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Weak Semiprojectivity in Purely
Infinite Simple C

∗-Algebras

Huaxin Lin

Abstract. Let A be a separable amenable purely infinite simple C∗-algebra which satisfies the Universal

Coefficient Theorem. We prove that A is weakly semiprojective if and only if Ki (A) is a countable direct

sum of finitely generated groups (i = 0, 1). Therefore, if A is such a C∗-algebra, for any ε > 0 and

any finite subset F ⊂ A there exist δ > 0 and a finite subset G ⊂ A satisfying the following: for any

contractive positive linear map L : A → B (for any C∗-algebra B) with ‖L(ab) − L(a)L(b)‖ < δ for

a, b ∈ G there exists a homomorphism h : A → B such that ‖h(a) − L(a)‖ < ε for a ∈ F.

1 Introduction

Purely infinite simple C∗-algebras were first defined and studied by J. Cuntz [Cu1,
Cu2]. The Cuntz algebras are the classical separable purely infinite simple C∗-alge-
bras which are generated by isometries with certain relations. Nowadays purely in-
finite simple C∗-algebras may arise as the graph C∗-algebras and as inductive lim-

its, as well as dynamical systems and crossed products. The class of purely infinite
simple C∗-algebras is a very important class of C∗-algebras. It has played an im-
portant role in the development of C∗-algebra theory. The work of classification of
amenable purely infinite simple C∗-algebras started with M. Rørdam’s work [Ro1];

see also [BSKR]. After a series of works by many (for example, [BEEK, ER, Ln2,
LP1, LP2, Ro2, Ro3]), we now know from the work of Kirchberg and Phillips that
amenable separable purely infinite simple C∗-algebras which satisfy the universal co-
efficient theorem (UCT) (or a weak version of it) are classified by their K-theoretical

data [P1, K]. Since the Cuntz algebras On (2 ≤ n <∞) and the Cuntz–Krieger alge-
bras are generated by finitely many isometries with stable relations, they are semipro-
jective. Blackadar proved that O∞ is also semiprojective. More recently, J. Spiel-
berg [Sp] and W. Szymanski [Sz] showed that all separable nuclear purely infinite

simple C∗-algebras which satisfy the UCT with finitely generated K-groups and with
free K1-groups are semiprojective by realizing these C∗-algebras as graph C∗-alge-
bras.

In C∗-algebra theory, one often encounters the following stability question. For a
given C∗-algebra A, for any ε > 0 and any finite subset F ⊂ A, are there δ > 0 and
a finite subset G ⊂ A satisfying the following: for any contractive completely positive
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linear map L : A → B (for any C∗-algebra B) with

‖L(ab) − L(a)L(b)‖ < δ for a, b ∈ G

there exists a homomorphism h : A → B such that ‖h(a) − L(a)‖ < ε for
a ∈ F? This is a weak version of semiprojectivity. It is clear that if A is semipro-
jective, then the answer to the above question is affirmative. In Loring’s terminology,
C∗-algebras which have an affirmative answer to the above question are called weakly

semiprojective (or weakly stable). It turns out that this weak semiprojectivity is a very
useful notion. It is often related to certain perturbation problems which are becom-
ing increasingly important.

In this paper, we will show that all separable nuclear purely infinite simple
C∗-algebras satisfying the UCT are weakly semiprojective provided that their K-

groups are countable direct sums of finitely generated abelian groups. As shown
earlier [Ln7], the condition that the K-groups are countable direct sums of finitely
generated abelian groups is also necessary.

The method used in this paper is closedly related to those used in the classification

of amenable C∗-algebras. In particular, it is related to N. C. Phillips’s paper [P1].
The main technical results are: (i) a uniqueness theorem (see Theorem 6.5) which
roughly says that two full (almost multiplicative) contractive linear maps from a nu-
clear purely infinite simple C∗-algebra with the same partial KK-data are approxi-

mately unitarily equivalent; (ii) all possible KK-data can be realized by homomor-
phisms.

The paper is organized as follows: Section 2 serves as a preliminary. In Section
3 we study the class of D of C∗-algebras that admit a full embedding from O2. In

Section 4 we study asymptotically multiplicative sequential morphisms to C∗-alge-
bras in D. We introduce a functor from D to abelian groups. It turns out that the
class D does not behave as well as we would like it to. However, in Section 5 we prove
a version of a theorem of Higson which can be applied to the functor EA. Applying

a uniqueness theorem of the author, we prove in Section 6 that EA is the same as the
restriction of KL(A,−) for certain amenable C∗-algebras A. In Section 7 we present
an application of the results of Section 6: we show that a separable amenable purely
infinite simple C∗-algebra satisfying the UCT is weakly semiprojective if and only if

its K-groups are countable direct sums of finite abelian groups.

After a preliminary version of this paper started to circulate, we learned that
J. Spielberg also obtained the results in Section 7 of this paper independently by
studying graph C∗-algebras.

2 Preliminaries

We will use the following conventions. Let A and B be C∗-algebras and φ, ψ : A → B

be two maps. Let ε > 0 and F ⊂ A.

(i) We write φ ≈ε ψ on F if ‖φ(a) − ψ(a)‖ < ε for all a ∈ F.

(ii) We write φ
u
∼ε ψ on F if there is a unitary U in B (or in B̃ if B is not unital) such

that ‖ ad U ◦ φ(a) − ψ(a)‖ < ε for all a ∈ F.
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(iii) We write φ
u
∼ ψ if there exists a sequence of unitaries {un} in B (or in B̃ if B is

not unital) such that limn→∞ ‖ ad un ◦ φ(a) − ψ(a)‖ = 0 for all a ∈ A.

(iv) Let {Bn} be a sequence of C∗-algebras. We will use the following notation:

c0({Bn}) =

∞⊕

n=1

Bn, l∞({Bn}) =

∞∏

n=1

Bn, q∞({Bn}) = l∞({Bn})/c0({Bn}).

(v) A linear map L : A → B is said to be full if the (closed two-sided) ideal generated
by L(a) is B for any nonzero a ∈ A.

(vi) Let L : A → B be a linear map, let G be a subset of A and let ε > 0. We say L is
G-ε-multiplicative if ‖L(ab) − L(a)L(b)‖ < ε for all a, b ∈ G.

Definition 2.1 Let A be a separable amenable C∗-algebra. We shall say that A is
weakly stable if, for any ε > 0 and any finite subset F ⊂ A, there exist δ > 0 and a
finite subset G ⊂ A satisfying the following condition:

for any C∗-algebra B and any positive linear contraction L : A → B which is
G-δ-multiplicative, there exists a homomorphism h : A → B such that h ≈ε L

on F.

It should be noted that here δ and G depend only on ε and F. They do not depend

on B.

Definition 2.2 Let A be a separable amenable C∗-algebra. We say that A is weakly

semiprojective with respect to D, if for any sequence Bn ∈ D and a homomorphism
φ : A → q∞({Bn}), there exists a homomorphism h : A → l∞({Bn}) such that
π ◦ h = φ, where π : l∞({Bn}) → q∞({Bn}) is the quotient map. This definition
can be found, with some slight modification, in T. Loring’s book [Lo].

The following is proved in [Ln7, Theorem 2.4], which is basically the same as [Lo,

19.13].

Theorem 2.3 Let A be a separable amenable C∗-algebra. Then A is weakly stable if

and only if it is weakly semiprojective.

In what follows, we will not distinguish weakly stable from weakly semiprojective.

Definition 2.4 Let Cn be a commutative C∗-algebra with K0(Cn) = Z/nZ and

K1(Cn) = 0. Suppose that A is a C∗-algebra. Then Ki(A,Z/kZ) = Ki(A ⊗ Ck)
(see [S3]). One has the following six-term exact sequence [S3]:

K0(A) // K0(A,Z/kZ) // K1(A)

k

��

K0(A)

k

OO

K1(A,Z/kZ)oo K1(A)oo

.
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As in [DL], we use the notation

K(A) =

⊕

i=0,1,n∈Z+

Ki(A; Z/nZ).

There is a second six-term exact sequence (see [S3]):

K0(A,Z/mkZ) // K0(A,Z/kZ) // K1(A,Z/mZ)

��

K0(A,Z/mZ)

OO

K1(A,Z/kZ)oo K1(A,Z/mkZ)oo

Definition 2.5 We denote by N the class of separable amenable C∗-algebras which
satisfy the UCT.

Definition 2.6 By HomΛ(K(A),K(B)) we mean all homomorphisms from K(A) to
K(B) which respect the direct sum decomposition and the above two six-term exact
sequences (see [DL]). It follows from the definition in [DL] that if x ∈ KK(A,B),

then the Kasparov product (associate with x) gives a homomorphism

Γ(x) : HomΛ(K(A),K(D)) → HomΛ(K(B),K(D))

for any C∗-algebra D. Dadarlat and Loring [DL] showed that if A is in N, then for
any σ-unital C∗-algebra B, Γ is surjective and ker Γ = Pext(K∗(A),K∗(B)).

Note 2.7 We note that KK(A,−) is a (covariant) functor from C∗-algebras to abe-

lian groups. HomΛ(K(A),K(−)) is also a (covariant) functor from C∗-algebras to
abelian groups. It is easy to see that Γ is a natural transformation from KK(A,−) to
HomΛ(K(A),K(−)). If we consider only separable C∗-algebras, then KK(A,−) and
HomΛ(K(A),K(−)) both are homotopy invariant, stable and split exact. In particu-

lar, if 0 → I ⊗ K
ı
→B

π
→B/I → 0 is a split short exact sequence of separable C∗-alge-

bras, then the map [ı] : HomΛ(K(A),K(I)) → HomΛ(K(A),K(B)) has a left inverse

[ı]−1. It follows a theorem of Higson [H] that Γ is the unique natural transformation
from KK(A,−) to HomΛ(K(A),K(−)) which sends [idA] to [idA].

