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COMPUTING A CHIEF SERIES AND THE SOLUBLE RADICAL
OF A MATRIX GROUP OVER A FINITE FIELD

DEREK F. HOLT and MARK J. STATHER

Abstract

We describe an algorithm for computing a chief series, the
soluble radical, and two other characteristic subgroups of a
matrix group over a finite field, which is intended for ma-
trix groups that are too large for the use of base and strong
generating set methods. The algorithm has been implemented
in Magma by the second author.

1. Introduction

One of the major projects in computational group theory during the past 15 years
has been the development of effective algorithms for analysing the structure of
linear groups defined by generating matrices over a finite field. The methods that
are currently used by default in the GAP and Magma systems are based on an
extension of the base and strong generating set (BSGS) techniques that have proved
so effective for computing in finite permutation groups. These are unfortunately
impractical for large groups of matrices, particularly those that involve the classical
groups in their natural representations. (See Chapter 4 and Section 7.8.1 of [17]
for definitions and details of the BSGS approach to computing in permutation and
matrix groups.)

Leedham-Green and O’Brien [23] have implemented procedures in Magma that
use methods based on a theorem of Aschbacher, which we shall state in Subsec-
tion 1.2, to construct a composition tree in a matrix group over a finite field, which
effectively identifies the composition factors of the group. See also [29] for a recent
survey of this project.

For further structural computations in matrix groups, such as finding Sylow
subgroups, a chief series is more useful. As has been demonstrated for various
types of computations in finite permutation groups (the calculation of maximal sub-
groups [9], of automorphism groups [8], and of conjugacy classes of elements [10],
for example), a chief series that passes through the characteristic subgroupsO∞(G),
soc*(G), and Pker(G) of G is particularly expedient. These subgroups are defined
as follows.

(i) O∞(G) is the soluble radical – that is, the largest normal soluble subgroup –
of G.

(ii) soc*(G) is the complete inverse image inG of the nonabelian socle ofG/O∞(G).
So soc*(G)/O∞(G) is a direct product of nonabelian simple groups, which are
permuted under the conjugation action of G/O∞(G).
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(iii) Pker(G) is the complete inverse image in G of the kernel of the permutation
action of G/O∞(G) on the simple factors of soc*(G)/O∞(G) described in (ii).
So soc*(G) � Pker(G).

Note that Pker(G)/ soc*(G) is isomorphic to a subgroup of the direct product of the
outer automorphism groups of the simple direct factors of soc*(G)/O∞(G) which,
by the Schreier conjecture, is soluble. Note also that the top factor G/Pker(G)
is isomorphic to a permutation group on the factors of soc*(G)/O∞(G), which in
practice will be of moderately low degree.

It is the object of this paper to describe algorithms to construct such a series.
They have been implemented in Magma by the second author, and a more detailed
description of these methods and of applications to further structural computations
in matrix groups can be found in his PhD thesis [31]. See also [32] for an application
to the computation of Sylow subgroups. For an input group G � GL(n, q), it is also
possible to use the data structures associated with the chief series computed for G
to test whether an arbitrary element g of GL(n, q) lies in G, and if so to write g as
a word in the generators of G.

The computations are carried out in three stages. The first step is to compute a
series of normal subgroups of the given group G in which the quotients are either
soluble groups for which a polycyclic presentation (see, for example, [17, Chapter 8])
is known, or direct products of isomorphic nonabelian simple groups. The second
step, which is comparatively straightforward, is to refine the series to a chief series
of the group. The final step is to compute a new chief series passing throughO∞(G),
soc*(G) and Pker(G). This is achieved by a sequence of operations, each of which
interchanges two adjacent chief factors in the series.

We believe our computation of a chief series of G to be about equally efficient
on average, in terms of use of both time and space resources, as the computation
of a composition tree using the algorithm of Leedham-Green and O’Brien. As we
shall see later, there are some places in our algorithm where we are forced to carry
out computations in larger groups than should be necessary, and here we will lose
ground in the comparison with the composition tree. In other places, however,
we save time by avoiding the unnecessary repetition of certain computations in
subgroups that are conjugate to other subgroups in which these computations have
already been carried out. We shall indicate instances of these two phenomena in
the examples described in Section 4.

In the remainder of this introductory section we shall describe some relevant
basic algorithms, and state the Aschbacher Theorem. In Section 2 we describe the
computation of a chief series of a matrix group G, in Section 3 we explain how to
rearrange the chief series to make it pass through the three characteristic subgroups
of G defined above, and then in Section 4 we present some timings of the second
author’s Magma implementation.

1.1. Some underlying algorithms
An algorithm to compute the order of an invertible d × d matrix is described

in [12]. Many of the algorithms of the Matrix Group Recognition Project, and
indeed of computational group theory in general, require the construction of ran-
dom elements of a group. An algorithm to produce uniformly distributed random
elements of a finite group is given by Babai [5]. Unfortunately this is too slow
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to be of practical use. For the purposes of an implementation we use the Product
Replacement Algorithm [11]. See also [17, Section 3.2.2] for a brief description.

We shall assume throughout that we are able to perform standard computations,
including finding chief series, etc., in permutation groups and in soluble groups de-
fined by a polycyclic presentation (see, for example [17, Chapter 8]). The most
sophisticated of the algorithms that we shall assume to be available are the Con-
structive Recognition algorithms for the finite nonabelian simple groups.

We formulate the definition of a constructive recognition algorithm following
that of Seress [30, Chapter 8]. However we shall adapt the definition slightly to
give emphasis on matrix groups. Recall that G is said to be quasisimple if G is
perfect and G/Z(G) is simple, where Z(G) is the centre of G. We are interested in
the case where a quasisimple group G acts absolutely irreducibly, and so Z(G) is
the group of scalar matrices Z(GL(n, q)) ∩G of G.

Definition 1.1. Let G = 〈X〉 be a group such that either G is a simple permutation
group, or else G is a quasisimple absolutely irreducible matrix group over a finite
field. Then we define a constructive recognition algorithm for G to be one that is
able to do the following:

(i) Find the standard name of the simple group G/Z(G).

(ii) Find a new generating set Y of size O(log |G|) for G, along with words over
X for each y ∈ Y , and a presentation of length O(log2 |G|) of G/Z(G) on Y .
(By a word over X, we mean a word in (X ∪X−1)∗.)

(iii) Compute an epimorphism φ from G to S where S is the standard copy of
G/Z(G), with the property that images and inverse images of elements under
φ can be computed efficiently. (We explain the term standard copy below.)

(iv) Given g in the full symmetric or general linear group of which G is a subgroup,
determine whether g ∈ G and, if so, write g as a word over Y .

A non-constructive recognition algorithm is one that can solve part (i) only.
A polynomial time Monte-Carlo algorithm for part (i) has been implemented in
Magma by Malle and O’Brien. This works roughly by calculating orders of ran-
dom elements of the group and finding the finite simple group having the same
distribution of element orders. See [29, Section 6] for a fuller account.

Observe that, although we assumed at the outset that G is quasisimple, after
carrying out this process, we have proved that G/Z(G) is isomorphic to the simple
group named in (i) above, and hence we have verified that our assumption was
correct. (If we need to verify that G is perfect, then we can do so by choosing
the generators in Y to be words lying in [G,G].) This is important because, in
our applications to be described later, we are sometimes highly confident but not
absolutely certain that G/Z(G) is simple and so we need to verify this assumption.

In (iii), the standard copy of a nonabelian simple group G is a specific group H
that depends only on the isomorphism type of G, where H is either a primitive
permutation group with H ∼= G, or a quasisimple absolutely irreducible matrix
group with H/Z(H) ∼= G. For example, for G ∼= Alt(n) we choose H = Alt(n), and
for G ∼= PSL(n, q) we choose H = SL(n, q). We assume also (as in the condition
(iv) for G) that we can test arbitrary elements of the group Sym(n) or GL(n, q)
that contains H for membership of H .
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The algorithm referred to in part (iv) is known as a solution to the rewriting
problem in G on Y . In practice we do not store the words that arise as ordinary
words over Y , which would be impractically long in many cases, but use straight
line programs (see, for example [17, Section 3.1.3]) as a more compact storage
method. Note that, since from (ii) we can express the elements of Y as words over
the original generators X , we can also express arbitrary group elements as words
(or rather straight line programs) over X .

Constructive recognition algorithms for the simple groups is currently an active
area of research. The alternating groups can be dealt with by the algorithm of
Bratus and Pak [6], which has been implemented in Magma by Holt. Methods for
the classical groups are described in [21]. However, these algorithms have a factor
of q in their complexity, making them impractical over large fields. Alternative al-
gorithms are currently under development by Leedham-Green and O’Brien. They
rely on the special cases SL(2, q) and SL(3, q) which have been dealt with in [13]
and [27] respectively. Algorithms for the Suzuki and Ree groups have been devel-
oped by Bäärnhielm in [3] and [2] respectively. Many sporadic groups can be dealt
with using the Ryba algorithm described in [16].

1.2. Aschbacher’s Theorem
The major result upon which the Matrix Group Recognition Project is based is

a theorem by Aschbacher [1] on the subgroup structure of the general linear group,
which we shall now paraphrase.

Theorem 1.2 ([1]). Let V be the vector space of row vectors on which GL(n, q)
acts, let G be a subgroup of GL(n, q), and let Z be the group of scalar matrices of G.
Then one of the following is true.
C1. G acts reducibly.
C2. G acts imprimitively: G preserves a decomposition of V as a direct sum V1 ⊕

V2⊕· · ·⊕Vr of r > 1 subspaces of dimension s, which are permuted transitively
by G, and so G � GL(s, q) 	 Sym(r).

C3. G acts on V as a group of semilinear automorphisms of a space of dimension
n/e over the extension field Fqe for some e > 1, and so G embeds in ΓL(n

e , q
e).

(This covers the class of ‘absolutely reducible’ matrix groups where G embeds
in GL(n

e , q
e).)

