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Abstract

Continuing a line of work by Abramsky (1994), Bellin and Scott (1994), and Caires and Pfenning
(2010), among others, this paper presents CP, a calculus, in which propositions of classical linear
logic correspond to session types. Continuing a line of work by Honda (1993), Honda et al. (1998),
and Gay & Vasconcelos (2010), among others, this paper presents GV, a linear functional language
with session types, and a translation from GV into CP. The translation formalises for the first time
a connection between a standard presentation of session types and linear logic, and shows how a
modification to the standard presentation yields a language free from races and deadlock, where race
and deadlock freedom follows from the correspondence to linear logic.

‘The new connectives of linear logic have obvious meanings in terms of parallel
computation. [. . . ] Linear logic is the first attempt to solve the problem of parallelism at

the logical level, i.e., by making the success of the communication process only dependent
of the fact that the programs can be viewed as proofs of something, and are therefore

sound’.
—Girard 1987 (emphasis as in the original)

1 Introduction

Functional programmers know where they stand: upon the foundation of λ -calculus. Its
canonicality is confirmed by its double discovery, once as natural deduction by Gentzen
and again as λ -calculus by Church. These two formulations are related by the Curry–
Howard correspondence, which takes

propositions as types,
proofs as programs, and

normalisation of proofs as evaluation of programs.

The correspondence arises repeatedly: Hindley’s type inference corresponds to Milner’s
Algorithm W; Girard’s System F, corresponds to Reynold’s polymorphic λ -calculus;
Peirce’s law in classical logic corresponds to Landin’s J operator (better known as
call/cc).

� The online version of this paper uses colour to highlight the relation of types to terms and source to target.
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Today, mobile phones, server farms, and many-core processors make us concurrent
programmers. Where lies a foundation for concurrency as firm as that of λ -calculus? Many
process calculi have emerged – ranging from Communicating Sequential Processes (CSP)
to Calculus of Communicating Systems (CCS) to π-calculus to join calculus to mobile
ambients to bigraphs – but none is as canonical as λ -calculus, and none has the distinc-
tion of arising from Curry–Howard. This paper takes a further step along the programme
pursued by Girard (1987), Abramsky (1994), Honda (1993), Caires & Pfenning (2010),
among others, of seeking foundations for concurrency that rest upon the correspondence
uncovered by Curry and Howard.

Since its inception by Girard (1987), linear logic has held the promise of a foundation
for concurrency rooted in Curry–Howard. In an early step, Abramsky (1994) and Bellin &
Scott (1994) devised a translation from linear logic into π-calculus. Along another line,
Honda (1993) introduced session types, further developed by Honda et al. (1998) and
others, which take inspiration from linear logic, but do not enjoy a relationship as tight
as Curry–Howard.

Recently, Caires & Pfenning (2010) found a twist on Abramsky’s (1994) translation
that yields an interpretation strongly reminiscent of session types, and a variant of Curry–
Howard with

propositions as session types,
proofs as processes, and

cut elimination as communication.

The correspondence is developed in a series of papers by Caires, Pfenning, Toninho, and
Pérez. This paper extends these lines of work with the following three contributions.

Firstly, inspired by the calculus πDILL of Caires & Pfenning (2010), this paper presents
the calculus CP. Based on dual intuitionistic linear logic, πDILL uses two-sided sequents,
with two constructs corresponding to output (⊗ on the right of a sequent and � on the left),
and two constructs corresponding to input (� on the right of a sequent and ⊗ on the left).
Based on classical linear logic, CP uses one-sided sequents, offering greater simplicity and
symmetry, with a single construct for output (⊗) and a single construct for input (�), each
dual to the other. Caires et al. (2012a) compare πDILL with πCLL, which like CP is based
on classical linear logic; we discuss this comparison in Section 5. (If you like, CP stands
for Classical Processes.)