Definition 2.8 Let 0 → I → B → A → 0 be a short exact sequence of C∗-algebras.

B is an essential extension of A by I, if I is an essential ideal of B. Suppose that I ∼=
I⊗K. Let τ : A → M(I⊗K)/I⊗K denote the Busby invariant. The extension τ is said
to be absorbing if for any trivial extension τ0 : A → M(I⊗K)/I⊗K, there is a unitary
u ∈ M(I⊗K) such that adπ(u)◦(τ⊕τ0) = τ , whereπ : M(I⊗K) → M(I⊗K)/I⊗K

is the quotient map. If τ1, τ2 : A → M(I ⊗ K)/I ⊗ K are essential absorbing trivial
extensions, then there is a unitary u ∈ M(I⊗K) such that adπ(u)◦τ1 = τ2. In other
words, all absorbing essential trivial extensions are unitarily equivalent.
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3 O2 Embeddings

Definition 3.1 By O2 we mean the Cuntz algebra generated by two isometries s1

and s2 with s1s∗1 +s2s∗2 = 1. We will use the fact that O2 is amenable and Ki(O2) = {0}.
We denote by D the class of separable C∗-algebras D such that there is a full em-

bedding jo : O2 → D. Note that every separable purely infinite simple C∗-algebra is
in D. Furthermore, if B is a separable C∗-algebra which contains a proper infinite full
projection, then B is in D.

Proposition 3.2 Class D has the following properties:

(i) If D1, . . . ,Dn are finitely many C∗-algebras in D, then
⊕n

i=1 Di ∈ D.

(ii) If D ∈ D, then D ⊗ Mn and D ⊗ K ∈ D.

(iii) If D is in D then C([0, 1],D) ∈ D.

(iv) If D is in D, then for any ideal I, D/I in D.

(v) If D1 and D2 are in D, and D3 is given by the following split short exact sequence

0 → D1
ı
→D3

s
→D2 → 0, then D3 ∈ D.

Proof It is easy to see that (i) and (ii) hold. To see (iii), we let j : O2 → D be a full
embedding. Define ı : D → C([0, 1],D) by ı(a) = a, the constant map. One then
easily sees that ı ◦ j is a full embedding.

To see (iv), let j : O2 → D be a full embedding. Let π : D → D/I be the quotient
map. Then π ◦ j : O2 → D/I is also full.

For (v), let h : D2 → D3 be the homomorphism such that s◦h = idD2
. We identify

O2 with a full C∗-subalgebra of D2. There are two non-zero mutually orthogonal

projections e1, e2 ∈ h(O2) such that e1 + e2 is a proper projection. Then there is
a unitary v ∈ h(O2) such that v∗e1v = e1 + e2. Denote by 1 the identity of D̃3.
We then obtain an isometry w ∈ D̃3 such that (1 − e1)D3(1 − e1) = wD3w∗. Let
j ′o : O2 → D1 be a full embedding. Then j ′′o : O2 → (1 − e1)D3(1 − e1) defined by

j ′ ′o (x) = w(ı ◦ j ′o(x))w∗ is an embedding. There is also an embedding io : O2 →
e1D3e1 such that io(O2) = e1h(O2)e1. Define jo : O2 → D3 by jo(x) = j ′′o (x) ⊕ io(x)
for x ∈ O2. We claim that jo is full. Let x ∈ (O2)+. It suffices to show that the
ideal generated by jo(x) is D3. Since jo(x) ≥ j ′′o (x), the ideal generated by jo(x)

contains the ideal generated by j ′ ′o (x). This ideal in turn contains the ideal generated
by w∗ j ′′o (x)w = ı ◦ j ′o(x). Thus it contains ı(D1), since j ′o is full. Since s ◦ j0 = s ◦ io,
s ◦ jo(x) ∈ s(e1)O2s(e1). It follows that jo is full.

The following is a version of the so-called uniqueness theorem originally proved
in [Ln3]. The following version is proved in [Ln7, 6.1]. This theorem plays an im-
portant role in this paper.

Theorem 3.3 Let A be a separable unital amenable C∗-algebra and B a σ-unital

C∗-algebra. Suppose that h1, h2 : A → B are two homomorphisms such that [h1] = [h2]
in KK(A,B). Suppose that h0 : A → B is a full monomorphism such that [h0(1A)] =

[h1(1A)] = [h2(1A)]. Then, for any ε > 0 and finite subset F ⊂ A, there are an

integer n and a unitary w ∈ U (Mn+1(B)) such that

‖w∗ diag(h1(a), h0(a), . . . , h0(a))w − diag(h2(a), h0(a), . . . , h0(a))‖ < ε
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for all a ∈ F.

From the above we obtain the following. Note, it follows from [KP, Theorem 2.8]
that for any separable amenable C∗-algebra A, there is an embedding ı : A → O2.

Corollary 3.4 Let A be a separable amenable C∗-algebra and B ∈ D. Let ı : A → O2

be an embedding and let j0, j1 : kO2 → B be two full embeddings. Then for any ε > 0
and any finite subset F ⊂ A, there exist an integer n and a unitary U ∈ Mn+1(B̃) such

that

‖ ad U ◦ (diag( j0 ◦ ı, . . . , j0 ◦ ı)(a) − diag( j1 ◦ ı, j0 ◦ ı, . . . , j0 ◦ ı)(a)‖ < ε

for all a ∈ F.

It was shown by Rørdam [Ro1] that unital homomorphisms from O2 to a purely
infinite simple C∗-algebra are approximately unitarily equivalent. It actually holds
for some C∗-algebras which are not purely infinite and simple. The following theo-

rem will play a similar important role in this paper.

Corollary 3.5 Let A be a separable amenable C∗-algebra and B ∈ D. Let ı : A → O2

be an embedding and let j0, j1 : O2 → B be two full embeddings. Then for any ε > 0
and any finite subset F ⊂ A, there exists an isometry U ∈ M2(B̃) such that

‖ j0 ◦ ı(a) − ad U ∗ diag( j1 ◦ ı, j0 ◦ ı)(a)‖ < ε

for all a ∈ F.

Proof For each n, any ε > 0 and any finite subset G ⊂ O2, there is an isometry

V ∈ Mn+1(O2) such that VV ∗
= 1O2

, V ∗V = 1Mn+1(O2) and

‖ ad V ∗ ◦ ( j0(a), j0(a), . . . , j0(a)) − j0(a)‖ < ε/2

for all a ∈ G. Then the corollary follows from this and Corollary 3.4.

Lemma 3.6 Let A be a separable amenable C∗-algebra and B ∈ D. Let ı : A → O2 be

an embedding. Suppose that j0, jn : O2 → B are full embeddings.

Suppose that φn, ψn, : A → B ⊗ K are two contractive linear maps for which there

exists a sequence of unitaries {un} in B̃ ⊗ K such that

lim
n→∞

‖ ad un ◦ (φn(a) ⊕ jn ◦ ı(a)) − ψn(a) ⊕ jn ◦ ı(a)‖ = 0

for all a ∈ A. Then there exists another sequence of unitaries vn in B̃ ⊗ K such that

lim
n→∞

‖ ad vn ◦ (φn(a) ⊕ j0 ◦ ı(a)) − ψn(a) ⊕ j0 ◦ ı(a)‖ = 0

for all a ∈ A.
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Proof Let δ > 0, N > 0 be an integer and G ⊂ O2 be a finite subset of O2. Denote
by C the image of j0. Note that C ∼= O2. It follows from [Ro1, 3.6] that there exists

v ∈ MN (C) such that v∗v = 1C , vv∗ = 1MN (C) and for all a ∈ G,

‖ ad v ◦ diag( j0(a), . . . , j0(a)) − j0(a)‖ < δ.

Let ε > 0 and F ⊂ A be a finite subset. We may assume that there is an integer
m > 0 such that

‖ ad un ◦ (φn(a) ⊕ jn ◦ ı(a)) − ψn(a) ⊕ jn ◦ ı(a)‖ < ε/6

for all a ∈ F for all n ≥ m. By Corollary 3.4, there is a unitary wn ∈ Mn+1(B̃) such
that

∥∥ad wn ◦ diag( j0 ◦ ı(a), j0 ◦ ı(a), . . . , j0 ◦ ı(a))

− diag( jn ◦ ı(a), j0 ◦ ı(a), . . . , j0 ◦ ı(a))
∥∥ < ε/6

for all a ∈ F. Therefore we obtain a unitary zn ∈ B̃ ⊗ K such that

‖ ad zn◦diag(φn(a), j0◦ı(a), . . . , j0◦ı(a))−diag(ψn(a), j0◦ı(a), . . . , j0◦ı(a))‖ < ε/2

for all a ∈ F, where j0 ◦ ı(a) repeats n + 1 many times. Thus, with sufficiently
small δ and large G, from the first paragraph of the proof, we finally obtain a unitary

vn ∈ B̃ ⊗ K such that

‖ ad vn ◦ diag(φn(a), j0 ◦ ı(a)) − diag(ψn(a), j0 ◦ ı(a))‖ < ε

for all a ∈ F.

Lemma 3.7 Let J be a separable C∗-algebra in D. Then J ⊗ K ∼= C ⊗ K, where C is

unital and there is a unital embedding from O2 to C.

Proof Let jo : O2 → J be a full embedding. Put e = jo(1O2
). Since jo is full, e Je is a

full hereditary C∗-subalgebra of J. It follows from L. G. Brown’s stable isomorphism

theorem [Br] that e Je ⊗ K ∼= J ⊗ K.

