Besides the prediction accuracy, we also adopt
the AUROC (Fawcett 2006). The AUROC is measured by two characteristics,
true positive rate (TPR) and false positive rate (FPR). The TPR indicates what
proportion of a particular class (e.g., Formulation in our case) correctly predicted.
The FPR indicates the proportion of the other classes (e.g., other design process
stages than Formulation) incorrectly predicted.With these two characteristics, the
AUROC is computed at different probability thresholds from 0 to 1. However,
when computing the accuracy, it is the design stage with the highest probability
to be chosen as the prediction. Hence the prediction accuracy is essentially
measured by the ratio between the number of true positives and the total number
of predictions at a specific probability threshold. Since it does not take the true
negative into account, the value should be smaller than either the TPR or the FPR.
Therefore, the defined prediction accuracy is a more strict measurement for the
performance evaluation, while the AUROC is more comprehensive. Using both
metrics together can well reveal the overall predictive performance of the models.

5.2. Results and discussion
Tables 4 and 5 show the results of the accuracy and the AUROC score for the
energy-plus home design task and the solarized parking lot design task, separately.
As we can observe from the tables, all models achieve satisfactory performance
considering it is a seven-class classification task, which shows the advantage of
deep-learning models for predicting sequential data of design decisions. The
results indicate that the two proposedmethods outperform the baselinemodels in
both cases, which suggests that incorporating the static data into the LSTM/GRU
model can improve the performance of design stage prediction.

Meanwhile, the results of the solarized parking lot design are better than those
of the energy-plus home design on average, especially in terms of the AUROC
score. As mentioned in Section 4.1.1, the design complexity of the solarized
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Table 4. The testing accuracy and the AUROC scores for the energy-plus home design dataset

Dataset Combination RNN Cluster Testing AUROC
method variants method accuracy score

Energy-
plus home
design

Baseline LSTM
GRU

N/A
N/A

58.06± 1.69
58.26± 3.13

0.67
0.68

Direct LSTM
GRU

4 clusters using
hierarchical
clustering

60.51± 1.63
58.31± 3.49

0.75
0.73

Indirect LSTM
GRU

4 clusters using
hierarchical
clustering

60.60± 1.83
59.57± 1.72

0.77
0.75

Figure 9. The ROC curves of baseline models and the models with static data for
energy-plus home design dataset.

parking lot design is lower than that of the energy-plus home design. As a result,
there are a fewer number of unique design actions taken in the former design
challenge. Therefore, the patterns of design sequences from the solarized parking
lot design task could be more easily captured by the neural networks.

In particular, for the energy-plus home design task, it is observed that there
are large performance gains in terms of AUROC, e.g., an increase of 8% and
10% in LSTM models, for both direct and indirect methods (see also Figure 9).
Meanwhile, it is noted that the indirect combination method achieves slightly
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Table 5. The testing accuracy and the AUROC scores for the solarized parking lot design dataset

Dataset Combination RNN Cluster Testing AUROC
method variants method accuracy score

Solarized
parking lot
design

Baseline LSTM
GRU

N/A
N/A

60.91± 1.63
59.59± 4.13

0.78
0.79

Direct LSTM
GRU

5 clusters using
network-based
clustering

61.93± 4.08
63.38± 5.71

0.79
0.79

Indirect LSTM
GRU

5 clusters using
network-based
clustering

61.98± 1.83
61.12± 1.72

0.82
0.81

Table 6. Statistical t-test on the difference between the prediction accuracy of the
baseline models and the models developed in the two case studies

Energy-plus home design
RNN variants Hypothesis testing t-score p-value
LSTM Baseline vs. direct method

Baseline vs. indirect method
−4.04
−4.34

0.0024
0.0017

GRU Baseline vs. direct method
Baseline vs indirect method

0.26
−0.53

0.40
0.30

Solarized parking lot design
LSTM Baseline vs. direct method

Baseline vs. indirect method
−5.51
−3.12

0.00044
0.008

GRU Baseline vs. direct method
Baseline vs. indirect method

−4.27
−1.26

0.0018
0.12

better performance than the directmethod. This indicates that for the energy-plus
home design task, combining static data is useful for the design stage prediction,
while combining the hidden representations of static and dynamic data as inputs
to the classifier is a better option.