C4. G preserves a decomposition of V as a tensor product U ⊗ W of spaces of
dimensions n1, n2 > 1 over Fq. Then G is a subgroup of the central product
of GL(n1, q) and GL(n2, q).

C5. G is definable modulo scalars over a subfield: for some proper subfield Fq′ of
Fq, Gg � GL(n, q′).Z for some g ∈ GL(n, q).

C6. For some prime r, n = rm and G is contained in the normaliser of an ex-
traspecial group of order r2m+1 or of a group of order 22m+2 and of symplectic
type.

C7. G is tensor-induced : it preserves a decomposition of V as V1 ⊗V2 ⊗ · · ·⊗Vm,
where each Vi has dimension r > 1 and the set of Vi is permuted transitively
by G, and so G/Z � PGL(r, q) 	 Sym(m).

C8. G contains and normalises a classical group in its natural representation.
C9. G is almost simple modulo scalars: for some nonabelian simple group T we

have T � G/Z � Aut(T ).
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In short this theorem states that either G is almost simple modulo scalars (in
C8 or C9) or else preserves some natural geometric structure. If G lies in C1–C7
then we obtain a natural geometric directly computable homomorphism from G to
some “smaller” group. We define a directly computable homomorphism to be one
that can be evaluated without solving the rewriting problem in G; the action of a
matrix on an invariant subspace, for example.

Many papers have now been published that describe algorithms and their imple-
mentations that recognise groups that lie in one or other of the Aschbacher classes.
We shall cite these when we come to describe our procedures for handling groups
that lie in these classes in Subsection 2.2.

2. Computing a chief series

2.1. Sequences of homomorphisms
As we explained in the introduction, our first aim is to construct a normal se-

ries in our input group G � GL(n, q) in which the quotients are either soluble
groups or direct products of isomorphic nonabelian simple groups. This series will
be represented by a sequence of homomorphisms.

Definition 2.1. We define a preliminary sequence for G � GL(n, q) to be a se-
quence (φ1, . . . , φk) of homomorphisms and a descending sequence G = K0 � K1 �
K2 · · · � Kk � 1 of normal subgroups of G that satisfy the following properties:

(i) Ki−1 � Domain(φi) � GL(n, q) for 1 � i � k.
(ii) ker(φi) ∩Ki−1 = Ki for 1 � i � k.
(iii) For each i, im(φi) is either a soluble group defined by a polycyclic presentation

or a direct product of isomorphic nonabelian simple groups.
(iv) im(φk) is abelian and ZG � Kk−1, where ZG is the scalar subgroup of G.
(v) Kk = Op(G), where p is the defining characteristic of G.

In addition, we shall say that the sequence is correct on scalars if ZGOp(G) =
Kk−1 in (iv).

We denote the sequence (φ1, . . . , φk) by [φ](k). Condition (ii) simply defines the
subgroups Ki from the maps φi, so we can refer to [φ](k) as a preliminary sequence
for G if the remaining conditions are satisfied. In fact we will almost always have
G = Domain(φ1) – the only exception is when we adjoin some scalars to G in
AlmostSimpleMaps below – but the remaining φi will frequently be defined on
a larger domain than Ki−1. (This is a potential source of inefficiency in our overall
procedure, because we are only interested in the restriction of φi to Ki−1, but we
may on occasion waste effort in analysing the action of φi on a larger domain.)

Note that Condition (v) says that we insist that Op(G) occurs at the bottom of
the normal series for G. This subgroup can only be nontrivial for reducible groups.
Condition (iv) says that the scalar subgroup ZG of G is also pushed to the bottom
of the series, but above Op(G). We allow the final map φk to be trivial if ZG = 1.

The first step in the algorithm is to construct the maps [φ](k). This is done by
means of a recursive algorithm based on Aschbacher decompositions. The maps φi

in the sequence will all be directly computable homomorphisms, as defined in Sub-
section 1.2. They will either be maps associated with Aschbacher decompositions,
or will involve other straightforward computations, such as determinants.
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The calculation and identification of the kernels and images, which will be dis-
cussed in Subsection 2.3, is only carried out after all of the maps φi have been
defined. Note that some of the layers Ki−1/Ki in the series could turn out to be
trivial.

The properties (i) – (v) listed will be satisfied by [φ](k) provided that all of our
procedures work correctly. As we shall see, some of them have a small probability
of returning incorrect answers, but these will be detected either when we identify
the images and kernels, or when we verify the correctness of the complete series.
It is the restriction of φi to Ki−1 that will be used to define and work with the
quotient Ki−1/Ki of the series. Condition (i) ensures that the domain of φi is large
enough to ensure that we can evaluate it on Ki−1.

Another point to note is that we often represent insoluble images of the φi as
direct products of quasisimple groups and work modulo scalars. For example, an
image that is really isomorphic to PSL(n, q)d for some n, q, d would typically be
represented as SL(n, q)d in its natural representation as a subgroup of SL(dn, q).
In such cases, φi is represented in the implementation by a map φ̃i with codomain
SL(dn, q), for which φi(g) = φ̃i(g)Z(SL(dn, q)) for g ∈ Domain(φi).

In general, a map ψ : G → GL(n, q) for which the induced composite map
ψ : G→ PGL(n, q) is a homomorphism is known as a projective homomorphism or
a homomorphism mod scalars. We define the kernel ker(ψ) of a projective homo-
morphism to be the kernel of the induced homomorphism to PGL(n, q), and the
image im(ψ) to be the complete inverse image in GL(n, q) of the image in PGL(n, q)
of ψ.

We fix some general notation regarding arbitrary sequences of homomorphisms.
Given two sequences [φ](k) and [ψ](m), we shall denote the concatenation of the two
sequences by [φ](k) cat [ψ](m). We may also append a single homomorphism ζ to
a sequence and denote the result by [φ](k) cat ζ. We denote the pruned sequence
(φ1, . . . , φk−1) by[φ](k−1)

Let ψ : G → H be an epimorphism for a matrix group H , and let [φ](k) be
a preliminary sequence for H . Then we define the pullback Pullback([φ](k), ψ)
of [φ](k) through ψ to be the sequence [ζ](k) with ζi = φi ◦ ψ for each i. Then
Pullback([φ](k−1), ψ) represents a normal series for the quotient G/ ker(ψ) ∼= H
of G.

We shall also use the pullback construction for projective homomorphisms ψ :
G→ GL(d, r). In that case, let H = im(ψ) and let [φ](k) be a preliminary sequence
for H . Then, for 1 � i � k − 1, we have ZH � ker(φi), and so the composites
φi ◦ψ (1 � i � k−1) are (genuine) homomorphisms. We shall denote this sequence
of composites by Pullback([φ](k−1), ψ). If, in addition, H acts irreducibly (so
Op(H) = 1) and the preliminary sequence [φ](k) for H is correct on scalars, then
Pullback([φ](k−1), ψ) will represent a normal series for the quotient G/ ker(ψ) of
G.

If φi : G→ Hi are homomorphisms for 1 � i � k, then we denote by φ1×· · ·×φk

the homomorphism from G to H1 × · · · ×Hk with g 
→ (φ1(g), . . . , φk(g)).
Our algorithm to compute a preliminary sequence [φ](k) for G is described in

Subsection 2.2. In Subsection 2.3, we explain how the images and kernels of these
maps are computed using a Monte Carlo algorithm that may underestimate their
orders. This series is verified and (if required) corrected by constructing a presen-
tation of G, turning the whole process into a Las Vegas algorithm. The verification
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process is described in Subsection 2.4, where we also explain how to test mem-
bership of arbitrary elements of GL(n, q) in the subgroups Ki in the series. So, in
particular, this gives us a membership test for K0 = G.

The remainder of the normal series from Op(G) to 1 is computed by exploiting
the module structure of G on its lower triangular blocks (Subsection 2.5). The
normal series for G is then refined into a chief series (Subsection 2.6).

2.2. Constructing the preliminary sequence of maps
The main procedure to be described in this subsection is NormalSeriesMaps,

which constructs a preliminary sequence for a matrix group G. This is the part of
the procedure for finding a chief series that differs most from the composition tree
method of Leedham-Green and O’Brien, so we shall treat this topic in more detail
than the other parts of the procedure, and provide pseudocode for the analysis of
the groups in each of the nine Achbacher classes.

We shall assume that a version of this algorithm is available for permutation
groups. This is dealt with by the BSGS techniques described by Cannon and Holt
in [7] and implemented in Magma. Since a permutation group has no defining char-
acteristic or scalar subgroup, we define the final map φk in a preliminary sequence
for a permutation group to have trivial domain and image, and we do not insist
that im(φk−1) is abelian.

We shall not write out the pseudocode for NormalSeriesMaps itself, since it
simply uses the methods discussed in Section 1 to find an Aschbacher decomposi-
tion, and then calls the appropriate subroutine for that type of decomposition. As
we explained in Section 1, there are programs available that test G for membership
in each of the Aschbacher classes C1–C8. When they find such a decomposition
they return any associated directly computable homomorphisms, such as the ac-
tion of a matrix on a proper subspace in the reducible case. If the tests fail to find
a decomposition in any of these classes, then we assume that the group is in Class
C9, in which case it is almost simple modulo scalars and is not equal to a classical
group in its natural representation.

Unfortunately, several of these tests, including the tests for classes C2, C4, C5,
C6 and C7, may occasionally fail to reach a decision within a reasonable time. In
that case, the group is almost always in Class C9 even if it is in one of the other
classes as well, so our policy is to abort the test and, provided that none of the
other tests returns a positive answer, to assume that the group is in C9. This means
that there is a small danger that this assumption is false, and then the group might
even be falsely identified as being a specific almost simple group. The error would
however be discovered when we come to perform constructive recognition of the
(nonabelian) simple composition factors, which will be discussed in Subsection 2.4.