Lemma 3.8 Let

0 → J ⊗ K → B → C → 0

be an essential absorbing extension of C∗-algebras in D. Suppose that C is exact. Then

there exists an approximate identity {en} of J ⊗K consisting of projections such that for

each n, there is a full embedding jn : O2 → (e2n − e2n−1) J(e2n − e2n−1) (e0 = 0) such

that j(a) =
∑∞

n=1 jn(a) ∈ B for all a ∈ A (converging in the strict topology).
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Proof By Lemma 3.7 we may assume that J ⊗ K = D ⊗ K, where D is unital and
there is a unital full embedding io : O2 → D. To simplify notation, we may well

identify O2 with io(O2). Since C is exact, there exists a unital embedding h : C →
O2 ⊂ D by [KP, 2.8]. Put hn(a) = h(a) ⊗ enn for all a ∈ C , where {ei j} is a system
of matrix units for K. Define H : C → M(D ⊗ K) by H(a) =

∑∞

n=1 hn(a) for all
a ∈ A (it converges in the strict topology). Let π : M(D ⊗ K) → M(D ⊗ K)/D ⊗
K be the quotient map. Denote by τ1 the extension determined by the given short
exact sequence in the statement of the theorem. The assumption that τ1 is absorbing
implies that there is an isometry Z ∈ M2(D ⊗ K) such that τ1 = π(Z)(τ1 ⊕ π ◦
H)π(Z)∗. Then the conclusion immediately follows.

Lemma 3.9 Let σ : B → M( J ⊗ K) be a monomorphism which gives an absorbing

trivial extension, 0 → J ⊗ K → B → C → 0. Suppose that J and B are in D

and C is exact. Then there exists an approximate identity {en} of J ⊗ K consisting of

projections such that ‖enx − xen‖ → 0 as n → ∞ for all x ∈ B. Moreover, there

is for each n a full embedding jn : O2 → (en − en−1) J(en − en−1)(e0 = 0) such that

j(a) =
∑∞

n=1 jn(a) ∈ B (converging in the strict topology) for all a ∈ A.

Proof Let τ1 be the essential trivial absorbing extension. It follows from [Ln5, 5.5.6]
that H gives an essential trivial absorbing extension. Since all essential trivial absorb-
ing extensions are equivalent, we may assume that τ1 is π◦H. Then clearly the lemma
follows.

4 The Functor EA

Definition 4.1 Let A and B be two C∗-algebras and ψn : A → B be a sequence of

maps from A to B. We say that {ψn} is asymptotically linear, if

lim
n→∞

‖[αψn(a) + βψn(b)] − ψn(αa + βb)‖ = 0 for all a, b ∈ A and α, β ∈ C,

is asymptotically selfadjoint if limn→∞ ‖ψn(a∗) − ψn(a)∗‖ = 0 for all a, b ∈ A and is
asymptotically multiplicative if limn→∞ ‖ψn(a)ψn(b) − ψn(ab)‖ = 0 for all a, b ∈ A,
respectively.

Definition 4.2 Let φn, ψn : A → B be two sequences of maps. We say that {φn} and
{ψn} are asymptotically the same if limn→∞ ‖φn(a)−ψn(a)‖ = 0 for all a ∈ A. We say
{φn} and {ψn} are asymptotically approximately unitarily equivalent, if there exists a
sequence of unitaries {un} in B̃ such that limn→∞ ‖ ad un ◦ φn(a) − ψn(a)‖ = 0 for

all a ∈ A.

Definition 4.3 Let A and B be two C∗-algebras and L : A → B be a contractive
completely positive linear map. Let Cn be as in Definition 2.4. We will still use L for

L⊗idMn
: Mn(A) → Mn(B), L⊗idMn

⊗ idCn
: Mn(A)⊗C(Cn) → Mn(B)⊗Cn, its exten-

sion from M̃n(A) ⊗C(Cn) to M̃n(B) ⊗C(Cn) and the L⊗ idMn
⊗ idC(S1)⊗C(Cn) and its

unitization. Let P be the set of projections in Mn(A), Mn(Ã ⊗Cn) and Mn(Ã ⊗Cn ⊗
C(S

1)). As discussed in [Ln4] and other places such as [DE], given a finite subset
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P ⊂ P(A), there exists δ > 0 and a finite subset F, such that any F-δ-multiplicative
contractive completely positive linear map L : A → B uniquely defined a map from

[P] to K(B). Let G be the group generated by P, with even larger F and smaller δ, L

gives a group homomorphism [L] from G to K(A). In what follows, for a contractive
completely positive linear map L : A → B, whenever we write [L]|P we mean L is
F-δ-multiplicative with sufficiently large F and sufficiently small δ so that [L]|P is

well defined.

Definition 4.4 Let A be a separable unital amenable C∗-algebra. Let B be a C∗-alge-
bra in D. An asymptotic sequential morphism φ = {φn} from A to B ⊗ K is a se-
quence of asymptotically multiplicative contractive completely positive linear maps
{φn} from A to B⊗K such that there is an elementα ∈ HomΛ(K(A),K(B⊗K)) with

the property that [φn]|P = α|P for any finite subset P ⊂ P(A) and any sufficiently
large n.

We say two asymptotic sequential morphisms φ = {φn} and ψ = {ψn} are equiv-

alent if there exists a sequence of unitaries un ∈ B̃ ⊗ K such that for all a ∈ A,

‖ ad un ◦ (φn ⊕ j)(a) − (ψn ⊕ j)(a)‖ → 0 as n → ∞,

where j : A → O2 → B ⊗ K is a full embedding. It follows from Lemma 3.6 that the

above definition does not depend on the choices of j.

We will write φ ∼ ψ if φ and ψ are equivalent. Denote by EA(B) the equivalent
classes of asymptotic sequential morphisms from A to B. If φ = {φn} is an asymp-
totic sequential morphism from A to B ⊗ K we denote by 〈φ〉 the equivalence class
containing φ.

Given 〈φ〉 and 〈ψ〉, by 〈φ〉 + 〈ψ〉 we mean 〈φ ⊕ ψ〉, where the direct sum is the

orthogonal sum as usual.

Proposition 4.5 Let φ = {φn} and ψ = {ψn} be two asymptotic sequential mor-

phisms. If φ ∼ ψ, then there is unique α ∈ HomΛ(K(A),K(B)) such that for any finite

subset P ⊂ P(A), [φn]|P = [ψn]|P = α|P for all sufficiently large n.

Proof Since j : A → O2 → B ⊗ K, [ j] = 0 in HomΛ(K(A),K(B)). Therefore
[φn]|P = ([φn] ⊕ [ j])|P and [ψn]|P = ([ψn] ⊕ [ j])|P. Suppose that there is α ∈
HomΛ(K(A),K(B⊗K)), for any finite subset P ⊂ P(A), [φn]|P = α|P for all large n.

Since there exists a sequence of unitaries {un} in B̃ ⊗ K such that

‖ ad un ◦ φn(a) − ψn(a)‖ → 0 as n → ∞

for all a ∈ A. This implies that [φn]|P = [ψn]|P for all large n.

Proposition 4.6 EA(B) is a group.
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Proof From the definition, it is immediate that any homomorphism j ′ : A → O2 →
B ⊗ K represents the zero element. Let φ = {φn} be an asymptotic sequential mor-

phism from A to B ⊗ K. It follows [Ln7, 4.5] that there are a sequence of asymp-
totically contractive completely positive linear maps {φ̄n} from A to B ⊗ K and a

sequence of unitaries un ∈ B̃ ⊗ K such that

‖ ad un ◦ j(a) − (φn ⊕ φ̄n)(a)‖ → 0 as n → ∞

for all a ∈ A. Suppose that α ∈ HomΛ(K(A),K(B)) such that, for any finite subset

P ⊂ P(A), [φn]|P = α|P for all large n. Note that [ j] = 0. Hence ([φn]+[φ̄n])|P = 0,
for all large n. Therefore ([φ̄n])|P = −α|P for all n. Thus φ̄ = {φ̄n} is an asymptotic
sequential morphism from A to B ⊗ K. This shows that EA(B) is a group.

Proposition 4.7 Let A be a unital separable amenable C∗-algebra. Then EA is a func-

tor from D and ∗-homomorphisms to abelian groups.

Proof It follows from the definition and Proposition 4.6 that EA(B) is an abelian
group for every C∗-algebra B ∈ D. For functoriality, let C be another separable
C∗-algebra and let h : B → C be a homomorphism. We extend it to obtain a ho-

momorphism h̃ : B ⊗ K → C ⊗ K. Therefore {φn} 7→ {h̃ ◦ φn} sends asymptotic
sequential morphisms to asymptotic sequential morphisms. Moreover, one checks
〈{h̃ ◦ φn}〉 is in EA(C) if 〈{φn}〉 is in EA(B). Therefore h induces a homomorphism

h∗ : EA(B) → EA(C).

If g : C → D is also a homomorphism, then it is easy to check that (g◦h)∗ = g∗◦h∗.
Moreover, it is obvious that (idB)∗ = idEA(B).

Definition 4.8 Let B be a C∗-algebra and fix a rank one projection e ∈ K. Define a
homomorphism ẽ : B → B ⊗ K by ẽ(b) = b ⊗ e for b ∈ B.

Lemma 4.9 Let A be a separable amenable C∗-algebra. Then EA is stable, i.e., the

map ẽ∗ : EA(B) → EA(B ⊗ K) is an isomorphism.

Proof Let s : K ⊗ K → K be an isomorphism. We will show the following (known
facts): for any finite subset G ⊂ K and any δ > 0, there exists a unitary U ∈ K̃ such
that

‖ ad U ◦ (s ◦ ẽ)(a) − a‖ < δ

for all a ∈ G. But this follows from the fact that (s ◦ ẽ)∗0 = idK0(K).

Now let {φn} be an asymptotic sequential morphism from A → B⊗K. It follows
from what we have just proved that for any finite subset F ⊂ B ⊗ K and any ε > 0,

‖ ad 1 ⊗U (s ◦ ẽ) ◦ φn(a) − φn(a)‖ < ε

for all a ∈ F. This implies that (s ◦ ẽ)∗ = idEA(B).
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Lemma 4.10 ( [P2, 3.16]) Let A be a unital separable amenable C∗-algebra. Let

0 → I
ı
→B

π
→B/I → 0

be a split short exact sequence of separable C∗-algebras in D such that the extension is

essential and absorbing. Suppose also that B/I is amenable. Then the sequence

EA(I)
ı∗→EA(B)

π∗→EA(B/I)

is exact in the middle.