Secondly, although πDILL is clearly reminiscent of the body of work on session types,
no one has previously published a formal connection. Inspired by the linear functional
language with session types of Gay & Vasconcelos (2010), this paper presents the calculus
GV, and also presents a translation from GV into CP, for the first time formalising a
tight connection between a standard presentation of session types and a standard pre-
sentation of linear logic. In order to facilitate the translation, GV differs from the lan-
guage of Gay & Vasconcelos (2010) in some particulars. These differences suffice to make
GV, unlike the original, free from races and deadlock. (If you like, GV stands for Good
Variation.)

Curry–Howard relate proof normalisation to computation. Logicians devised proof nor-
malisation to show consistency of logic, and for this purpose it is essential that proof
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normalisation terminates. Hence, a consequence of Curry–Howard is that it identifies a
fragment of λ -calculus for which the Halting Problem is solved. Well-typed programs
terminate unless they explicitly resort to non-logical features such as general recursion.
Similarly, a consequence of the Curry–Howard for concurrency is that it identifies a frag-
ment of a process calculus which is free of deadlock. In particular, both πDILL and CP
are such fragments, and the proof that GV is deadlock-free follows immediately from its
translation to CP. We return to the question of what non-logical features might restore races
and deadlock in the Conclusions.

Thirdly, this paper presents a calculus with a stronger connection to linear logic, at the
cost of a weaker connection to traditional process calculi. Bellin & Scott (1994) and Caires
& Pfenning (2010) each present a translation from linear logic into π-calculus such that cut
elimination converts one proof to another if and only if the translation of the one reduces
to the translation of the other; but to achieve this tight connection several adjustments are
necessary.

Bellin & Scott (1994) restrict the axiom to atomic type, and Caires & Pfenning (2010)
omit the axiom entirely. In terms of a practical programming language, such restrictions
are excessive. The former permit type variables, but instantiating a type variable to a type
requires restructuring the program (as opposed to simple substitution); the latter outlaw
type variables altogether. Consequently, neither system lends itself to parametric polymor-
phism.

Further, Bellin & Scott (1994) only obtain a tight correspondence between cut elim-
ination and π-calculus for the multiplicative connectives, and they require a variant of
π-calculus with surprising structural equivalences such as x(y).x(z).P ≡ x(z).x(y).P – per-
muting two reads on the same channel! Caires & Pfenning (2010) only obtain a tight
correspondence between cut elimination and π-calculus by ignoring commuting conver-
sions; this is hard to justify logically because commuting conversions play an essential
role in cut elimination. Pérez et al. (2012) show commuting conversions correspond to
contextual equivalences, but fail to capture the directionality of the commuting conver-
sions.

Thus, while the connection established in previous work between cut elimination in
linear logic and reduction in π-calculus is encouraging, it comes at a cost. Accordingly, this
paper cuts the Gordian knot: It takes the traditional rules of cut elimination as specifying
the reduction rules for its process calculus. Pro: We let logic guide the design of the ‘right’
process calculus. Con: We forego the assurance that comes from double discoveries of the
same system, as with Gentzen & Church, Hindley & Milner, Girard (1987), Reynolds, and
Peirce & Landin. Mitigating the con are the results cited above that show a connection
between Girard’s (1987) linear logic and Milner’s π-calculus, albeit not as tight as the
other connections just mentioned.

In return for loosening its connection to π-calculus, the design of CP avoids the problems
described above. The axiom is interpreted at all types, using a construct suggested by
Caires et al. (2012a), and consequently it is easy to extend the system to support poly-
morphism, using a construct suggested by Turner (1995). All commuting conversions of
cut elimination are satisfied.

This paper is the journal version of Wadler (2012). It is organised as follows. Section 2
sketches the path from Abramsky, Bellin, Scott, Caires, and Pfenning to the present one.
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Section 3 presents CP. Section 4 presents GV and its translation to CP. Section 5 discusses
related works. Section 6 concludes.

2 The twist

This section explains how a small but crucial twist relates the work of Abramsky, Bellin,
and Scott to the work of Caires and Pfenning and to what is presented here.