We remark also that, as we shall see later, the correctness of the complete pro-
cedure requires us to test for classes C1, C2 and C3 before C4, C5 and C7, and to
test for C4 before C6. Errors in which, for example, we test for and find that G lies
in C4 after having failed to detect that it also lies in C2 are extremely rare (in fact
we have never known them to occur), but they would be detected when we applied
NormalSeriesMaps recursively to the actions on the tensor factors.

We shall now describe each of the procedures for the individual Aschbacher
classes that are called by NormalSeriesMaps. These procedures generally call
NormalSeriesMaps recursively on a permutation group, or on a matrix group of
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smaller dimension or over a smaller field than G. In fact all of these recursive calls
are to permutation groups or to irreducible matrix groups, and so the final map φk

in the preliminary sequence returned by any of these calls will have trivial kernel.
Indeed, the only procedure that can return a final map φk with nontrivial kernel
Op(G) is ReducibleMaps.

We claim that, provided that no errors are made in the execution of these proce-
dures (as explained above, certain types of errors may occur with small probability,
and these would be detected later), the sequence of homomorphisms returned by
each of the procedures is a preliminary sequence for G. Furthermore we claim that
the procedures that process Aschbacher decompositions in the classes C4–C9 will
return preliminary sequences that are correct on scalars. These properties need to
be proved as part of the correctness proofs of the procedures, and it may be assumed
by induction that they are true for all recursive calls made within the procedures.
Having said that, we shall not in fact write out formal correctness proofs, but we
shall of course point out any aspects of them that may not be clear.

Throughout, we refer to the natural FqG-module of row vectors by MG, and
the vector space of row vectors by VG. Given any G-module (or vector space)
M we define ActionGroup(M) to be the group generated by the action of the
generators of G on M and Action(M) to be the homomorphism that maps g ∈ G
to its action on M . We also use ProjectiveAction(M) to denote an induced
projective homomorphism; this arises for groups that preserve tensor product and
induced tensor product decompositions.

We shall denote the scalar subgroup of a matrix group G by ZG and we define
the function ScalarMap(n, q) to be the isomorphism from ZGL(n,q) → F×

q with
F×

q represented by a polycyclic presentation. In the procedures to calculate a pre-
liminary sequence for groups in the Aschbacher classes C4–C9, we shall define the
final map in the sequence to be ScalarMap(n, q). As we shall see, this will ensure
that the returned preliminary sequence is correct on scalars. This is necessary for
the correctness of the complete procedure. The preliminary sequences defined for
groups in classes C1, C2, and C3 will not necessarily be correct on scalars.

All of the procedures take as input a subgroup G of GL(n, q) and output a
preliminary sequence for G. The input group is assumed to lie in the Aschbacher
class for that procedure, and in some cases it is assumed not to lie in various other
Aschbacher classes. As we have already mentioned, for all procedures other than
ReducibleMaps, we assume that G is not in Class C1. Other assumptions of this
type will be justified as they arise.

ReducibleMaps(G)
Assume: G lies in Class C1.

1 Construct (using the Meataxe) a composition series
0 = Em < · · · < E1 < E0 = MG for MG;

2 for i ∈ [1 . .m]
3 do Ai := ActionGroup(Ei−1/Ei); ψi := Action(Ei−1/Ei);
4 [φ(i)](ki) := NormalSeriesMaps(Ai);
5 [ζ(i)](ki) := PullBack([φ(i)](ki), ψi);
6 return [ζ(1)](k1−1) cat · · · cat [ζ(m)](km−1) cat (ζ(1)

k1
× · · · × ζ

(m)
km

);
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Notice that we push the scalars coming from each of the irreducible actions of
G on Ei−1/Ei to the bottom of the preliminary sequence returned for G. So the
image of the final map in the sequence returned will be abelian, and its domain will
contain ZG, possibly as a proper subgroup.

Our policy of analysing, via the recursive call to NormalSeriesMaps, each of
the action groups of Ei−1/Ei separately appears to be necessary in order to obtain
a normal series for G, but in some examples it can result in our repeating the
analyses of the same chief factors of G. This will happen, roughly speaking, when
the action of G on the Ei−1/Ei is diagonal rather than a full direct product. We
could, in principle, avoid such repetition if some of the Ei−1/Ei were isomorphic
as G-modules, but we have not yet attempted this in the implementation.

We turn now to groups in Class C2. Notice at Line 7 in the procedure below, we
are applying NormalSeriesMaps recursively only to the action of the stabilizer of
the first block in the decomposition on that block. The corresponding actions on the
other blocks are computed by conjugation in Line 12. This is a potentially significant
gain in efficiency compared with the composition tree program of Leedham-Green
and O’Brien [23], in which the kernels of the actions on all of the blocks are analysed
separately.

The maps ζi in Line 12 will not necessarily be surjective even when ψi is sur-
jective, but the images will be subdirect products of the images of the ψi and so,
in the insoluble case, will still be direct products of isomorphic simple groups. (See
Proposition 2.9 and the associated discussion in Subsection 2.3 below.)

ImprimitiveMaps(G)
Assume: G lies in Class C2 but not in Class C1.

1 Construct (using methods described in [19]) a set of blocks of imprimitivity
Ω = {V1, . . . , Vr} for G, along with a homomorphism ρ : G→ Sym(Ω);

2 Σ := im(ρ);
3 [τ ](k) := Pullback(NormalSeriesMaps(Σ), ρ);
4 G1 := GV1 the stabiliser of V1 in G;
5 Let M1 be V1 considered as an FqG1-module;
6 A := ActionGroup(M1); θ := Action(M1);

(∗ Note that Domain(θ) = G1 ∗)
7 [ψ](m) := NormalSeriesMaps(A);
8 for i ∈ [1 . . r]
9 do Choose ei ∈ G with V

ρ(ei)
i = V1;

10 Let αei : G→ G be the map αei(g) = e−1
i gei;

(∗ So αei(GVi) = G1 and Domain(θ ◦ αei ) = GVi ∗)
11 for i ∈ [1 . .m]
12 do ζi := ψi ◦ θ ◦ αe1 × · · · × ψi ◦ θ ◦ αer ;
13 return [τ ](k) cat [ζ](m);

Groups in Class C3 will be subdivided into those that act absolutely irreducibly
and those that do not. Absolutely irreducible subgroups of GL(n, q) in Class C3
that are isomorphic to subgroups of ΓL(n/e, qe) containing a field automorphism
of order e become imprimitive with e blocks of imprimitivity when regarded as
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subgroups of GL(n, qe), so our method in that case is to extend the ground field
of G and call ImprimitiveMaps. Groups that are not absolutely irreducible are
handled by the following procedure.

AbsolutelyReducibleMaps(G)
Assume: G acts irreducibly but not absolutely irreducibly on MG.

1 Construct (using the methods outlined in [20]) an isomorphism
ψ : G→ H � GL(n

e , q
e) where H is the irreducible reduced-degree

representation of G;
2 [φ](k) := NormalSeriesMaps(H);
3 return Pullback([φ](k), ψ);

For groups in Class C4, which preserve a tensor product decomposition VG =
U⊗V , the induced actions of G on U and V are only projective actions. In order to
use the pullback construction, we therefore require that the preliminary sequence
computed on the images of these actions are correct on scalars. Recall that we
are claiming that the procedures for processing groups in Classes C4–C9 return
preliminary sequences that are correct on scalars, and that we are assuming by
induction that this is true for recursive calls of these procedures. So we need to
assume that the induced actions of G on U and V do not lie in any of the classes
C1, C2, C3. To justify this, we shall now show that if either of the actions were in
C1, C2 or C3 then so would G be, in which case we would have already called one
of the earlier procedures on G.

Theorem 2.2. Let G preserve a tensor decomposition of VG, as VG = U ⊗W .

1. If G acts reducibly on U then G acts reducibly on VG.

2. If G acts imprimitively on U then G acts imprimitively on VG.

3. If the action of G on U is not absolutely irreducible then G is not absolutely
irreducible on VG.

4. If the action of G on U is semilinear then G is semilinear on VG.

Proof. The proofs of 1 and 2 are straightforward. For 3, assume that the action of G
on U is not absolutely irreducible. Then there exists a non-scalar C ∈ GL(U) that
centralises the action of g on U for all g ∈ G. Now let D be a matrix in GL(n, q)
that preserves the decomposition U ⊗W of VG and acts as C on U and as IW on
W . Then D is a non-scalar matrix that centralises G.

For 4, we know from 3 that G has a normal irreducible subgroup N that does
not act absolutely irreducibly. Let D be the non-scalar matrix that centralises N
and acts as IW on W as constructed above. Let g ∈ G, let g1 be the induced action
of g on U and let C be the induced action of D on U . Then since G is semilinear on
U there exists i = i(g) such that Cg1 = g1C

qi

, but the action of D on W is trivial
so Dg = gDqi

and G is semilinear.

232https://doi.org/10.1112/S1461157000000589 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000589


Chief series and the soluble radical of a matrix group over a finite field

TensorMaps(G)
Assume: G lies in Class C4 but not in Classes C1, C2, C3.
(∗ We use the algorithm of [24] to find U and W with VG = U ⊗W ∗)

1 ψ1 := ProjectiveAction(U); ψ2 := ProjectiveAction(W );
2 H1 := im(ψ1); H2 := im(ψ2);
3 [α](k1) := NormalSeriesMaps(H1); [β](k2) := NormalSeriesMaps(H2);

(∗ By Theorem 2.2 and induction, [α](k1) and [β](k2) are correct on scalars ∗)
4 [φ](k1+k2−1) := Pullback([α](k1−1), ψ1) cat Pullback([β](k2−1), ψ2)

cat ScalarMap(n, q);
5 return [φ](k1+k2−1);

Groups in Class C5 are conjugates of subgroups of 〈GL(n,K), Z〉, where Z is the
scalar subgroup of GL(n, q) and K is a proper subfield of Fq. They therefore give
rise to a projective homomorphism ψ : G→ H � GL(n,K) with kernel ZG.