Proof It follows from Proposition 4.7 that π∗ ◦ ı∗ = 0. To show that ker(π∗) ⊂
im(ı∗), we let 〈φ〉 = {φn} be an asymptotic sequential morphism from A → B ⊗K

such that ı∗(〈φ〉) = 0. Let j be as in Lemma 3.8 and h : A → O2 be an embedding.

Then there exits a sequence of unitaries vn ∈ ˜(B/I) ⊗ K such that

‖ ad vn ◦ π ◦ (φn(a) ⊕ j ◦ h(a)) − j ◦ h(a)‖ → 0 as n → ∞

for all a ∈ A. By replacing vn by vn ⊕ v∗n , we may assume that vn ∈ U0(((B/I) ⊗ K)̃).
Let un ∈ U0((B ⊗ K)̃) such that π(un) = vn. We have

‖π(u∗
n (φn ⊕ j ◦ h(a))un − j ◦ h(a))‖ → as n → ∞

for all a ∈ A. Let σ : ((B/I) ⊗ K)̃ → B̃ ⊗ K be a continuous (not necessarily linear)
cross section of π satisfying σ(0) = 0 (given by [BG]). Define ψ ′

n : A → B by

ψ ′
n(a) = u∗

n(φn(a) ⊕ j ◦ h(a))un − (σ ◦ π)(u∗
nφn(a)un − j ◦ h(a))

for a ∈ A. Since σ is continuous, we have

lim
n→∞

‖(σ ◦ π)(u∗
n (φn(a) ⊕ j ◦ h(a))un − j ◦ h(a))‖ = 0

for all a ∈ A. Since

π(ψ ′
n(a) − j(a)) = 0,

ψ ′
n(a) ∈ I ⊗ K + j ◦ h(A) for all A.

Therefore {ψ ′
n} is an asymptotically linear, self adjoint and multiplicative map

(not necessarily linear, or positive) from A to I ⊗ K + j ◦ h(A). By the construction
of j as in Lemma 3.9, there is an approximate identity {en} of I ⊗ K consisting of

projections such that

en j ◦ h(a) = j ◦ h(a)en and ‖(1 − en)(ψ ′
n(a) − j ◦ h(a))‖ → 0

as n → ∞ for all a ∈ A. Let ψ ′′
n (a) = enφ

′
n(a)en for all a ∈ A and j ′n(a) = (1− en) j ◦

h(a)(1 − en) for a ∈ A. Since A is amenable, it follows from [P2, 1.1.5] that there
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is a sequence of asymptotically multiplicative contractive completely positive linear
maps ψn : A → en(I ⊗ K)en such that

‖ψn(a) − ψ ′ ′
n (a)‖ → as n → ∞

for all a ∈ A. Then

lim
n→∞

‖ diag(ψn(a), j ′n(a)) − ad un ◦ diag(φn(a), j ◦ h(a))‖ → 0

for all a ∈ A. It follows from Lemma 3.6 that there are unitaries zn ∈ B̃ ⊗ K such
that

lim
n→∞

‖ diag(ı ◦ ψn(a), j ◦ h(a)) − ad zn ◦ (φn(a), j ◦ h(a))‖ = 0

for all a ∈ A. So there is α ∈ HomΛ(K(A),K(B)) such that, for any finite subset P ⊂
P(A), [ı◦ψn]|P = α|P for all sufficiently large n. Since the extension splits, by Lemma
3.6, there is a left inverse [ı]−1 : HomΛ((K(A),K(B)) → HomΛ((K(A),K(I)) such

that [ı]−1 ◦ [ı] = [idI]. Let β = [ı]−1(α). Then it follows that

[ψn]|P = β|P

for all large n. In other words, ψ = 〈{ψn}〉 is in EA(I). Furthermore, from last limit
formula above, we conclude that 〈φ〉 = ı∗(〈ψ〉).

Theorem 4.11 Let A be a separable amenable C∗-algebra. Let

0 → I ⊗ K
ı
→B

π
→B/I → 0

be a split short exact sequence of separable C∗-algebras in D which gives an absorbing

essential trivial extension.

Then one has the following split short exact sequence.

0 → EA(I)
ı∗→EA(B)

π∗→EA(B/I) → 0.

Proof Denote by g : B/I → B the splitting map so that π ◦ g = idB/I . We first show

that ı∗ is injective. To simplify the notation, we may assume that B = B ⊗ K.
Let 〈φ〉 = {φn} be an asymptotic sequential morphism from A → I⊗K. Suppose

that ı∗ ◦ 〈φ〉 = 0. In other words, there is a sequence of unitaries un ∈ B̃ such that

lim
n→∞

‖ ad un ◦ (φn(a) + j(a)) − j(a)‖ = 0

for all a ∈ A, where j : A → B is a monomorphism which factors through O2.

It follows from Lemma 3.9 that there exists an approximate identity {en} of I ⊗ K

consisting of projections such that

‖enx − xen‖ → 0 as n → ∞
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for all x ∈ B. Moreover, there is, for each n, an embedding

jn : O2 → (en − en−1)I(en − en1
)

(e0 = 0) such that

j ′(a) =

∞∑

n=1

jn(a) ∈ B

for all a ∈ O2. Fix an embedding h : A → O2. It follows from Lemma 3.6 that we
may assume that j = j ′ ◦ h. Let {xn} be a dense sequence of A. We choose em(n) such
that

(i) ‖em(n)un − unem(n)‖ < 1/2n+1,
(ii) ‖em(n)φn(a)em(n) − φn(a)‖ < 1/2n+1 for all a ⊂ {x1, . . . , xn}.

Note that (i) is possible because un ∈ B̃. There is a unitary wn in em(n)Iem(n) such
that

‖wn − em(n)unem(n)‖ < 1/2n

for all n. Set Vn = (1 − em(n)) + wn. We may view Vn as a unitary in Ĩ ⊗ K. Put

j̄n(a) = em(n) j(a)em(n) =
∑m(n)

k=1 jk ◦ h(a) for a ∈ A. Then we have

lim
n→∞

‖ ad Vn ◦ (φn(a) ⊕ j̄n(a) − j̄n(a)‖ = 0

for all a ∈ A. Note that j̄n(a) = (
∑m(n)

k=1 jk) ◦ h. Let jo : O2 → I be an embedding. It

follows from Lemma 3.6 that there exists another sequence of unitaries zn in B̃ such
that

lim
n→∞

‖ ad zn ◦ (φn(a) ⊕ j0 ◦ h(a)) − j0 ◦ h(a)‖ = 0

for all a ∈ A. This implies that (ı)∗ is injective.

By Lemma 4.10, it remains to show that

π∗ ◦ g∗ = idEA(B/I) .

Note the above also show that π∗ is surjective. But π ◦ g = idB/I . Therefore π∗ ◦ g∗ =

(π ◦ g)∗ = idEA(B/I).

The following is obvious.

Lemma 4.12 EA(B ⊕C) = EA(B) ⊕ EA(C).

Proposition 4.13 Let A be a separable amenable C∗-algebra. Then EA(−) is homo-

topy invariant in the following sense. Suppose that fi∗ : EA(B) → EA(C) (i = 1, 2)
are homomorphisms and there is a homomorphism g∗ : EA(B) → EA(C([0, 1],C)) such

that δ0 ◦ g∗ = f1∗ and δ1 ◦ g∗ = f2∗, where δt : C([0, 1],B) → B is the point evaluation

at t, then f1∗ = f2∗;
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Proof Let 〈φ〉 ∈ EA(B). Suppose that g∗(〈φ〉) is represented by {Φn}, where
Φn : A → C([0, 1],B) is a sequence of contractive completely positive linear maps.

Then δt ◦ g∗(〈φ〉) is represented by {δt ◦ Φn}. It follows from [Ln7, 4.6] that 〈{δ0 ◦
Φn}〉 = 〈{δ1 ◦ Φn}〉. However, f0∗(〈φ〉) = 〈{δ0 ◦ Φn}〉 and f1∗(〈φ〉) = 〈{δ1 ◦ Φn}〉.
Therefore f1∗ = f2∗.

5 A Theorem of Higson

Definition 5.1 Let A be a unital separable amenable C∗-algebra and B be a separa-

ble C∗-algebra. Given 〈φ〉 ∈ EA(B) which is represented by an asymptotic sequential
morphism {φn} from A → B ⊗ K. It follows from Proposition 4.5 that there is a
unique α ∈ HomΛ(K(A),K(B ⊗ K)) such that [φn]|P = α|P for all finite subset
P ⊂ P and all sufficiently large n. Let βB(〈φ〉) = α. Then βB gives a (well-defined)

homomorphism from EA(B) to HomΛ(K(A),K(B⊗K). This defines a natural trans-
formation β from the functor EA to the functor HomΛ(K(A),K(−)). To see this,
let h : B → D be a homomorphism and 〈φ〉 = 〈{φn}〉 ∈ EA(B). Suppose that
ξ = βB(〈φ〉). Then it is clear that h∗(ξ) = βD({h ◦ φn}). Therefore

βD(EA(h))(〈φ〉) = βD(〈{h ◦ φn}〉) = h∗ ◦ βB(〈φ〉).

Definition 5.2 Fix a class of separable C∗-algebras A which satisfies the conditions

(i)–(iv) in Proposition 3.2.