The key difference is in the interpretation of the linear connectives ⊗ and �. In contrast,
all of these works agree in their interpretation of ⊕ and � as making a selection and
offering a choice, and indeed Honda (1993) already uses ⊕ and � in that way. But input
and output in Honda’s (1993) work appear to have no connection with the connectives of
linear logic. (It is an unfortunate historical accident that ! and ? denote output and input
in many process calculi, including those of Honda (1993) and Gay & Vasconcelos (2010),
while ! and ? denote exponentials in linear logic; the two uses are distinct and should not
be confused.)

In Abramsky (1994) and Bellin & Scott (1994), the following two rules interpret the
linear connectives ⊗ and �.

P � Γ,y : A Q � Δ,z : B

νy,z.x〈y,z〉.(P | Q) � Γ, Δ, x : A⊗B
⊗ R � Θ, y : A, z : B

x(y,z).R � Θ, x : A�B
�

Under their interpretation, A⊗B is the type of a channel which outputs a pair of an A and a
B, while A�B is the type of a channel which inputs a pair of an A and a B. In the rule for ⊗,
process νy,z.x〈y,z〉.(P | Q) allocates fresh channels y and z, transmits the pair of channels
y and z along x, and then concurrently executes P and Q. In the rule for �, process x(y,z).R
communicates along channel x obeying protocol A�B; it receives from x the pair of names
y and z, and then executes R.

This work puts a twist on the above interpretation. Here we use the following two rules
to interpret the linear connectives ⊗ and �.

P � Γ, y : A Q � Δ, x : B

νy.x〈y〉.(P | Q) � Γ, Δ, x : A⊗B
⊗ R � Θ, y : A, x : B

x(y).R � Θ, x : A�B
�

Under the new interpretation, A⊗B is the type of a channel which outputs an A and then
behaves as a B, while A�B is the type of a channel which inputs an A and then behaves as
a B. In the rule for ⊗, process νy.x〈y〉.(P | Q) allocates fresh variable y, transmits y along
x, and then concurrently executes P and Q. In the rule for �, process x(y).R receives name
y along x, and then executes R.

The difference is that in the rules used by Abramsky (1994) and Bellin & Scott (1994) the
hypotheses refer to channels y and z and the conclusion to channel x, while in the rules used
here the hypotheses refer to channels y and x, and the conclusion reuses the channel x. One
may regard the type of the channel as evolving as communication proceeds, corresponding
to the notion of the session type.

While it is natural to interpret A⊗B and A � B as transmitting and accepting a pair, it
may initially seem unnatural to interpret A⊗B and A � B asymmetrically, as first trans-
mitting or accepting a channel obeying protocol A and then obeying protocol B. The
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unnaturality of the interpretation may explain why it took 16 years between when Abram-
sky (1994) and Bellin & Scott (1994) published their interpretation of the linear connec-
tives as pairing and Caires & Pfenning (2010) published their interpretation of the linear
connectives as session types. In fact, we will see that there is an isomorphism between
A⊗B and B⊗A, and similarly between A � B and B � A, which provides the necessary
symmetry.

The insight behind this twist is clearly due to Caires & Pfenning (2010), although the
relationship to the earlier work is not presented in their paper along the lines described.
Indeed, the relation to the work of Abramsky (1994) and Bellin & Scott (1994) is fur-
ther obscured because Caires & Pfenning (2010) use intuitionistic linear logic rather than
classical logic.

In Caires & Pfenning (2010), the following four rules interpret the linear connectives ⊗
and �.