It is easy to see that if the image H of ψ is reducible or imprimitive then so is
G. Furthermore, we leave it to the reader to prove that if H is reducible but not
absolutely irreducible, then G is either reducible or is not absolutely irreducible,
and if H is absolutely irreducible but semilinear, then G is either semilinear or
imprimitive. So we may assume that H is not in Class C1, C2 or C3, and hence
that the preliminary sequence computed for H is correct on scalars.

SmallerFieldMaps(G)
Assume: G lies in Class C5 but not in Classes C1, C2, C3.

1 Construct (using the methods given in [14]) a projective homomorphism
ψ : G→ H � GL(n,K) for a proper subfield K of Fq;

2 [φ](k) := NormalSeriesMaps(H);
(∗ [φ](k) is correct on scalars ∗)

3 [α](k−1) := Pullback([φ](k−1), ψ);
4 return [α](k−1) cat ScalarMap(n, q);

Groups G in Class C6 have a normal subgroup E that is either extraspecial of
order r2m+1 or a 2-group of symplectic type of order 22m+2 for a prime r and integer
m � 1, where |Z(E)| = r or 4, respectively. (A 2-group of symplectic type is a
central product of an extraspecial 2-group with a cyclic group of order 4.) So we have
an action of G/E on E/Z(E) giving rise to an embedding ψ : G/E → GL(2m, r).
We want to apply NormalSeriesMaps recursively to im(ψ) and then to pull the
resulting preliminary series back through ψ and, for this to work properly, we need
to be able to assume that im(ψ) is irreducible, thereby ensuring that Or(im(ψ)) = 1.
In the next few lemmas we show that, if im(ψ) is reducible, then G lies in one of
the classes C2, C3, C4, which we can assume is not the case. We shall prove the
lemmas only for the extraspecial case.

Lemma 2.3. Let r be a prime and let E � GL(rm, q) be an extraspecial r-group
of order r2m+1, with r � q. Then E is the central product of m extraspecial groups
of order r3. Furthermore, E preserves a tensor decomposition of ME as ME =
M1 ⊗ · · · ⊗Mm, where the restriction of E to each Mi is a representation of an
extraspecial group of order r3.

Proof. See [15, Theorem 5.5.5].
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Lemma 2.4. Let E � GL(2m, q) be a 2-group of symplectic type of order 22m+2,
with q ≡ 1 (mod 4). Then E preserves a tensor decomposition of ME as ME =
M1 ⊗ · · · ⊗Mm.

Lemma 2.5. Let r be a prime and let E � GL(rm, q) be an extraspecial r-group
of order r2m+1 or a 2-group of symplectic type of order 22m+2. Let H be a proper
subgroup of E that contains Z(E). Then H acts reducibly.

Proof. It is enough to show H acts reducibly when |G : H | = r. Assume first that
m = 1, so |E| = r3. Then H has order r2, so is abelian. By [15, Theorem 3.2.3], H
has no faithful irreducible representations, so H must act reducibly.

In general E is a central product of m extraspecial groups of order r3. As H
has index r in E, it can be seen that H is a central product of r − 1 extraspecial
groups of order r3 and an abelian group of order r2. Hence one of the tensor
factors of the representation of H in GL(rm, q) is reducible and H acts reducibly
by Theorem 2.2.

Theorem 2.6. Let G � GL(rm, q) act irreducibly and have a normal subgroup E
that is either an extraspecial r-group or, when r = 2, a 2-group of symplectic type.
Let L be the FrG-module defined by the conjugation action of G on E/Z(E). If G
acts reducibly on L then either G acts imprimitively on VG, or G acts as a group
of semilinear automorphisms on VG, or G preserves a tensor decomposition of VG.

Proof. This follows from the general theory of Smash described in [18]. Briefly,
Clifford’s Theorem [15, Theorem 3.4.1] states that, if N � G, then VG splits as a
direct sum W1 ⊕ · · · ⊕Wk of irreducible FqN -modules, all of the same dimension.
For some t, s � 1, with ts = k, the Wi’s partition into t sets containing s pair-
wise isomorphic FqN -modules each, and if V1, . . . , Vt are each the sum of pairwise
isomorphic Wi, so that V = V1 ⊕ · · · ⊕ Vt, then G permutes the Vi transitively.

If G acts reducibly on L then G normalises some proper subgroup, N say, of E.
By the previous lemmas, N acts reducibly on VG so, in the context of Clifford’s
Theorem, we must have k > 1.

If t > 1, then {V1, . . . , Vt} forms a block system for G and G is imprimitive.
Otherwise VG decomposes as a direct sum of k irreducible pairwise isomorphic
FqN -modules, W = W1,W2, . . . ,Wk. From the descriptions given in [18] we see
that if each Wi acts absolutely irreducibly then G preserves a tensor decomposition
of VG as U ⊗W , where N acts as scalars on U . If each Wi does not act absolutely
irreducibly then G is semilinear.

Let G � GL(rm, q) act irreducibly, and suppose that G has an extraspecial
normal r-subgroup or a normal 2-subgroup of symplectic type E. Then methods
described in [18] provide us with the action of G on the FrG-module E/Z(E),
where Z(E) is a group of scalar matrices of order r, or of order 4 if E is a 2-
group of symplectic type. The kernel of this action is EZG. We also obtain elements
e1, . . . , e2m ∈ E whose images in E/Z(E) are a free basis for the elementary abelian
group. We wish to construct a homomorphism α : EZG → E/Z(E) that has kernel
ZG.
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Theorem 2.7. Let E and e1, . . . , e2m be as defined above and let ē1, . . . , ē2m be
the images of the ei in E/Z(E). Let z be a scalar element of G of order r. Define
α : EZG → E/Z(E) by α(g) = ē i1

1 · · · ē i2m
2m , where [g, ej] = zij for 1 � j � 2m.

Then α is a homomorphism with kernel ZG.

Proof. If j ∈ {1, . . . , 2m} and g ∈ EZG, then [g, ej] ∈ ZE , since ei and g commute
modulo ZG and [gy, ej] = [g, ej] for any scalar y. Also, [gh, ej] = [g, ej]h[h, ej] =
[g, ej][h, ej ] for any g, h ∈ EZG and j ∈ {1, . . . , 2m}, so α is a homomorphism.
Finally, [g, ej] = 1 for all 1 � j � 2m if and only if g ∈ Z(EZG) = ZG, so
ker(α) = ZG and α is surjective.

ExtraSpecialNormaliserMaps(G)
Assume: G lies in Class C6 but not in Classes C1, C2, C3, C4.
(∗ We find E and the module L := E/Z(E) as described in [18] ∗)

1 ψ := Action(L); H := ActionGroup(L);
2 [φ](k) := NormalSeriesMaps(H);

(∗ ker(φk) = Or(G/EZG) = 1 by Theorem 2.6 ∗)
3 Let α : EZG → E/Z(E) be the homomorphism defined in Theorem 2.7.
4 return Pullback([φ](k), ψ) cat α cat ScalarMap(n, q);

We require results for the tensor induced case similar to those in the tensor case.

Theorem 2.8. Let G be a tensor induced group. So VG = V1 ⊗ · · · ⊗ Vm. For
1 � i � m let Gi be the subgroup of G that stabilises Vi and let Ai be the restriction
of Gi to Vi. Note that the Ai are all isomorphic.

1. If A1 acts reducibly on V1 then G acts reducibly on VG.

2. If A1 acts imprimitively on V1 then G acts imprimitively on VG.

3. If the action of A1 on V1 is not absolutely irreducible then G acts reducibly
on VG.

4. If the action of A1 on V1 is semilinear then G acts imprimitively on VG.

Proof. The proofs of 1 and 2 are straightforward. For 3, if Fqe is the splitting field
for V1 under A1, then Fqe is the splitting field for Vi under Ai for 1 � i � m. Over
Fqe we have Vi = Li ⊕Lσ

i ⊕ · · · ⊕Lσe−1

i , where Li is absolutely irreducible and σ is
the field automorphism. Then the subspace

(L1 ⊗ · · · ⊗ Lm) ⊕ (Lσ
1 ⊗ · · · ⊗ Lσ

m) ⊕ · · · ⊕ (Lσe−1

1 ⊗ · · · ⊗ Lσe−1

m )

is fixed by the field automorphism σ. Hence it can be written over Fq. It is also
fixed by all permutations of the tensor factors, hence by elements of G. So G is
reducible. The proof of 4 is similar and is left to the reader.

The code for TensorInducedMaps is similar to that for ImprimitiveMaps.
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TensorInducedMaps(G)
Assume: G lies in Class C7, but not in Classes C1, C2, C3, C4.

1 Construct (using methods described in [25]) a set of tensor factors
Ω = {V1, . . . , Vr} permuted by G, and a homomorphism ρ : G→ Sym(r);

2 Σ := im(ρ);
3 [τ ](k) := Pullback(NormalSeriesMaps(Σ), ρ);
4 G1 := GV1 , the stabiliser of V1 in G;
5 Let M1 be V1 considered as an FqG1-module;
6 θ := ProjectiveAction(V1); A := im(θ);
7 [ψ](m) = NormalSeriesMaps(A);

(∗ [ψ](m) is correct on scalars by Theorem 2.8 and induction ∗)
8 for i ∈ [1 . . r]
9 do Choose ei ∈ G with V

ρ(ei)
i = V1;

10 Let αei : G→ G be the map αei(g) = e−1
i gei;

11 for i ∈ [1 . .m−1]
12 do ζi := ψi ◦ θ ◦ αe1 × · · · × ψi ◦ θ ◦ αer ;

(∗ ZA = ker(ψm−1) and the ζi are normal homomorphisms ∗)
13 return [τ ](k) cat [ζ](m−1) cat ScalarMap(n, q);

If G is in Class C8 then the algorithms of [28] will return the type of classical
group normalised by G and, if G does not contain SL(n, q), they will also return a
classical form Φ that is fixed by G modulo scalars. We denote the action of g ∈ G
on the form Φ by Φg. So, for g ∈ G, Φg = wΦ for some non-zero scalar w ∈ Fq.