For the solarized parking lot design task, the proposed indirect and direct
methods still perform slightly better than the baseline models. This result again
shows the effectiveness of our proposed deep-learning approach. Especially, as
shown in Figure 10, the indirect combination method achieves higher AUROC
values than the baselines with an increase of 3%. However, compared with
baselines, our proposed methods in the solarized parking lot design task do not
achieve similar gains as in the energy-plus home design task. The potential reason
is that for the solarized parking lot design task, the participants are clustered into
5 groups instead of 4 groups. Then, the number of designers in each cluster for the
solarized parking lot design is smaller than that for the energy-plus home design.
For example, the smallest cluster in the energy-plus home design case study has 9

21/26

https://doi.org/10.1017/dsj.2020.12 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.12


Figure 10. The ROC curves of baseline models and the models with static data for
solarized parking lot design.

members, while the smallest cluster in the solarized parking lot design only has
4 members. Hence, it would be difficult for the LSTM/GRU model to identify
useful hidden patterns from a smaller number of data points for prediction.
Overall, the experimental results indicate that the use of static data can improve
the performance of the LSTM/GRUmodels for design stage prediction; especially
when designers have similar design thinking (i.e., same static data), this could
further generate similar design sequences.

To evaluate the statistical significance of the difference between the developed
models and the baseline models, the paired t-test is conducted. The null
hypothesis (H0) is that the mean of the prediction accuracy of the models
combining static information is equal to that of baseline models; the alternative
hypothesis (Ha) is that the former is significantly less than the latter. Table 6 shows
the results of the t-test for both case studies. With the level of significance of 0.05,
the p-values in the table indicate that in both studies regardless of the combination
methods employed, the performance of the LSTM model is always significantly
better than that of the baseline models, while the performance of the GRUmodel
is only supported in the second case study using the direct combination method.

6. Conclusion
In this paper, we established a research approach based on deep RNN to
predict human sequential design decisions. The contributions of this study can
be summarized in the following aspects. First, we introduced two methods of
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combining static and dynamic data for sequential design decision prediction.
The first one is a new method that directly combines the static and dynamic
data as inputs to the RNN, while the second method combines the hidden
representations of static and dynamic data, which are derived from the FNN
and the RNN, respectively, into the classifier. Second, we have developed a novel
clustering-based method to derive a surrogate static feature that can eventually
enhance the prediction through the integration of unsupervised learning (i.e.,
the clustering algorithm) and supervised learning (i.e., the RNN models). Third,
we developed an approach that integrates the FBS design process model and the
one-hot vectorization to transformdesign actions to design process stages in order
to tackle the high dimensionality associated with the design sequence data and
draw insights into design thinking. Finally, to the best of our knowledge, this is
the first work that compares two different methods of combining static data and
dynamic data in an RNN-based framework. Therefore, our study does not only
provide new knowledge on how well the deep RNNwould perform by combining
static and dynamic data in an engineering design application but also provide new
knowledge on how well each combination method (i.e., direct input vs. indirect
input) would perform with different kernel settings (e.g., LSTM vs. GRU). The
performances of our proposed approach andmethods are evaluated in two design
case studies. The experimental results indicate that with appropriate models, the
RNNwith both static and dynamic data outperforms traditional models that only
rely on design action sequences, thereby better supporting design research where
static features, such as human characteristics, often play an important role.

We acknowledge that there exist certain limitations in our current work.
For example, the work has a limited number of human subjects in each case
study. Thus this makes the learning of patterns in the sequential data impact the
prediction accuracy. But with the CAD software (Energy3D) used in this study,
we were able to collect rich data in a longitudinal scale, which helps mitigate the
impact of scarcity of data in terms of the number of participants. In addition, with
the FBS-based design processmodel, the dimensionality of the sequential data can
be greatly reduced; yet only future design process stages can be predicted. While
this is a necessary step for better understanding designers’ thinking, it would be
more beneficial to predict future design actions from the engineering application
point of view. Finally, it is worth noting that the approach presented does not
aim to predict optimal design decisions even if the prediction of optimal design
decisionsmay havemore benefits in engineering practices. This is out of the scope
of this study.

In our future studies, we will continuously conduct human-subject
experiments and collect more data points. With a larger dataset, we expect
that the prediction accuracy can be further increased. We will also conduct
further investigation into the model structure and its connection to the design
case study to better understand why the GRU performs worse than the LSTM
in certain cases. In addition, we plan to develop a bi-level framework to first
predict the design process stages at the design-thinking level and then run a
separate model at the action level to predict future design actions. While the
cluster information is efficient for the collection of static data, it is aggregated
information reflecting designers’ behaviors after all. One future study could be
to integrate psychology tests in our approach. By identifying the psychological
factors related to designers’ thinking and cognitive skills, these designer-related
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static attributes can be added in our approach to investigate its effectiveness of
improving the prediction accuracy.
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