Γ; Δ � P :: y : A Γ; Δ′ � Q :: x : B

Γ; Δ, Δ′ � νy.x〈y〉.(P | Q) :: x : A⊗B
⊗-R

Γ; Δ, y : A, x : B � R :: z : C

Γ; Δ, x : A⊗B � x(y).R :: z : C
⊗-L

Γ; Δ, y : A � R :: x : B

Γ; Δ � x(y).R :: x : A � B
�-R

Γ; Δ � P :: y : A Γ; Δ′, x : B � Q :: z : C

Γ; Δ, Δ′, x : A � B � νy.x〈y〉.(P | Q) :: z : C
�-L

To print these rules requires more than twice as much ink as to print the comparable rules
used here! Part of the difference is due to different forms of bookkeeping, which is mostly
incidental and won’t be detailed here. Another difference is that the above rules use �
instead of �, but since A � B and A⊥ � B are equivalent, this is not so significant. The
difference we will focus on here is that the use of an intuitionistic logic forces Caires
& Pfenning (2010) to represent output by two rules, ⊗-R and �-L, and input by two
rules, �-R and ⊗-L. This duplication adds complexity and confusion. Worse, it impedes
usability, since if one user defines an output protocol with A ⊗ B, and the second user
defines an input protocol with A � B, then these cannot be connected directly with a cut,
but require some form of mediating code. Avoiding mismatch requires some convention –
for instance, a server might always use R rules and a client always use L rules. The classical
approach is easier to use in practice, since no convention for servers and clients is required.
Caires & Pfenning (2010) do give some reasons to prefer the intuitionistic approach to the
classical one, and these are described in Section 5.

While Girard (1987) associated linear logic with concurrency from the beginning, many
readers of the original paper (including the current author) had some difficulty giving an
intuitive reading to the classical connective �. One advantage of the work presented here
is that it may finally offer an intuitive reading of this fundamental connective.

3 Classical linear logic as a process calculus

This section presents CP, a session-typed process calculus. CP is based on classical linear
logic with one-sided sequents, the system treated in the first paper on linear logic by Girard
(1987).
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Types. Propositions, which may be interpreted as session types, are defined by the follow-
ing grammar:

A,B,C ::=
X propositional variable
X⊥ dual of propositional variable
A⊗B ‘times’, output A then behave as B
A�B ‘par’, input A then behave as B
A⊕B ‘plus’, select from A or B
A�B ‘with’, offer choice of A or B
!A ‘of course!’, server accept
?A ‘why not?’, client request
∃X .B existential, output a type
∀X .B universal, input a type
1 unit for ⊗
⊥ unit for �

0 unit for ⊕

 unit for �

Let A,B,C range over propositions, and X ,Y,Z range over propositional variables. Every
propositional variable X has a dual written X⊥. Propositions are composed from multi-
plicatives (⊗,�), additives (⊕,�), exponentials (!,?), second-order quantifiers (∃,∀), and
units (1,⊥,0,
). In ∃X .B and ∀X .B, propositional variable X is bound in B. Write fv(A)
for the free variables in proposition A. Our notation is identical to that of Girard (1987),
save we write quantifiers as ∃,∀ where he writes ∨,∧.

Duals. Duals play a key role, ensuring that a request for input at one end of a channel
matches an offer of a corresponding output at the other, and that a request to make a
selection at one end matches an offer of a corresponding choice at the other.

Each proposition A has a dual A⊥, defined as follows:

(X)⊥ = X⊥ (X⊥)⊥ = X
(A⊗B)⊥ = A⊥ �B⊥ (A�B)⊥ = A⊥⊗B⊥

(A⊕B)⊥ = A⊥ �B⊥ (A�B)⊥ = A⊥⊕B⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

(∃X .B)⊥ = ∀X .B⊥ (∀X .B)⊥ = ∃X .B⊥

1⊥ = ⊥ ⊥⊥ = 1
0⊥ = 
 
⊥ = 0

The dual of a propositional variable, X⊥, is part of the syntax. Multiplicatives are dual to
each other, as are additives, exponentials, and quantifiers.

Duality is an involution, (A⊥)⊥ = A.

Substitution. Write B{A/X} to denote substitution of A for X in B. Substitution of a
proposition for a dual propositional variable results in the dual of the proposition.
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Assuming X �= Y , define

X{A/X} = A X⊥{A/X} = A⊥

Y{A/X} = Y Y⊥{A/X} = Y⊥

The remaining clauses are standard, for instance (A⊗B){C/X} = A{C/X}⊗B{C/X}.
Duality preserves substitution, B{A/X}⊥ = B⊥{A/X}.