The code for handling these groups is complicated by the fact that the structure
of the normaliser Δ of the quasisimple classical group Ω in GL(n, q) varies from
case to case, and also by our need to push the scalar subgroup ZG of G to the
bottom of the normal series. We therefore present separate code for the four cases.

Here is a brief summary of the structure of Δ; we refer the reader to [22, Chapter
2] for further details. There are subgroups S and I of Δ with Ω � S � I � Δ. In the
linear case, I = Δ = GL(n, q). Otherwise, Δ (sometimes known as the conformal
unitary, symplectic or orthogonal group) is the subgroup of GL(n, q) that fixes the
form modulo scalars, and I is the subgroup that fixes the form; that is, Φg = Φ for
g ∈ I. In the unitary groups and in all groups in even characteristic or odd degree,
Δ is generated by I and scalar matrices, but in the symplectic and orthogonal
groups in odd characteristic and even degree, the subgroup generated by I and the
scalars has index two in Δ. In all cases, S is the ‘special’ subgroup of matrices
of determinant 1. In the symplectic case S = I, and in the orthogonal groups
|I : S| = 1 or 2, respectively, in even and odd characteristics. The quasisimple
group Ω is the derived subgroup of S and has index 2 in S in the orthogonal
groups, and is equal to S otherwise.

Membership of elements g of Δ in I and in S is readily tested by computing Φg

and det(g). Membership of elements g of S = SOε(n, q) in Ω = Ωε(n, q) can also be
easily computed using the function SpinorNorm; see [33, p. 163] for a description.
The value of SpinorNorm(g) is 0 when g ∈ Ω and 1 otherwise. It turns out that, if
n is even, q is odd and det(Φ) is a non-square, then −In has spinor norm 1, and so
S and Ω are equal mod scalars, and we take the map φ3 in C8MapsOrth(G) to be
trivial. In all other cases, −In has spinor norm 0 and |PSOε(n, q) : PΩε(n, q)| = 2.
Note that φ3 is well-defined in this situation, because the scalar zg is unique up to
multiplication by −In.
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Let γ : F×
q → F×

q /N with N := 〈det(g) | g ∈ ZG〉 be the natural epimorphism
with the image represented as a group with polycyclic presentation. We denote by
detZ the homomorphism γ ◦ det : GL(n, q) → F×

q /N . Note that, with I and S
defined as above, we have ker(detZ) ∩ I = SZG. Note also that the scalar zg in
the procedures below, which is chosen to make gz−1

g ∈ S in all cases, can be easily
computed from det(g) and Φg.

C8MapsSL(G)
Assume: SL(n, q) � G � GL(n, q)

1 φ1 := detZ ;
2 Define φ2 : 〈SL(n, q), ZG〉 → PSL(n, q) from the projective homomorphism

g 
→ gz−1
g , where zg is a scalar with det(zg) = det(g);

3 return (φ1, φ2,ScalarMap(n, q));

C8MapsUnitary(G)
Assume: G contains and normalises SU(n,

√
q).

(∗ Let Φ be the unitary form associated to G ∗)
1 φ1 := detZ ;
2 Define φ2 : 〈SU(n, q), ZG〉 → PSU(n,

√
q) from the projective homomorphism

g 
→ gz−1
g , where zg is a scalar with det(zg) = det(g) and Φg = z

√
q+1

g Φ;
3 return (φ1, φ2,ScalarMap(n, q));

C8MapsSp(G)
Assume: G contains and normalises Sp(n, q).
(∗ Let Φ be the symplectic form associated to G ∗)

1 Define φ1 : G→ Z2 = {0, 1} as follows:
2 Let ω ∈ Fq be such that Φg = ωΦ;
3 if ω is a square then φ1(g) := 0 else φ1(g) := 1;

(∗ φ1 is always trivial when q is even ∗)
4 Define φ2 : 〈Sp(n, q), ZG〉 → PSp(n, q) from the projective homomorphism

g 
→ gz−1
g , where zg is a scalar with Φg = z2

gΦ;
5 return (φ1, φ2,ScalarMap(n, q));

C8MapsOrth(G)
Assume: G contains and normalises Ωε(n, q).
(∗ Let Φ be the orthogonal or quadratic form associated to G ∗)

1 Define φ1 : G→ Z2 = {0, 1} as follows:
2 Let ω ∈ Fq be such that Φg = ωΦ;
3 if ω is a square then φ1(g) := 0 else φ1(g) := 1;

(∗ φ1 is always trivial when q is even or n is odd ∗)
4 φ2 := detZ ;
5 Define φ3 : 〈SOε(n, q), ZG〉 → Z2 = {0, 1} as follows:
6 if n is even, q is odd, and det(Φ) is a non-square
7 then φ3(g) = 0;
8 else φ3(g) := SpinorNorm(gz−1

g )
where zg is a scalar with det(zg) = det(g) and Φg = z2

gΦ;
9 Define φ4 : 〈Ωε(n, q), ZG〉 → PΩε(n, q) from the projective homomorphism

g 
→ gz−1
g , where zg is a scalar with det(zg) = det(g) and Φg = z2

gΦ;
10 return (φ1, φ2, φ3, φ4,ScalarMap(n, q));
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To deal with groups in Class C9, we make use of the following procedure, devel-
oped by Leedham-Green and O’Brien in [25], to perform membership testing in a
normal subgroup of a group.

ElementInN(G,N, g)
Input: Group G, normal subgroup N of G, element g ∈ G.

1 m := |g|;
2 for some number I of times
3 do a := Random(N);
4 m := GCD(m, |ag|);
5 if m = 1
6 then return true;
7 return false;

It is easy to see that if ElementInN returns true then g ∈ N , but it could
conceivably return a false negative; that is, it could claim that an element g ∈ N
is not in N . We shall only be applying it when N is quasisimple, in which case an
unpublished result of Babai, Pálfy and Saxl enables us to prove an upper bound on
the probability of a false negative as a function of the chosen number I of iterations
of the loop of the procedure. In other words, we can make ElementInN into a
Monte-Carlo algorithm in this situation. We omit the details, which can be found
in [4].

Using ElementInN, we can test whether a group G is perfect. The commutator
subgroup of G is equal to the normal closure of the subgroup H generated by the
commutators of the generators of G. Using a variant of the product replacement
algorithm we can compute random elements of the normal closure of a subgroup H
of G. Therefore, using a variant of ElementInN where Random(N) in Line 3 is
replaced by a function computing a random element of the normal closure of N , we
can determine if each generator of G lies in the normal closure of H . Once again,
this method can return false negatives but not false positives and, if the derived
group of G is quasisimple, then we can estimate upper bounds for the probability
of a false negative.

This in turn enables us to define a procedure StableDerivative, which will
compute the last member G(∞) of the derived series of a group G and, if G(∞) is
quasisimple, then the probability of an incorrect result can be estimated and made
as low as we wish.

Finally, given a normal subgroup N of G for which the index |G : N | is small,
we can use ElementInN to enumerate the cosets of N in G, and then construct
the permutation representation CosetImage(G,N) of G on the right cosets of N
in G.

We are now able to present the algorithm AlmostSimpleMaps. Notice that we
apply CosetImage(G,N) only when N is quasisimple, and we apply
StableDerivative(G) only when G(∞) is quasisimple, so we can choose param-
eters to make the probability of a false result as small as we please. Note also that
in the application of CosetImage(G,N), G/N is contained in the outer automor-
phism group of a finite simple group, and so will be moderately small.

If we did make an error and underestimate the group N at this stage, then
the error would be detected when we carried out constructive recognition of the
simple group, since we would then be able to carry out membership testing in N
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deterministically, and we could verify that our coset representatives of N in G were
all genuinely in distinct cosets.

AlmostSimpleMaps(G)
Assume: G is absolutely irreducible and almost simple modulo scalars.

1 Ĝ := 〈G, z〉 where z is a generator of ZGL(n,q);
(∗ We actually compute a preliminary sequence for Ĝ ∗)

2 N := StableDerivative(G);
3 N̂ := 〈N, z〉;
4 φ1 := CosetImage(Ĝ, N̂);
5 Let φ2 : N̂ → N/Z(N) be defined by the projective homomorphism N̂ → N

which maps g 
→ zg, where z is a scalar with ElementInN(N̂ ,N, zg) = true;
6 return (φ1, φ2,ScalarMap(n, q));

During the computations that we carry out when applying NormalSeriesMaps

to a group G � GL(n, q), we can compute a multiset, M = {Se1
1 , . . . , S

em
m ,Zt1

p1
, . . . ,

Ztr
pr
}, where each Si is a nonabelian simple group, and the multiset of composition

factors of G/Op(G) is a subset of M . We only require M to contain the names of
the simple groups Si, and not any representations of the groups themselves. We
shall use this multiset M in Subsection 2.3 to obtain a probability estimate of the
number of generators required to generate the subgroups in a chief series of G.

We may compute M as follows. We assume that there is no difficulty in identify-
ing the composition factors that arise from permutation groups. The only algorithms
above that do not use recursion are AlmostSimpleMaps and the four C8Maps

procedures. At each step of these algorithms we store either the factorisation of the
order of the soluble image or the standard name of the quasisimple image, which
(in the case of AlmostSimpleMaps), we can find using non-constructive recogni-
tion. Hence, by recursion, with all maps φi constructed by NormalSeriesMaps

we may store either a factorization of im(φi) if it is soluble, or the standard name
of one the isomorphic simple groups in im(φi) along with an upper bound for the
number of copies. Observe also that this provides us with a test for the solubility
of a matrix group.