Let F be a covariant functor from A to abelian groups. F is said to be

(a) homotopy invariant, if for any pair of homomorphisms f1∗, f2∗ : F(A) → F(B)

with the property that there exists a homomorphism g : F(A) → F(C([0, 1],B)
such that δ0∗ ◦ g = f1∗ and δ1∗ ◦ f2∗, where δt : C([0, 1],B) → B is the evaluation
at t ∈ [0, 1], then f1∗ = f2∗;

(b) stable, if ẽ∗ is an isomorphism;

(c) additive, if B1 and B2 in A then F(B1 ⊕ B2) = F(B1) ⊕ F(B2), and
(d) A-absorbing split exact, if for fixed A ∈ D, and, for any B ∈ A and whenever

0 → B ⊗ K
ı
→E

π
→A → 0

is a split short exact sequence which gives an absorbing essential trivial extension,
then one has the following split short exact sequence:

0 → F(B)
ı∗→F(E))

π∗→F(A) → 0.

Fix a C∗-algebra A in A. In the rest of this section, F is always a covariant functor
from A to abelian groups which satisfies the conditions (i)–(iv) of Proposition 3.2
with a fixed C∗-algebra A ∈ A.

Let C be a separable amenable C∗-algebra. It follows from Proposition 4.13,
Lemma 4.9, Lemma 4.12 and Theorem 4.11 that EC (−) satisfies (i)–(iv) for any
amenable C∗-algebra A ∈ D,
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Remark 5.3 To apply Higson’s original theorem, one would need to assume that the
functor in question is split exact, as well as stable and homotopy invariant. However,

we only know that EA is stable and homotopy invariant. But split exact holds only
for some special cases. In what follows, we will show that Higson’s theorem actually
holds for our functor EA. The proof is almost a line by line modification of Higson’s
original proof.

Definition 5.4 ( [H, 3.3]) Let A be a separable C∗-algebra in A. Let B be a σ-unital

C∗-algebra. Let Φ = (φ+, φ−, 1) be a KK(A,B)-cycle (for which U = 1) in the Cuntz
picture. Let σ : A → M(B ⊗ K) be a monomorphism such that it gives an essential
trivial absorbing extension of A by B ⊗ K. By replacing φ+ and φ− by φ+ ⊕ σ and
φ− ⊕ σ, we may assume that φ+ (and φ−) gives an absorbing extension. Set

AΦ = {a ⊕ x ∈ A ⊕ M(B ⊗ K) : φ+(a) = x,modulo B ⊗ K}.

Define φ̂± : A → AΦ by φ̂±(a) = a ⊕ φ±(a), define j : B ⊗K → AΦ by j(x) = 0⊕ x

and define π : AΦ → A by π(a ⊗ x) = a. These maps combine to give the following
essential trivial absorbing extension:

0 → B ⊗ K
j
→AΦ

π
→A → 0

which splits by either φ̂± : A → AΦ.

Suppose that both A and B are in A. Then by the assumption in Definition 5.2, AΦ

is in A. Let F be a covariant functor from A to abelian groups as above. As in [H, 3.4],
we get a homomorphism from F(A) to F(B) as follows.

Definition 5.5 ( [H, 3.4]) Let A ∈ A and let F be a covariant functor from A to

abelian groups which is stable, homotopy invariant, additive and A-absorbing split
exact. Suppose that B is in A. Let Φ∗ : F(A) → F(B) be the following composition of
homomorphisms:

F(A)
φ̂+∗−φ̂−∗

→ F(AΦ)
l
→F(B ⊗ K)

ẽ−1

∗→F(B),

where l : F(AΦ) → F(B ⊗ K) is a left inverse of j∗ : F(B ⊗ K) → F(AΦ). This exists

because the short exact sequence is A-absorbing split exact; also, since φ̂+∗ − φ̂−∗

maps into the kernel of π∗, Φ∗ does not depend on the particular choice of l (see [H,
3.3]). Note that im j∗ = kerπ∗. Denote by p : F(AΦ) → im j∗. We may choose

l = j−1
∗ ◦ p.

Remark 5.6 Let h± : A → B be two homomorphisms. We have a KK(A,B)-cycle
Φ = (φ+, φ−, 1), whereφ+ = ẽ◦h1 and φ− = ẽ◦h−. If we do not add any degenerate
cycle, we have AΦ = A ⊕ B ⊗ K. It is still an extension of A by B ⊗ K. We have
F(AΦ) = F(A) ⊕ F(B ⊗ K). Therefore we can also define Φ∗ exactly the same way as
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Definition 5.5. Let Ψ = (ψ, ψ, 1) be a degenerate cycle such that ψ : A → M(B ⊗K)
gives an essential absorbing trivial extension of A by B ⊗ K. Then

AΦ⊕Ψ =

{
a ⊕ (xi j) ∈ M2(M(B ⊗ K)) :

(xi j ) =

(
φ+(a) 0

0 ψ(a)

)
,modulo M2(B ⊗ K)

}
.

Define f : AΦ → AΦ⊕Ψ by

f (a ⊕ x) = a ⊕

(
x 0
0 ψ(a)

)
.

With suitable choices of ẽ, we have the following commutative diagram:

AΦ

f

��

B ⊗ K

j
oo

ẽ

��

A

φ̂±
==zzzzzzzz

γ̂ !!C
CC

CC
CC

C
B

ẽ
ddIIIIIIIIII

ẽzzvvvvvvvvvv

AΦ⊕Ψ M2(B ⊗ K)
j

oo

where γ =

(
φ± 0

0 ψ

)
. Note that AΦ and AΦ⊕Ψ are in A if B is in A. This implies that

Φ∗ = (Φ ⊕ Ψ)∗. We note that the above holds for any Φ = (φ+, φ−, 1), not just the
case that φ± = h±.

For the cycle Φ = (idA, 0, 1), AΦ = A ⊕ A ⊗ K. Moreover, φ̂+(a) = a ⊕ ẽ(a),

φ̂−(a) = a⊕0, and l : F(AΦ) → F(A⊗K) may be chosen to be q∗, where q(a⊕x) = x.
It follows that Φ∗ = (idA, 0, 1)∗ = idF(A). From the above, if Ψ = (ψ, ψ, 1) is a
degenerate cycle such that ψ : A → M(A ⊗ K) gives an essential absorbing trivial

extension, then (Φ ⊕ Ψ)∗ = idF(A).

In the following KK(A,−) denote the KK functor restricted on A.

Theorem 5.7 ( [H, Theorem 3.7]) Let F be as in Definition 5.5 and A be a fixed

C∗-algebra in A. If x ∈ F(A), then there exists a unique natural transformation

α : KK(A,−) → F such that αA([idA]) = x.

Proof Let α : KK(A,−) → F be a natural transformation and Φ be a cycle as in
Definition 5.4. To verify αB ◦ Φ∗ = Φ∗ ◦ αA, we choose l = j−1

∗ ◦ p (see Defini-
tion 5.5). Since α is a natural transformation, we have αAΦ

◦ KK( j) = F( j) ◦ αB⊗K.
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In particular, αAΦ
maps im KK( j) to im F( j). Therefore we obtain the following

commutative diagram:

im KK( j)

l

��

αAΦ

// im F( j)

l

��
KK(A,B ⊗ K)

αB⊗K

// F(B ⊗ K

We also have αAΦ
◦(φ̂+− φ̂−) = (φ̂+− φ̂−)◦αA. Since KK(φ̂+ − φ̂−) maps KK(A,A)

to ker KK(π) = im KK( j), F(φ̂+ − φ̂−) maps F(A) to ker F(π) = im F( j), from the
above commutative diagram, we obtain

αB⊗K ◦ (l∗ ◦ (φ̂+ − φ̂−)∗ = (l∗ ◦ (φ̂+ − φ̂−)∗ ◦ αA.

It follows that αB ◦ Φ∗ = Φ∗ ◦ αA.
Hence, by [H, 3.5], as in the proof of [H, 3.3], αB([Φ]) = αB(Φ∗([idA])) =

Φ∗(αA([idA]). Here the first Φ∗ is a homomorphism from KK(A,A) to KK(A,B)
and second Φ∗ is a homomorphism from F(A) to F(B). Moreover, [idA] is an ele-

ment in KK(A,A). This implies that αA([idA]) determines αB([Φ]). This proves the
uniqueness.

If x ∈ F(A), define ᾱB([Φ]) = Φ∗(x). We must prove that it is well defined. Note
that here Φ = (φ+, φ−, 1) and both φ+ and φ− are assumed to give essential ab-

sorbing trivial extensions. If Ψ = (ψ, ψ, 1) is a degenerate cycle then by Remark 5.6,
Φ∗ = (Φ⊕Ψ)∗. Also, if Φ0 and Φ1 are homotopic via a homotopy Φ = (Φ+,Φ−, 1), a
KK(A,C([0, 1],B)-cycle such that Φi∗ = δi∗◦Φ∗, where δi : C([0, 1],B) → B is point
evaluation at i = 0, 1. Hence Φ0∗ = Φ1∗ by homotopy invariance. As in the proof

of [H, 3.7], applying [H, 3.6], ᾱB gives a homomorphisms αB : KK(A,B) → F(B).
From Remark 5.6, αA([idA]) = x. Finally, if Φ is special (as of [H]) then it is easy
to check that (g#Φ)∗ = g∗ ◦ Φ∗ if g : B → C is a homomorphism. Therefore α is a
natural transformation.

6 Isomorphism from EA(B) to KL(A,B)

Definition 6.1 Let A be a separable amenable C∗-algebra. We use the identification

KK(A,B) = Ext(SA,B) and KK1(A,B) = Ext(A,B). We denote by T(A,B) the set
of equivalence classes of stably approximately trivial extensions (see [Ln6]). It was
shown that T is a subgroup of Ext(A,B).

Let A be a separable amenable C∗-algebra and B be a σ-unital C∗-algebra. Recall

that

KL(A,B) = KL0(A,B) = Ext(SA,B)/T(SA,B), KL1(A,B) = Ext(A,B)/T(A,B)

(see [Ln6]). We will use Π : KK(A,B) → KL(A,B) for the quotient map. It should
be noted we now defined KL(A,B) without the UCT (see [Ln6]).

https://doi.org/10.4153/CJM-2007-015-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-015-9


360 H. Lin

It follows from [DL] that there is homomorphism

Γ : KK(A,B) → HomΛ(K(A),K(B)).