Environments. Let Γ, Δ, Θ range over environments associating names to propositions,
where each name is distinct. Assuming Γ = x1 : A1, . . . , xn : An, with xi �= x j whenever
i �= j, we write fn(Γ) = {x1, . . . ,xn} for the names in Γ, and fv(Γ) = fv(A1)∪ ·· ·∪ fv(An)
for the free propositional variables in Γ. Order in environments is ignored. Environments
use linear maintenance, so two environments may be combined only if they contain distinct
names: writing Γ, Δ implies fn(Γ)∩ fn(Δ) = /0.

Processes. Our process calculus is a variant on the π-calculus (Milner et al. 1992). Pro-
cesses are defined by the following grammar:

P,Q,R ::=
x↔y link
νx :A.(P | Q) parallel composition
x[y].(P | Q) output
x(y).P input
x[inl].P left selection
x[inr].P right selection
x.case(P,Q) choice
!x(y).P server accept
?x[y].P client request
x[A].P output a type
x(X).P input a type
x[ ].0 empty output
x().P empty input
x.case() empty choice

In νx :A.(P | Q), name x is bound in P and Q, in x[y].(P | Q), name y is bound in P (but not
in Q), and in x(y).P, ?x[y].P, and !x(y).P, name y is bound in P. We write fn(P) for the free
names in process P. In x(X).P, propositional variable X is bound in P.

The form x↔y denotes forwarding, where every message received on x is retransmitted
on y, and every message received on y is retransmitted on x. Square brackets indicate
output and round brackets indicate input; unlike π-calculus, both output and input names
are bound. The forms x(y).P and !x(y).P in our calculus behave like the same forms in π-
calculus, while both forms x[y].P and ?x[y].P in our calculus behave like the form νy.x〈y〉.P
in π-calculus.

Alternative notion. A referee suggested, in line with one tradition for π-calculus, choos-
ing the notation x(y).P in place of x[y].P. We avoid this alternative because overlines can
be hard to spot, while the distinction between round and square brackets is clear.
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w↔x � w : A⊥, x : A
Ax

P � Γ, x : A Q � Δ, x : A⊥

νx :A.(P | Q) � Γ, Δ Cut

P � Γ, y : A Q � Δ, x : B

x[y].(P | Q) � Γ, Δ, x : A⊗B
⊗ R � Θ, y : A, x : B

x(y).R � Θ, x : A�B
�

P � Γ, x : A

x[inl].P � Γ, x : A⊕B
⊕1

P � Γ, x : B

x[inr].P � Γ, x : A⊕B
⊕2

Q � Δ, x : A R � Δ, x : B

x.case(Q,R) � Δ, x : A�B
�

P � ?Γ, y : A

!x(y).P � ?Γ, x : !A
!

Q � Δ, y : A

?x[y].Q � Δ, x : ?A
?

Q � Δ
Q � Δ, x : ?A

Weaken
Q � Δ, x : ?A, x′ : ?A

Q{x/x′} � Δ, x : ?A
Contract

P � Γ, x : B{A/X}
x[A].P � Γ, x : ∃X .B

∃
Q � Δ, x : B

x(X).Q � Δ, x : ∀X .B
∀ (X �∈ fv(Δ))

x[ ].0 � x : 1
1

P � Γ
x().P � Γ, x : ⊥ ⊥

(no rule for 0) x.case() � Γ, x : 
 


Fig. 1. CP, classical linear logic as a session-typed process calculus.

Judgements. The rules for assigning session types to processes are shown in Figure 1.
Judgements take the form

P � x1 : A1, . . . , xn : An

indicating that process P communicates along each channel named xi obeying the protocol
specified by Ai. Erasing the process and the channel names from the above yields

� A1, . . . , An

and applying this erasure to the rules in Figure 1 yields the rules of classical linear logic,
as given by Girard (1987).

3.1 Structural rules

The calculus has two structural rules, Axiom and Cut. We do not list Exchange explicitly,
since order in environments is ignored.

The axiom is:

w↔x � w : A⊥, x : A
Ax

We interpret the axiom as forwarding. A name input along w is forwarded as output along
x, and vice versa, so types of the two channels must be dual. Bellin & Scott (1994) restrict
the axiom to propositional variables, replacing A by X and w↔x by the π-calculus term
w(y).x〈y〉.0. Whereas we forward any number of times and in either direction, they forward
only once and from X to X⊥.