2.3. Evaluating the Images and Kernels
We assume now that we have successfully computed a preliminary sequence [φ](k)

for G � GL(n, q). At this stage we know only a superset of the composition factors
of G. The next step is to compute the images and kernels of the φi, which we do
as follows.

Let G0 = G. For i = 1, . . . , k, do the following.
1. Compute generators of the image Qi of the restriction of φi to Gi−1 by ap-

plying φi to a set of generators of Gi−1. (For i = 0 we just use the given
generating set of G.)

2. If Qi is insoluble then identify Qi constructively (see Subsection 1.1).
3. If i < k then compute generators of a subgroup Gi of ker(φi)∩Gi−1, for which

we hope that GiOp(G) = (ker(φi) ∩Gi−1)Op(G).
Since the φi are directly computable homomorphisms, Step 1 is straightforward, and
we shall discuss Steps 2 and 3 shortly. In the next subsection, we shall describe the
process in which we verify the correctness of GiOp(G) = (ker(φi)∩Gi−1)Op(G) for
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0 < i < k. After this verification we know that GiOp(G) = Ki for 0 � i < k, where
Ki are the subgroups associated with the preliminary sequence (Definition 2.1).
Note that, from the construction of [φ](k), we know that ker(φk) = Op(G), but we
do not attempt to find generators of Op(G) at this stage. We shall do that later, in
Subsection 2.5.

We turn now to the constructive recognition of the insoluble images Qi in Step 2.
Assume that im(φi) is a direct product Sl of isomorphic nonabelian simple groups.
Since (assuming that the kernels calculated so far are correct modulo Op(G)) Qi =
φi(Gi−1) is a normal subgroup of im(φi), Qi is a direct product Sm of some possibly
smaller number m of copies of S (Qi could even be trivial). Furthermore, in some
cases, particularly when φi arises from an application of ImprimitiveMaps or
TensorInducedMaps, im(φi) is defined as a subdirect product of a possibly larger
direct product of copies of S. So we must first determine l and then m.

Subdirect products of direct products of isomorphic nonabelian simple groups
are described by the following result, of which we leave the proof to the reader.

Proposition 2.9. Let G = S1 × S2 × · · · × Sn, where the Si are all isomorphic to
the same nonabelian simple group S, and let H be a subdirect product of G. Then
there is a partition Pi (1 � i � l) of the set {1, 2, . . . , n} such that H ∼= Sl, and the
intersection of H with each of the groups Gi := ×j∈PiSj for 1 � i � l is a diagonal
subgroup of Gi isomorphic to S.

In practice, provided that we can compute the projections of G onto the Si and
orders of elements in G, it is easy to calculate the partition Pi with an arbitrarily
small probability of error. We choose random elements g = (g1, . . . , gn) of G and
compute the orders of the components gi. Then |gj | = |gk| whenever j and k are
in the same set Pi but, with probability greater than 1/2, |gj | �= |gk| when j and k
are in different sets Pi.

So we can identify im(φi) and then φi(Gi−1), which is a normal subgroup of
im(φi), and consists of a direct product of some of the direct factors of im(φi),
which are again easily identified. So we can assume that we have a representation
of Qi as a direct product Sm of a known number m of copies of S.

Now, again by choosing random elements g of Qi, computing the orders of the
components of g, and taking suitable powers of g, it is not difficult to find elements
in the simple direct factors Si of Qi, and hence to find generators of the Si. We
then carry out constructive recognition of the Si as discussed in Subsection 1.1. By
checking that the relations of the presentation of the corresponding finite simple
group are satisfied in Si, we prove that Si is genuinely isomorphic to this simple
group. So, if we had failed to find an Aschbacher decomposition for Si and wrongly
concluded that Si was simple, then we would detect the error at this point. We
would also find out at this stage if we had underestimated the number m of copies
of S, although that particular error is very unlikely indeed.

The constructive recognition of the Si enables us to solve the rewriting problem
in Si, and it is straightforward to glue these solutions together to solve the rewriting
problem in Qi. This process can be made more efficient by using the fact that the Si

are permuted under the action ofG induced by conjugation in G and the application
of the map φi. So, once we have solved the rewriting problem in one Si, we can solve
it immediately in any Sj in the same orbit under this action of G. This refinement
results in a very significant improvement in performance. We refer the reader to
Section 2.3 of the second author’s PhD thesis [31] for further details.
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Now we turn to the construction of a generating set of ker(φi) ∩ Gi−1 modulo
Op(G) in Step 3 of the process summarised earlier. We may construct individual
random elements of ker(φi) ∩Gi−1 using the following method, which is described
in [23].

Let g be a random element of Gi−1. Then we can compute φi(g) ∈ Qi. Let
{x1, . . . , xk} be our generating set for Gi−1, so Qi is generated by {φi(x1), . . . ,
φi(xk)}. If Qi is a soluble group defined by a polycyclic presentation, then we
can use the standard methods for that class of groups to write φi(g) as a word
w(φi(x1), . . . , φi(xk)); see, for example, [17, Section 8.3]. If Qi is insoluble, then
we can use constructive recognition in Qi to do the same. Then gw(x1, . . . , xk)−1,
which we shall call the residue of g under φi, is in the kernel of φi and it can be
shown that, if g is a uniformly distributed random element of Gi−1, then the residue
of g is a uniformly distributed random element of ker(φi) ∩Gi−1. By computing a
sufficient number of residues of random elements of Gi−1, we hope to construct a
generating set for ker(φi) ∩Gi−1 modulo Op(G).

We describe now how we estimate how many random elements of Gi−1 we need
in order to have a high probability of generating ker(φi) ∩Gi−1 modulo Op(G) for
i < k. For a finite group G, we define Pk(G) to be the probability that k uniformly
randomly chosen elements of G generate G. Then our problem reduces to finding a
lower bound for Pk(Ki/Op(G)).

To do this, we make use of the superset M = {Se1
1 , . . . , S

em
m ,Zt1

p1
, . . . ,Ztr

pr
} of

the composition factors of G/Op(G) that we were able to estimate after finding
the preliminary sequence of maps, as described at the end of Subsection 2.1. After
identifying the images Qk for 1 � k � i, we can refine this to a superset of the
composition factors of Ki/Op(G) by removing those factors that we know lie in one
the Qk already found.

There are a number of expositions concerning this problem and most of the
results referred to here are due to Pak (unpublished). We shall give only a brief
outline here and refer to the reader to [31] for further details. Using elementary
arguments, the following result can be proved, which reduces the problem to the
case when G is a direct product of isomorphic simple groups.

Theorem 2.10. If M , as defined above, is a superset of the composition factors of
G, then

Pk(G) �
m∏

i=1

Pk(Sei

i ) ·
r∏

i=1

Pk(Zti
pi

).

For the abelian case, it can be shown that

Pk(Zt
p) =

t∏
j=1

(
1 − pj−1

pk

)
,

and for the nonabelian case we have

Pk(Se) = P e
k (S)

e−1∏
j=1

(
1 − j|Out(S)|

Pk(S)|S|k−1

)
.

Because we have identified the nonabelian composition factors of G non-
constructively, we can assume that each |Out(S)| is known, and it is easy to see
that

Pk(S) � 1 − (1 − P2(S))[
k
2 ],

241https://doi.org/10.1112/S1461157000000589 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000589


Chief series and the soluble radical of a matrix group over a finite field

so it remains only to estimate P2(S). For this, we are forced to rely on the following
conjecture

Conjecture 2.11. Let S be a nonabelian finite simple group. Then

P2(S) � P2(Alt(6)) =
53
90
.

This has not yet been proved, but it is known that P2(S) → 1 as |S| → ∞
(see [26]), and an examination of the simple groups up to order 106 indicates that
the probability is much closer to 1 than 53

90 for all but the smallest of the simple
groups, so we are highly confident that this conjecture is true.

So, putting all of this together, we have

Theorem 2.12. Given a superset of the multiset of composition factors of a group
G and ε > 0 we can find k such that Pk(G) � 1 − ε.

This enables us to compute a reasonable estimate for the number of random
elements that are required to generate the kernel of any of the φi modulo Op(G)
for i < k.

2.4. Verifying the kernels
In Subsection 2.3 we constructed a chain of subgroups G = G0 � G1 � · · · �

Gk−1 with Gi−1 � Domain(φi) and we identified the images Qi = φi(Gi−1) for
1 � i � k. From the construction we know that Gi � ker(φi), and we want to verify
that GiOp(G) = (ker(φi) ∩Gi−1)Op(G) for 1 � i < k. We shall also explain in this
subsection how to test elements of GL(n, q) for membership of the subgroups Gi.

We make use of the following theorem.

Theorem 2.13. Let G = 〈Γ〉, and let π : G → Q be an epimorphism. Let 〈X | R〉
be a presentation for Q and, for each h ∈ Q, let wX(h) be a word for h over X.

For each x ∈ X choose x ∈ G with π(x) = x. Define a map θ : FX → G (where
FX is the free group on X) by extending the map x 
→ x.

Let K = 〈Y 〉 be a subgroup of ker(π). Then K = ker(π) if and only if the
following hold:

(i) g · θ(wX(π(g)))−1 ∈ K for all g ∈ Γ;

(ii) θ(r) ∈ K for all r ∈ R;
(iii) yg ∈ K for all g ∈ Γ and y ∈ Y .

Proof. Suppose that the conditions (i), (ii) and (iii) are satisfied. Then (iii) says
that K � G, and (i) says that g ≡ θ(wX(π(g))) mod K for all g ∈ Γ. So, for
g = gε1

1 · · · gεr
r ∈ G with gi ∈ Γ and εi = ±1, we have

g ≡ θ(wX(π(g1))ε1 · · ·wX(π(gr))εr ) mod K.

If g ∈ ker(π), then (since K � ker(π)), wX(π(g1))ε1 · · ·wX(π(gr))εr is a product in
FX of conjugates of elements of R and their inverses. But, by (ii), θ(r) ≡ 1 mod
K for each r ∈ R, so θ(wX(π(g1))ε1 · · ·wX(π(gr))εr ) ≡ 1 mod K and hence g ∈ K
and K = ker(π).