It is shown by Dadarlat and Loring [DL] that if A is in N, then for any σ-unital
C∗-algebra B, Γ is surjective and ker Γ = Pext(K∗(A),K∗(B)).

It follows from [Ln6] that (with A amenable) T(A,B) is in the kernel of Γ. Thus
we obtain the induced map Γ̃ from KL(A,B) to HomΛ(K(A),K(B)).

Recall (see [Ln6]) that A is said to satisfy the approximate universal coefficient
theorem (AUCT) if the map Γ̃ is an isomorphism.

Theorem 6.2 Let A be a unital separable amenable C∗-algebra in D. Then, for each

separable C∗-algebra B ∈ D, the image of the map βB contains Γ̃(KL(A,B)).

Proof It is easy to see that Γ̃ is a natural transformation from the functor KK(A,−)
to the functor HomΛ(K(A),−)). It follows from Theorem 5.7 that there is a unique
natural transformationα from KK(A,−) to EA withαA([idA]) = 〈idA〉. Let β : EA →
HomΛ(K(A),K(−)) be the natural transformation defined in Definition 5.1. Then
βA(〈idA〉) = [idA]. Therefore βA ◦ αA([idA]) = [idA]. Since Γ̃([idA]) = [idA], It
follows from Theorem 5.7 that

Γ̃ ◦ Π = β ◦ α.

Thus βB(EA(B)) ⊃ Γ̃(KL(A,B)) = Γ̃((KL(A,B)).

Corollary 6.3 Let A be a unital separable amenable C∗-algebra in D which satis-

fies the AUCT. Then, for each separable C∗-algebra B ∈ D, the map βB : EA(B) →
HomΛ(K(A),K(B)) is surjective.

Theorem 6.4 Let A be a unital separable amenable C∗-algebra in D and B be a sepa-

rable unital C∗-algebra. Suppose that Γ̃ : KL(A, q∞(B)) → Γ̃(KL(A, q∞(B))) is injec-

tive. Then βB : EA(B) → HomΛ(K(A),K(B)) is also injective.

Proof By Theorem 6.2, it suffices to show that βB is injective. Let

α ∈ Γ̃(KL(A,B)) ⊂ HomΛ(K(A),K(B))

and 〈φ〉, 〈ψ〉 ∈ EA(B) such that βB(〈φ〉) = βB(〈ψ〉). Suppose that 〈φ〉 and 〈ψ〉 are
represented by φ = {φn} andψ = {ψn}, respectively. For any finite subset P ⊂ P(A),
there exists N > 0 such that [φn]|P = [ψn]|P = α|P for all large n ≥ N . It follows
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from [GL1, 2.9] (see also [GL2, Remark 2.1]) that

Ki(l∞(B ⊗ K)) =

∏

n

Ki(B),

Ki(l∞(B ⊗ K)) =

∏

n

Ki(B,Z/kZ),

Ki(q∞(B ⊗ K)) =

∏

n

Ki(B)/⊕n Ki(B),

Ki(q∞(B ⊗ K,Z/kZ)) =

∏

n

Ki(B,Z/kZ)/⊕n Ki(B,Z/kZ).

Define Φ,Ψ : A →
∏

n≥N B ⊗ K by ΦN (a) = {φn(a)}n ≥ N and ΨN (a) = {ψn(a)}
for a ∈ A, respectively. We then have [Ψ]|P = [Φ]|P. Let h1 = π ′ ◦ Φ and h2 =

π ′ ◦Ψ, where π ′ : l∞(B⊗K) → q∞(B⊗K). Regarding [h1] and [h2] as elements in
KL(A, q∞(B⊗K)), we have Γ̃([h1]) = Γ̃([h2]). By the assumption that Γ̃ is injective,

we obtain [h1] = [h2] in KL(A, q∞(B ⊗ K)). Fix a full embedding j : A → O2 →
B ⊗ K. Let J : A → O2 → l∞(B ⊗ K) be defined by J(a) = { j(a), j(a), . . . }. Put
h3 = h1 ⊕π ′ ◦ J. Note h3 is full. It follows from Theorem 3.3 that there is a sequence

of integers {m(n)} and a sequence of unitaries wn ∈ ˜q∞(B ⊗ K) such that

‖ ad wn ◦ (h1(a) ⊕ dm(n) ◦ h3(a)) − h2(a) ⊕ dm(n) ◦ h3(a)‖ → 0

as n → ∞ for all a ∈ A. Let {φ̄ ′
n} be the sequence of the maps which represents

the inverse of 〈{φn}〉 given by [Ln7, 4.5] corresponding to {φn}. Define Φ̄ : A →
l∞(B ⊗ K) by Φ̄(a) = {φ̄n(a)} for a ∈ A. Set h4 = π ′ ◦ Φ̄. Then

lim
n→∞

‖ ad w ′
n ◦ (h1(a) ⊕ dm(n) ◦ h3 ⊕ h4(a)) − h2(a) ⊕ dm(n) ◦ h3 ⊕ h4(a)‖ = 0

for all a ∈ A, where w ′
n is a unitary in U ( ˜q∞(B ⊗ K)). However, by the choice of φ̄ ′

n,
we have

lim
n→∞

‖ ad zn ◦ (h1(a) ⊕ dm(n) ◦ π
′ ◦ J(a)) − h2(a) ⊕ dm(n) ◦ π

′ ◦ J(a)‖ = 0

for all a ∈ A, where zn is a unitary in U ( ˜q∞(B ⊗ K)).

By applying Lemma 3.6, we have

lim
n→∞

‖ ad z ′n ◦ (h1 ⊕ π ′ ◦ J)(a) − h2(a) ⊕ π ′ ◦ J(a)‖ = 0

for all a ∈ A, where z ′n is another sequence of unitaries. There is a unitary Un,k =

{v(n)

k }k≥1 ∈ ˜l∞(B ⊗ K) such that π(Un,k) = z ′n, n = 1, 2, . . . . Let un = v(n)
n . Then

we have limn→∞ ‖ ad un ◦ (φ ′
n(a) ⊕ j(a)) − ψ ′

n(a) ⊕ j(a)‖ = 0 for all a ∈ A. From
here we conclude that 〈φ〉 = 〈ψ〉.

https://doi.org/10.4153/CJM-2007-015-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-015-9


362 H. Lin

Theorem 6.5 Let A be a unital separable amenable C∗-algebra. Then for any ε > 0
and any finite subset F ⊂ A, there exist δ > 0, a finite subset G and a finite subset P ⊂
P(A) satisfying the following: if B is a unital C∗-algebra in D and φ, ψ : A → B⊗K are

two G-δ- multiplicative contractive completely positive linear maps with [ψ]|P = [φ]|P,

then there exists a unitary u ∈ B̃ ⊗ K such that ad ◦(φ ⊕ j) ≈ε ψ ⊕ j on F, where

j : A → O2 → B is a full embedding.

Proof Suppose the theorem is false. Let {δn} be a decreasing sequence of positive
numbers such that limn→∞ εn = 0, {Fn} be an increasing sequence of finite subsets
of A such that

⋃∞

n=1 Fn is dense in A and {Pn} be an increasing sequence of finite

subsets such that
⋃∞

n=1 Pn = P(A). Then there exits ε0 > 0, a finite subset F0 ⊂ A,
a sequence of unital C∗-algebras {Bn} ⊂ D and two sequences of asymptotically
multiplicative contractive completely positive linear maps ψn, φn : A → Bn ⊗K such
that [ψn]|Pn

= [φn]|Pn
, n = 1, 2, . . . and

sup
n
{max{‖ ad un ◦ (ψn(a) ⊕ j(a)) − (φn(a) ⊕ j(a))‖ : a ∈ F0}} ≥ ε0

for all unitaries un ∈ U (B̃n ⊗ K).

Define Ψ : A → l∞({Bn ⊗ K}) and Φ : A → l∞({Bn}) by Ψ(a) = {ψn(a)} and
Φ(a) = {φn(a)} for a ∈ A, respectively. Put h1 = π ′ ◦ Ψ and h2 = π ′ ◦ Φ, where
π ′ : l∞({Bn ⊗ K}) → q∞({Bn ⊗ K}) is the quotient map. It follows from the proof
of Theorem 6.4 that Γ̃1([h1]) = Γ̃1([h2]). The same proof shows that there exists an

integer m and a unitary in w ∈ Mm(q∞({Bn ⊗ K}) such that

‖ ad w ◦ (h1(a) ⊕ π ′ ◦ J(a)) − (h2(a) ⊕ π ′ ◦ J(a))‖ < ε0/2

for all a ∈ F0. There exists a unitary U = {vn} ∈ U (q∞({Bn ⊗ K})) such that

π ′(U ) = w. Therefore there exists an integer N such that for all n ≥ N ,

‖ ad vn ◦ (ψn(a) ⊕ j(a)) − (φ(a) ⊕ j(a))‖ < ε0

for all a ∈ F0. This gives a contradiction.

Lemma 6.6 Let A be a separable amenable C∗-algebra in D. Then elements in EA(B)
can be represented by homomorphisms from A to B ⊗ K.

Proof Let 〈φ〉 ∈ EA(B) be represented by {φn} and ξ = βB(〈φ〉). Fix ε > 0 and a

finite subset F. Let δ, G and P be as required in Theorem 6.5. There exists N > 0
such that φn are G-δ-multiplicative and [φn]|P = ξ|P for all n ≥ N . It follows from

Theorem 6.5 that there exists, for each n, a unitary un,k ∈ B̃ ⊗ K such that

‖ ad un,k ◦ (φn ⊕ j)(a) − (φn+k ⊕ j)(a)‖ < ε

for all a ∈ F and n ≥ N . By applying [Ln7, 4.7] we obtain a subsequence {m(k)} and

a sequence of unitaries wk ∈ B̃ ⊗ K such that h(a) = limn→∞ w∗
k (φm(k) ⊕ j)(a)wk

converges for each a ∈ A and h : A → B⊗K is a homomorphism. Moreover, [h] = ξ.
By applying Theorem 6.5 again, we obtain that 〈φ〉 = 〈h〉.
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Theorem 6.7 Let A be a unital separable amenable C∗-algebra in D which satisfies the

AUCT and B be a separable C∗-algebra in D. Then βB : EA(B) → HomΛ(K(A),K(B))

is an isomorphism.