Conversely, it is easy to see that if K = ker(π) then the three conditions hold.
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We shall apply this result with π = φi|Gi−1 , G = Gi−1, Q = Qi and K =
Gi, but we shall check that the elements to be tested in (i), (ii) and (iii) lie in
GiOp(G), thereby proving that GiOp(G) = (ker(φi) ∩ Gi−1)Op(G). (So we are
actually applying the theorem in Gi−1Op(G)/Op(G).)

For this purpose, we need to be able to test elements of GL(n, q) for membership
in the subgroups GiOp(G). We shall describe now how we can use the information
computed so far to carry out this membership testing, but we observe that this
method requires us to complete the computation of all of the images and kernels
before we attempt the verification process.

We can perform membership testing in Op(G) as follows. If G is irreducible then
Op(G) = 1, so assume G to be reducible with m irreducible blocks of dimensions
d1, . . . , dm. Using the Meataxe we compute a matrix x (in fact such a matrix has
already been computed during the application of ReducibleMaps to G) such that
elements g ∈ G conjugated by x have the form⎛

⎜⎝
g1

. . . 0

∗ gm

⎞
⎟⎠ ,

for gi ∈ GL(di, q). Then g ∈ Op(G) if and only if gi = Idi for 1 � i � m.
We now test membership in Gk−1Op(G) as follows. An element g ∈ Domain(φk)

belongs to Gk−1Op(G) if and only if φk(g) ∈ Qk and the residue of g (as defined in
Subsection 2.3) under φk belongs to Op(G). (This assumes that we can test elements
of GL(n, q) for membership of the domains of the maps φi, but this presents no
difficulty. Most of the maps are based on Aschbacher decompositions, and testing
for membership of g in Domain(φi) is equivalent to checking that g preserves the
decomposition in question.)

Using Theorem 2.13 we can now verify Gk−1Op(G) = (ker(φk−1)∩Gk−2)Op(G).
This, in turn, enables us to test membership in Gk−2Op(G): an element g ∈
Domain(φk−1) belongs to Gk−2Op(G) if and only if φk−1(g) ∈ Qk and the residue
of g under φk−1 belongs to Gk−1Op(G).

We repeat this process to produce membership tests for GiOp(G) for i = k−1,
k−2, . . ., 1, 0, and to verify that GiOp(G) = (ker(φi) ∩ Gi−1)Op(G) for i > 0. If
at any stage this process fails and we find elements in (ker(φi) ∩Gi−1) \GiOp(G),
then we add these elements to the generating set for Gi and recompute the series
from this point.

It is possible, at the same time, to use the presentations of the Qi and the
conjugation action of Gi on Gi−1 to compute presentations of GiOp(G)/Op(G) for
i = k−1, k−2, . . . , 0 (see [17, Subsection 2.4.3] for the theory of this). We need to
do this if we wish to prove the correctness of the structure af Op(G), which we shall
be discussing in the next subsection.

2.5. From Op(G) to 1
We now have a normal series for G � GL(n, q), with q = pe, with last term

Op(G). To complete our analysis of G, we need to construct a chain of subgroups

1 � Hr � Hr−1 � · · · � H0 = Op(G)

with each Hi � G and each Hi/Hi+1 an elementary abelian p-group. This can
be difficult in matrix groups of dimension greater than about 100, and this topic
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remains a challenging area of research. Here we shall give only a summary of the
methods that we have used to date.

If G is irreducible then Op(G) = 1, so assume that G is reducible with m blocks
of dimensions d1, . . . , dm. We are already in possession of a basis change matrix x
such that elements of Gx have the form⎛

⎜⎜⎜⎜⎜⎜⎝

g1
b2,1 g2 0

b3,1 b3,2
. . .

...
...

. . . gm−1

bm,1 bm,2 · · · bm,m−1 gm

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where gi is a di × di matrix and bi,j is a di × dj matrix.
Then Op(G) consists of those elements of G for which gi = Idi for 1 � i � m,

and we let H0 = Op(G). We define H1 to be the subgroup of H0 consisting of
those matrices in which the blocks b2,1, b3,2, . . . , bm,m−1 immediately below the
main diagonal are all 0. Then the reader can verify that H1 �G and H0/H1 is an
elementary abelian p-group. Furthermore, we can regard H0/H1 as a module for
G/Op(G) over Fp, and it is a submodule of the module of dimension e(d1d2+d2d3+
· · · + dm−1dm) which is defined by all matrices having this form.

Similarly, for 1 � k � m− 2, we define Hk to be the subgroup of H0 consisting
of those matrices in which bi,j = 0 whenever i − j � k and put Hm−1 = 1. Then
each Hi �G, and Hi−1/Hi is an elementary abelian p-group and can be regarded
as a module for G/Op(G) over Fp.

The difficulty in analysing Op(G) arises from the fact that a minimal generating
set for Op(G) can be inconveniently large. For example, Op(G) requires n2/4 gen-
erators in a maximal reducible subgroup of GL(n, p) in which d1 = d2 = n/2. This
can make it impractical to store a full generating set of matrices for Op(G) when n
is larger than about 100, since the storage requirements become excessive.

Instead, we store only enough matrices in each Hi−1, for 1 � i < m, to generate
Hi−1/Hi as a G/Op(G)-module. (In other words, we store elements that generate
Hi−1 modulo Hi as a normal subgroup of G.) We can then use the SpinBasis

algorithm described in [17, Section 7.4] to find the dimension of Hi−1/Hi as a
module, and hence find the order of |Hi−1/Hi|. SpinBasis is practical for modules
of dimension several thousand and has been used successfully for dimensions up to
100000, so this approach can significantly increase the range of practicality of the
methods.

To start off these calculations, we find random elements of H0 = Op(G) by
calculating the residues of random elements of G under φi for i = 1, 2, . . . , k in
turn. After finding what we hope are enough such elements to generate H0/H1 as
a G/Op(G)-module, we apply SpinBasis to these elements. To verify that we have
now successfully generated the complete submodule H0/H1, it is most convenient
to use a presentation of G/Op(G), the calculation of which was described at the
end of the last subsection. We use Theorem 2.13 and check that all relators of
G/Op(G) and the residues of all generators of G under φi for i = 1, 2, . . . , k lie
in the submodule H0/H1 that we have calculated. If not, then we introduce the
offending elements as new module generators of H0/H1 and re-apply SpinBasis.

This method is particularly effective when m = 2 and so H1 = 1 and Op(G) is
already elementary abelian, since then the calculation above completes the anal-
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ysis of Op(G), and there is no need to compute a complete generating set for H0

as elements of G. When m > 2, we need such a generating set for Hi−1 in order
to find random elements of Hi, and in order to compute residues during the ver-
ification process. However, the generators of Hi−1 that are calculated as vectors
during the application of SpinBasis can be stored as words, which are products of
conjugates by generators of G of the module generators, rather than as matrices.
It is straightforward to adapt SpinBasis to compute these words.

There are many possible improvements to the basic outline of the approach that
we have described here, and some of these are being investigated using experimental
implementations. In many examples, the Hi−1/Hi can be regarded as modules over
Fq rather than just over Fp, which renders module computations much more efficient
when q = pe for e > 1. We should also make use of the fact that the full modules,
of which Hi−1/Hi are submodules, are direct sums arising in the obvious way from
the individual blocks Bi,j .

2.6. Refining the Normal Series
We have now computed a normal series for G in which the factors are either

soluble groups or direct products of isomorphic non-abelian simple groups. Refining
this series to a chief series of G is straightforward, and we shall describe how to do
this only briefly.

A non-abelian layer in the series is of the form Ki−1/Ki
∼= Sm, where the m

direct factors in the product Sm are permuted under the conjugation action of G.
The new subgroups that we need to introduce to refine the series correspond to the
orbits of this action on these m factors, which are easily computed using the map
φi.

The soluble layers are either the elementary abelian p-groups Hi−1/Hi within
Op(G) that were discussed in the previous subsection, or are defined by means of
a polycyclic presentation. In the second of these cases we can compute a series of
characteristic subgroups with elementary abelian layers, thereby effectively reducing
the problem to the case when the layer is an elementary abelian r-group for some
prime r. We can then use the conjugation action of G to make this layer into a
module for G over Fr, and use the Meataxe [17, Section 7.4] to find a composition
series for the module. The terms in this series correspond to the required refinement
of the layer in G.

3. Rearranging the chief series

At this stage, we have computed a chief series

G = G0 � G1 � · · · � Gn = 1

of our given group G � GL(n, q), and our final objective is to replace it with a
new chief series that passes through the subgroups O∞(G), soc*(G) and Pker(G)
that were defined in Section 1. The proof of the following lemma is straightforward,
given that these are characteristic subgroups of G.

Lemma 3.1. If N is any normal subgroup of any finite group G, then O∞(N) =
O∞(G) ∩N , soc*(N) = soc*(G) ∩N and Pker(N) = Pker(G) ∩N ,

The method described for rearranging the series in [31], which corresponds to
the second author’s implementation, involves considering each pair of adjacent chief
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factors in the series and interchanging factors firstly in order to bring the soluble
factors as low down in the series as possible, which results in the series passing
through O∞(G), and then secondly to bring the insoluble factors as low down as
possible in the series modulo O∞(G), which results in the series passing through
soc*(G), and finally bringing the factors lying in Pker(N) down to the bottom of the
series modulo soc*(G). Here we shall describe a variation of this procedure which
achieves all three objectives in a single pass upwards through the chief factors, and
which we believe will turn out to be more efficient.

3.1. Identifying inner automorphisms
The rearranging process depends critically on our ability to solve the following

algorithmic problem efficiently.

Problem 3.2. Given a finite nonabelian simple group S and an automorphism σ
of S, determine whether σ is an inner automorphism and, if so, find g ∈ S such
that σ is conjugation by g.