Proof If A satisfies the AUCT, the map Γ̃ in Theorem 6.5 is injective. So the theorem
follows immediately from Theorem 6.5.

7 Weak Stability

Lemma 7.1 Let A be a unital purely infinite simple C∗-algebra. There are δ > 0 and

a finite subset G such that for any C∗-algebra B, if there exists a contractive completely

positive linear map L : A → B which is G-δ-multiplicative, then there exists a projection

e ∈ B such that there is a full embedding from O2 to eBe. If we assume that L(1A) is

a projection, then we can choose e = L(1A). Moreover, if A is separable, there exists a

separable C∗-algebra C ∈ D such that C ⊂ B and L(A) ⊂ C.

Proof There is an embedding j : O2 → A. There is x ∈ A such that x∗ j(1O2
)x = 1A.

Since O2 is semiprojective, for any finite subset F and ε > 0, there is a finite subset
G1 ⊂ j(O2) and δ > 0 such that, if L is G ∪ {x, x∗}-δ-multiplicative, then there is a

monomorphism h : j(O2) → D such that ‖L(x) − h(x)‖ < ε for all x ∈ F. With a
larger finite subset G2 ⊂ A, we may assume that there is a projection e ∈ B such that
‖e − L(1A)‖ < ε/2 and ‖L(x)∗h(1O2

)L(x) − e‖ < ε. This implies that h(1O2
) is a full

projection in eBe.

If A is separable, one can find a separable C∗-subalgebra C ⊂ eBe with 1C = e

and L(A) ∪ h(A) ∪ {x} ⊂ C . It follows that C ∈ D.

Lemma 7.2 Let A be a unital separable amenable purely infinite simple C∗-algebra.

For any ε > 0 and any finite subset F ⊂ A, there exist δ > 0 and a finite subset G ⊂ A

satisfying the following: for any separable C∗-algebra B ∈ D, any G-δ-multiplicative

contractive completely positive linear map L : A → B such that e = L(1A) is a projection

and any full embedding j : A → O2 → eBe, there exists an isometry v ∈ M2(B̃) with

vv∗ = 1B̃ such that ad v∗ ◦ (L ⊕ j) ≈ε L on F.

Proof Let δ > 0 and G be a finite subset of A. It follows from [Ro4, 8.2.5] that
there is an embedding jo : A → O2 → A such that there is an isometry z ∈ M2(Ã)

such that ad z∗ ◦ (idA ⊕ jo)) ≈δ/2 idA on F. Since O2 is semiprojective, without loss
of generality we may assume that there is a homomorphism ho : A → O2 → A such
that L ◦ jo ≈δ/2 h0 on F. Moreover, as in Lemma 7.1, we may assume that h0 is full
in eBe. Note that for any η > 0 with sufficiently large G and small δ, we may assume

that there is an isometry u ∈ M2( ˜eBe) with uu∗
= 1B and u∗u = 1M2(ẽBe) such that

‖u − L(z)‖ < η. Thus, we may assume that ad u∗ ◦ diag(L, ho) ≈ε/4 L on F.

It follows from Corollary 3.5 that there is an isometry w ∈ M2(B) such that

ad w∗ ◦ (h0 ⊕ j) ≈ε/4 h0 on F.
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Let w1 = 1B ⊕ w. Then

L ≈ε/4 ad z∗ ◦ (L ⊕ ho) ≈ε/4 ad w∗
1 ◦ ad z∗ ◦ (L ⊕ ho ⊕ j)) on F.

However, there is an isometry v ∈ M2(B̃) such that

ad w∗
1 ◦ ad z∗(L ⊕ ho ⊕ j)) ≈ε/4 ad v∗ ◦ (L ⊕ j) on F.

Thus the lemma follows.

Lemma 7.3 Let A be a unital separable purely infinite simple C∗-algebras in N. Sup-

pose also that Ki(A) is finitely generated for i = 0, 1. Then A is weakly semiprojective.

Proof Let {Bn} be a sequence of C∗-algebras and h : A → q∞({Bn}) be a mono-
morphism. Since A is amenable, there is a contractive completely positive linear map
L = {Ln} : A → l∞({Bn}), where each Ln : A → Bn is a contractive completely

positive linear map, such that π ◦ L = h, where π : l∞({Bn}) → q∞({Bn}) is the
quotient map. Since ‖Ln(ab) − Ln(a)Ln(b)‖ → 0 as n → ∞ for all a, b ∈ A, without
loss of generality we may assume that Ln(1A) = pn is a projection. Moreover, by
Lemma 7.1, we may assume that pnBn pn ∈ D for all n. To simplify notation, we may

assume that Bn ∈ D. Since Bn ⊂ Bn ⊗ K, and Bn is full in Bn ⊗ K, Bn ⊗ K ∈ D.

Since Ki(A) (i = 0, 1) is finitely generated, by [DL, 2.11], there is an integer
k0 > 0 such that HomΛ(K(A),K(C)) = HomΛ(Fk0

K(A), Fk0
K(C)) for every σ-unital

C∗-algebra C , where Fk0
K(D) = K∗(A) ⊕

⊕
k≤k0

K∗(D,Z/kZ)). Let Γ̃([h]) ∈
HomΛ(Fk0

K(A), Fk0
K(q∞(Bn)).

Put

P(i)
0 =

∏

n

Ki(Bn), P(i)
k =

∏

n

Ki(Bn,Z/kZ),

Q(i)
0 =

∏

n

Ki(Bn)/⊕n Ki(Bn),

Q(i)
k =

∏

n

Ki(Bn,Z/kZ)/⊕n Ki(Bn,Z/kZ).

It follows from [GL1, 2.9] that

Ki(l∞(Bn ⊗ K)) = P(i)
0 , Ki(l∞(Bn ⊗ K)) = P(i)

k ,

Ki(q∞(Bn ⊗ K)) = Q(i)
0 , Ki(q∞(Bn ⊗ K,Z/kZ)) = Q(i)

k ,

k = 2, 3, . . . . We have the following commutative diagrams:
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K0(A)

$$IIIIIII

// K0(A,Z/kZ)

Γ̃([h])��

// K1(A)

��

zzuuuuuuu

Q(0)
0

// Q(0)

k
// Q(1)

0

��

Q(0)
0

OO

Q(1)

k
oo Q(1)

0
oo

K0(A)

::uuuuuuu

OO

K1(A,Z/kZ)

Γ̃([h])

OO

oo K1(A)oo

ddIIIIIII

K0(A,Z/mkZ) //

%%LLLLLLLL
K0(A,Z/kZ)

Γ̃([h])��

// K1(A,Z/mZ)

yyrrrrrrrr

��

Q(0)

mk
// Q(0)

k
// Q(1)

m

��

Q(0)
m

OO

Q(1)

k
oo Q(1)

mk
oo

K0(A,Z/mZ)

99rrrrrrrr

OO

K1(A,Z/kZ)oo

Γ̃([h])

OO

K1(A,Z/mkZ)oo

eeLLLLLLLL

It follows from [Ln7, 7.2] that for any 0 ≤ k ≤ k2
0, we obtain homomorphisms

α : Ki(A,Z/kZ) → P(i)
k such that π∗ ◦ α = Γ̃([h]) for all 0 ≤ k ≤ k2

0. Moreover, we
have the following commutative diagrams for all k ≤ k2

0:

K0(A)

$$IIIIIII

// K0(A,Z/kZ)

Γ̃([h])��

// K1(A)

��

zzttttttt

Q(0)
0

// Q(0)

k
// Q(1)

0

��

Q(0)
0

OO

Q(1)

k
oo Q(1)

0
oo

K0(A)

::uuuuuuu

OO

K1(A,Z/kZ)

Γ̃([h])

OO

oo K1(A),oo

ddJJJJJJJ
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K0(A,Z/mkZ) //

α

%%LLLLLLLL
K0(A,Z/kZ)

α
��

// K1(A,Z/mZ)

αyyrrrrrrrr

��

P(0)

mk
// P(0)

k
// P(1)

m

��

P(0)
m

OO

P(1)

k
oo P(1)

mk
oo

K0(A,Z/mZ)

α
99rrrrrrrr

OO

K1(A,Z/kZ)oo

α
OO

K1(A,Z/mkZ).oo
α

eeLLLLLLLL

So α = {αn} ∈ HomΛ(Fk0
K(A), Fk0

K(l∞(Bn)) such that π∗ ◦ α = Γ([h]). Note
that each αn ∈ HomΛ(Fk0

K(A), Fk0
K(Bn)). It follows from Lemma 6.6 that there

is a homomorphism hn : A → Bn such that [hn] = αn. Fix a sequence of finite
subsets F j such that F j ⊂ F j+1, n = 1, 2, . . . , and

⋃∞

n=1 Fn is dense in A, and a

decreasing sequence of positive numbers ε j such that lim j→∞ ε j = 0. For each j, let
δ j > 0, P j ⊂ P(A) and G j be finite subsets associated with ε j , F j and A as required by
Theorem 6.5. There is n( j) > 0 such that Ln : A → Bn is Gn-δn-multiplicative, [Ln]|P j

is well defined for all n ≥ n( j). Furthermore, we may also assume (with perhaps even

larger n( j)) that [Ln]|P j
= (αn)|P for all n ≥ n( j). Let jn : A → O2 → Bn be full

embedding. It follows from Theorem 6.5 that there is a unitary u( j, n) ∈ B̃n such that
Ln ⊕ jn ≈ε j

ad u( j, n) ◦ h ′
n on F j , where h ′

n = hn ⊕ jn. By applying Lemma 7.2, there

exists a sequence of isometries zn ∈ B̃ ⊗ K with z∗n zn = 1B⊗K and znz∗n = 1M2(B⊗K)

such that

lim
n→∞

‖ ad zn ◦ (Ln ⊕ jn)(a) − Ln(a)‖ = 0

for all a ∈ A. Thus, we obtain unitaries w(n, j) ∈ B̃ ⊗ K (with n > n( j)) such that

Ln ≈2ε j
ad w(n, j) ◦ hn on F.

Define w1 = 1, . . . ,wn(1)−1 = 1,wn( j)+i = u(1, n( j)+i), 0 ≤ i ≤ n( j+1)−n( j)−1

and φn = ad wn ◦ hn. Then, since
⋃∞

j=1 F j is dense in A, we conclude that

lim
n→∞

‖Ln(a) − φn(a)‖ = 0 for all a ∈ A.

Finally define H(a) = {φn(a)} for a ∈ A. Then H : A → l∞({Bn ⊗ K}) is a ho-

momorphism. Moreover, π ◦ H = h. If Bn are not stable, put pn = Hn(1A). Since
‖pn − Ln(1A)‖ → 0 (as n → ∞) and Ln(1A) ∈ Bn, there is a sequence of projections

en ∈ Bn such that ‖pn − en‖ → 0 as n → ∞. We obtain unitaries vn ∈ B̃n ⊗ K such
that

‖vn − 1‖ → 0 as n → ∞, v∗n pnvn = en and vnenv∗n = pn n = 1, 2, . . . .
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Put Hn(a) = v∗nφnn(a)vn for a ∈ A, n = 1, 2, . . . . Then Hn : A → Bn is a homomor-
phism and ‖Hn(a) − φn(a)‖ → 0 as n → ∞. for all a ∈ A. Therefore

lim
n→∞

‖Ln(a) − H ′
n(a)‖ = 0 for all a ∈ A.

Put H ′(a) = {Hn(a)}. Then π ◦ H ′
= h.

Lemma 7.4 Let A be a unital separable purely infinite simple C∗-algebra in N. Sup-

pose that Ki(A) is a (countable) direct sum of finitely generated abelian groups (i =

0, 1). Then A = limn→∞(An, jn), where each An is a unital purely infinite simple

C∗-algebra in N with finitely generated Ki(An), n = 1, 2, . . . . Moreover, there exist for

each n, a homomorphism rn : A → An and a sequence of unitaries un(k) ∈ An such that

limk→∞ ‖ ad un(k) ◦ rn ◦ jn(a) − a‖ = 0 for all a ∈ An.

Proof Write Ki(A) =
⊕∞

i=1 G(n, i), where each G(n, i) is a finitely generated group

(i = 0, 1 and n = 1, 2, . . . ). It follows from [ER] that there is a unital separable
amenable purely infinite simple C∗-algebra An in N such that

Ki(An) =

n⊕

m=1

G(m, i),

i = 0, 1. Let σn,i :
⊕n

m=1 G(m, i) →
⊕n+1

m=1 G(m, i) by defining σn(g) = (g, 0)
for g ∈

⊕n
m=1 G(m, i) (for i = 0, 1). It follows from [P2, 4.1.1] that there is a

homomorphism φn : Bn → Bn+1 such that (φn)i∗ = σn,i . Let B = limn→∞(Bn, jn).
Since each An is purely infinite and simple, one sees that so is B. Since each Bn is in
N and each φn is injective, by [S1], B ∈ N. Moreover Ki(A) = Ki(B). It follows
from [P2] that A ⊗ K ∼= B ⊗ K. Therefore there is a projection e ∈ B ⊗ K such that

A ∼= e(B ⊗ K)e. From this one checks that there are An which is a unital hereditary
C∗-subalgebra of Bn ⊗K such that A = limn→∞(An, φn). Note Ki(An) = Ki(Bn) for
i = 0, 1 and n = 1, 2, . . . .

To see the last part of the lemma, let γ(n,i) :
⊕∞

m=1 G(m, i) →
⊕n

m=1 G(m, i) be

the projection γ(n,i)(g1, g2, . . . , gn, gn+1, . . . ) = (g1, . . . , gn), where gm ∈ G(m, i) for
i = 0, 1. It follows from [P2, 4.1.1] that there is a homomorphism ψn : A → An such
that (ψn)i∗ = γ(n,i), i = 0, 1 and n = 1, 2, . . . . It follows that (ψn ◦ φn)i∗ = idKi (An).
Let z = [φn]×[ψn] in KK(An,An). It follows from [RS] that there is z1 ∈ KK(An,An)

such that [z]× [z1] = [z1]× [z] = [idAn
]. It follows again from [P2, 4.1.1] that there

is a homomorphism hn : An → An such that [hn] = [z1]. Put rn = hn ◦ ψn. Then
[rn] = [hn ◦ ψn ◦ φn] = [idAn

]. It follows again from [P2, 4.1.1] that there exists a

sequence of unitaries un(k) ∈ An such that limk→∞ ‖ ad un(k) ◦ rn ◦φn(a)− a‖ = 0 for
all a ∈ An.

Theorem 7.5 Let A be a unital separable purely infinite simple C∗-algebra in N. Then

A is weakly semiprojective if and only if Ki(A) is a countable direct sum of finitely gen-

erated abelian groups for i = 0, 1.
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Proof For the “if ” part, we apply Lemmas 7.3 and 7.4. By Lemma 7.4, we write
A = limn→∞(An, φn), where each An is a unital separable amenable purely infinite

simple C∗-algebra in N and Ki(An) is finitely generated (i = 0, 1). We may identify
An with jn,∞(An). So we assume that An ⊂ An+1.

Suppose that {Bn} is a sequence of C∗-algebras such that there is a homomor-
phism h : A → q∞({Bn}). Let L = {Ln} : A → l∞({Bn}) be a contractive completely

positive linear map such that π ◦L = h, where π : l∞({Bn}) → q∞({Bn}) is the quo-
tient map. Denote by hn the restriction of h on An. For each m, by applying Lemma
7.3, there is a homomorphism Φm : Am → l∞({Bn}) such that π ◦ Φm = hm. Write
Φm = {g(n,m)}. Note that g(n,m) are homomorphisms from Am to Bn.

Suppose that Fm ⊂ Am is a finite subset such that Fm ⊂ Fm+1 and
⋃∞

m=1 Fm is
dense in A. By Lemma 7.4, there is a homomorphism sn : A → An such that

sn ≈1/2n+1 idAn
on Fn.

Since limn→∞ ‖g(n,m)(a)−Ln(a)‖ = 0 for all a ∈ Am, we choose n(m) ≥ m such that

g(k,m) ≈1/2m+1 Lk(a) on Fm

for all k ≥ n(m). Moreover, we require that n(m + 1) > n(m). Now define ψk =

g(k,m) ◦ sm if n(m) ≤ k < n(m + 1), m = 1, 2, . . . . Define Ψ = {ψk}. Then Ψ : A →
l∞({Bm}) is a homomorphism. Furthermore for each m and n(m + 1) > k ≥ n(m),

ψk = g(k,m) ◦ sm ≈1/2k+1 g(k,m) ≈1/2m+1 Lk(a) on Fm.

Since Fm ⊂ Fm+1, we have ψk ≈1/2l Lk on Fm for all k ≥ n(l) and l ≥ m. Therefore,

lim
n→∞

‖ψn(a) − Ln(a)‖ = 0

for all a ∈ Fm. Since
⋃∞

n=1 Fm is dense in A, we conclude that

lim
n→∞

‖ψn(a) − Ln(a)‖ = 0

for all a ∈ A. This implies that π◦Ψ = h. This shows that A is weakly semiprojective.

The “only if” part follows from part (1) of [Ln7, Theorem 8.4].
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Corollary 7.6 Let A be a unital separable purely infinite simple C∗-algebra in N.

Then, for any ε > 0 and any finite subset F ⊂ A, there exists δ > 0 and a finite subset

G ⊂ A such that for any C∗-algebra B and any contractive positive linear map L : A →
B satisfying ‖L(ab) − L(a)L(b)‖ < δ for all a ∈ G, there exists a homomorphism

h : A → B such that ‖L(a) − h(a)‖ < ε for all a ∈ F.

Corollary 7.7 A separable amenable purely infinite simple C∗-algebra A in N is

weakly semiprojective if and only if Ki(A) (i = 0, 1) is a countable direct sum of finitely

generated abelian groups.

Proof Let e ∈ A be a projection and C be a non-unital hereditary C∗-subalgebra
of eAe. Then both C and A are stable. Moreover there exists an isometry v ∈ A∗∗

such that v∗v = 1, vv∗ = p, where p is the open projection associated with C ,
and v∗cv ∈ A for all c ∈ C and vav∗ ∈ C for all a ∈ A. Moreover φ(a) = vav∗

gives an isomorphism from A to C . The reference of this can be found in [Zh1]
and Theorem 10, Corallary 11 and the last paragraph of [Ln1]. Fix a finite subset

F ⊂ A and ε > 0. We may assume without loss of generality that F ⊂ eAe. Set
F1 = {vav∗ : a ∈ F}. It follows from Corollary 7.6 that there exists a finite subset
G and δ > 0 such that for any G-δ-multiplicative contractive positive linear map
L : A → B there is a homomorphism h0 : eAe → B such that the map a 7→ L(v∗av)

from eAe to B is approximated by h0 within ε/2 on F1 : ‖L(v∗av)− h0(a)‖ < ε/2 for
all a ∈ F1. Define h : A → B by defining h(a) = h0(vav∗) for a ∈ A. Then,

‖L(a) − h(a)‖ = ‖L(v∗(vav∗)v) − h0(vav∗)‖ < ε

for all a ∈ F.
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