We assume that gσ is easily computable for g ∈ S. In our application, σ will be
induced by conjugation by an element of a larger group. We assume also that we
have solved the constructive recognition problem for S, which enables us to work
within the standard copy Ŝ of S.

If X̂ is a generating set for Ŝ, then the problem is equivalent to the following.
Does there exist g ∈ Ŝ with xg = xσ for all x ∈ X̂? If Ŝ is a permutation group,
then we can solve this by a sequence of conjugacy tests and centraliser calculations
within Ŝ and subgroups of Ŝ.

So we shall assume that Ŝ is a quasisimple absolutely irreducible subgroup of
GL(d, r) for some d and r. We then have the additional complication that Ŝ may
contains scalars with Ŝ/Z(Ŝ) ∼= S. So, given a generating set X̂ of Ŝ, we are looking
for an element g ∈ Ŝ with xg ≡ xσ mod Z(Ŝ) for all x ∈ X̂ . However, it is readily
checked that every finite simple group S is divisible by a prime which does not
divide the order of the Schur multiplier of S, so we can choose X̂ to consist of
elements with order coprime to |Z(Ŝ)| and then the problem reverts to finding
g ∈ Ŝ with xg = xσ for all x ∈ X̂.

Deciding whether there exists g ∈ GL(d, r) with xg = xσ for all x ∈ X̂ is
equivalent to testing the Ŝ-modules defined by the matrices in X̂ and in X̂σ for
isomorphism, and this can be done readily using the algorithm described in [17,
Section 7.5.3]. Since Ŝ is absolutely irreducible, if g exists then it is unique modulo
scalars, and so we can complete the test by checking whether gz lies in Ŝ for some
scalar matrix z, which we are able to do as part of the defining assumptions of the
standard copy of a simple group.

3.2. Moving chief factors
Now we present a brief summary of how we rearrange the chief series of G to

pass through the three characteristic subgroup defined above.

Definition 3.3. We say that a chief factor Gi−1/Gi of G belongs to (or lies in) a
normal subgroup N of G if Gi−1 � NGi.

Our aim is to rearrange the chief factors of G such that those that belong to
O∞(G) occur first, followed by all others that belong to soc*(G), then by all others
that belong to Pker(G), and finally by those not belonging to Pker(G).
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We consider the chief factors Gi−1/Gi for i = n, n−1, . . . , 1 in turn. If this factor
is soluble then we decide whether we can rearrange the series so that it belongs to
O∞(G) and, if so, then we carry out this rearrangement within Gi−1. If not, then
we consider it for membership of Pker(G) and, if this is the case, then we move
it down into Pker(Gi−1). If Gi−1/Gi is insoluble, then we decide whether we can
rearrange the series so that this chief factor belongs to soc*(G) and, if so, rearrange
the series accordingly.

So, when we come to consider Gi−1/Gi, we can assume that those chief factors
of G that lie in Gi have already been rearranged to occur in the required order. In
other words, the series for Gi passes through O∞(Gi) = O∞(G) ∩ Gi, soc*(Gi) =
soc*(G) ∩Gi and Pker(Gi) = Pker(G) ∩Gi. We assume, in addition, that we have
stored the following extra information during the analysis of the chief factors of G
within Gi. For those factors in Pker(Gi) but not in soc*(Gi), we store the outer
automorphisms of the simple factors of soc*(Gi)/O∞(Gi) that are induced by the
generators of these chief factors. For those that lie outside of Pker(Gi), we store
the permutations of the simple factors of soc*(Gi)/O∞(Gi) that are induced by the
conjugation action of their generators.

(Computing within the permutation group Gi/Pker(Gi) is easy, but we are as-
suming also that we can compute effectively within the outer automorphism groups
of the finite nonabelian simple groups. Since these are all relatively small soluble
groups, this is a reasonable assumption. Indeed, we have already implemented this
part of the proces for the classical groups.)

We now explain how we analyse the next chief factor Gi−1/Gi. We already know
a set of elements Xi−1 of Gi−1 that generate Gi−1 modulo Gi. During the analysis,
we may change this set Xi−1 by multiplying its members by suitable elements
of Gi−1 for the purpose of making Xi−1 a subset of O∞(Gi−1), soc*(Gi−1), or
Pker(Gi−1) whenever this is possible.
Step 1: does the factor lie in Pker(G)? Let x be the first element of Xi−1. We first
test whether the conjugation action of x on the simple factors of soc*(Gi)/O∞(Gi)
lies within the permutation group on these factors that we have stored already for
Gi. If not, then Gi−1/Gi does not lie in Pker(G), and we compute and store the
permutations of these simple factors induced by the elements of Xi−1. If it is then,
since Gi−1/Gi is a chief factor of G, the same will be true for each element of Xi−1,
and we multiply each such element by the inverse of an element of Gi that induces
the same permutation and thereby effectively move Gi−1/Gi into Pker(Gi−1).
Step 2: does it lie in soc*(G)? If the chief factor lies in Pker(Gi−1), then we test
whether the outer automorphisms of the simple factors of soc*(Gi)/O∞(Gi) all lie
in the subgroups of these outer automorphism groups that we have stored already
for Gi. If not, then Gi−1/Gi is not a chief factor of soc*(G), and we compute and
store the outer automorphisms of the simple factors induced by the elements of
Xi−1. If it is (which will necessarily be the case if Gi−1/Gi is not soluble), then
the same will be true for each element of Xi−1, and we replace each such element
by the result of multiplying it by the inverse of an element of Gi that induces the
same outer automorphism. We thereby move Gi−1/Gi into soc*(Gi−1).
Step 3: does it lie in O∞(G)? If the chief factor now lies in soc*(Gi−1), then
the elements of Xi−1 all induce inner automorphisms of the simple factors of
soc*(Gi)/O∞(Gi), and we can identify the corresponding conjugating elements of
these simple factors using the method described in Subsection 3.1. We then replace
each element of Xi−1 by the result of multiplying it by the inverse of an appropriate
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element of soc*(Gi), after which the elements of Xi−1 will all centralise soc*(Gi)
modulo O∞(Gi). So now, if Gi−1/Gi is soluble, then we will have effectively moved
it into O∞(Gi−1), whereas if it is insoluble, we will have achieved the desirable
effect of making the group generated by Xi−1 modulo O∞(Gi−1) = O∞(Gi) equal
to some of the simple factors of soc*(Gi)/O∞(Gi).

4. Some timings

To conclude, we present some timings for the second author’s Magma imple-
mentation of the algorithms described in Sections 2 and 3. The computations were
run on an AMD Opteron Model 152 processor running at 2.6 GH with 4 GB of
memory. The times in the columns labelled CSTime and SSTime in the table
are respectively for computing a chief series, and a chief series passing through
the three subgroups O∞(G), soc*(G) and Pker(G). However, the latter times also
include some additional computations, such as polycyclic presentations of O∞(G),
which accounts for the longer time in the soluble example (GL(2, 3) 	 S4) 	 S4.

It should be noted that presentations for the larger sporadic simple groups are
currently unavailable in Magma, so the complete verification algorithms of Sec-
tion 2.4 have not been run on these groups. Unfortunately, implementations of con-
structive recognition algorithms were only available for PSL(2, q), Sz(q) and Alt(n)
and most of the sporadic groups, and we had to use the default Schreier-Sims al-
gorithm for other finite simple groups. This considerably restricts the scope of the
current implementation, and we hope to extend this scope eventually by making
making use of further constructive recognition methods. In particular, the simple
groups PSL(3, 37) and PΩ(9, 9), which occur as composition factors of examples in
the table, are about at the limit of what we can handle at present.

G d q CSTime SSTime
31+12.2 Suz .2 78 3 4.5 4.5
2576.Co1 	S2 96 2 13.4 48.5

GL(6, 5) 	 Sym(15) 90 5 14.5 31.3
(GL(2, 3) 	 S4) 	 S4 32 3 1.8 40.7

Ly 	S2 222 5 33.9 38.4
318.PSL(3, 7)6.9.2 18 7 4.3 5.2

232. SL(4, 5).24.GL(2, 4) 64 5 4.3 4.4
GL(3, 37).7 21 3 89.9 89.9
SO(9, 9).2 18 3 157.5 158.0

21+14. Sp(14, 2) 128 5 18.2 18.5
GL(3, 7) ⊗	S5 243 7 100.4 121.0

31+6. Sp(6, 3)⊗ GL(5, 5) 135 25 97.5 109.5
(GL(2, 5) ⊗ GL(3, 5)) 	 S15 90 5 19.2 97.2

Table 1: Table of timings for computing SR-Data

Here is a brief description of the examples in the table. The first two are re-
ducible groups in which Op(G) is non-trivial. The second of these also involves
the imprimitive matrix group Co1 	S2 of degree 48. In both of these two examples,
ReducibleMaps duplicated effort by analysing the same nonabelian chief factor
on different irreducible constituents of the input group.
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The following five examples are all imprimitive, with 318.PSL(3, 7)6.9.2 �
(SL(3, 7) 	 S2) 	D18 and 232.PSL(4, 5).24.GL(2, 4) � SL(4, 5) 	AGL(2, 4). The next
two examples GL(3, 37).7 and SO(9, 9).2 are semilinear, 21+14. Sp(14, 2) is the nor-
maliser of a symplectic type 2-group and GL(3, 7)⊗	S5 is tensor induced. The ex-
ample 31+6. Sp(6, 3)⊗GL(5, 5) is a tensor product of a normaliser of an extraspecial
group with GL(5, 5), and (GL(2, 5) ⊗ GL(3, 5)) 	 S15 is imprimitive with kernel 15
copies of the tensor product GL(2, 5) ⊗ GL(3, 5).
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2. H. Bäärnhielm, ‘Recognising the Ree groups in their natural representa-
tions’, Preprint. 226
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