The cut rule is:
P � Γ, x : A Q � Δ, x : A⊥

νx :A.(P | Q) � Γ, Δ Cut
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(Swap)
P � Γ, x : A Q � Δ, x : A⊥

νx :A.(P | Q) � Γ, Δ Cut ≡ Q � Δ, x : A⊥ P � Γ, x : A

νx :A⊥.(Q | P) � Γ, Δ
Cut

(Assoc)
P � Γ, x : A Q � Δ, x : A⊥, y : B

νx.(P | Q) � Γ, Δ, y : B
Cut

R � Θ, y : B⊥

νy.(νx.(P | Q) | R) � Γ, Δ, Θ Cut
≡

P � Γ, x : A

Q � Δ, x : A⊥, y : B R � Θ, y : B⊥

νy.(Q | R) � Δ, Θ, x : A⊥ Cut

νx.(P | νy.(Q | R)) � Γ, Δ, Θ Cut

(AxCut)

w↔x � w : A⊥, x : A
Ax

P � Γ, x : A⊥

νx.(w↔x | P) � Γ, w : A⊥ Cut =⇒ P{w/x} � Γ, w : A⊥

Fig. 2. Structural cut equivalences and reduction for CP.

Following Abramsky (1994) and Bellin & Scott (1994), we interpret Cut as a symmetric
operation combining parallel composition with name restriction. Process P communicates
along channel x obeying protocol A, while process Q communicates along the same channel
x obeying the dual protocol A⊥. Duality guarantees that sends and selections in P match
with receives and choices in Q, and vice versa. Communications along Γ and Δ are disjoint,
so P and Q are restricted to communicate with each other only along x. If communication
could occur along two channels rather than one, this could lead to races or deadlock. (When
we discuss exponentials, we will see that Γ and Δ may share channels of type ?B, for some
B. Such channels are only used to communicate with replicable servers, so it remains the
case that the only communication between P and Q is along x.)

Observe that, despite writing νx : A in the syntax, the type of x differs in P and Q – it is
A in the former but A⊥ in the latter. Including the type A in the syntax for Cut guarantees
that given the type of each free name in the term, each term has a unique type derivation.
To save ink and eyestrain, the type is omitted when it is clear from the context.

Cut elimination corresponds to process reduction. Figure 2 shows two equivalences on
cuts, and one reduction that simplifies a cut against an axiom, each specified in terms
of derivation trees; from which we read off directly the corresponding equivalence or
reduction on processes. We write ≡ for equivalences and =⇒ for reductions; both relations
are reflexive and transitive. Equivalence (Swap) states that a cut is symmetric:

νx :A.(P | Q) ≡ νx :A⊥.(Q | P)

It serves the same role as the π-calculus structural equivalence for symmetry, P |Q ≡Q | P.
Equivalence (Assoc) permits reordering cuts:

νy.(νx.(P | Q) | R) ≡ νx.(P | νy.(Q | R))

It serves the same role as the π-calculus structural equivalences for associativity, P | (Q |
R) ≡ (P | Q) | R, and scope extrusion, (νx.P) | Q ≡ νx.(P | Q) when x /∈ P.
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Reduction (AxCut) simplifies a cut against an axiom.

νx.(w↔x | P) =⇒ P{w/x}

We write P{w/x} to denote substitution of w for x in P.

Alternative notation. The confusion of giving different types to x in P and Q might be
avoided by picking a different syntax νx↔y.(P | Q) with the typing rule

P � Γ, x : A Q � Δ, y : A⊥

νx↔y.(P | Q) � Γ, Δ Cut

Here instead of using x as the distinguished free name of type A in P and type A⊥ in Q,
we retain x as the distinguished free name of type A in P but use y as the distinguished
free name of type A⊥ in Q. Thus, νx↔y.(P | Q) in the alternative notation corresponds to
νx.(P | (Q{x/y})) in our notation. We avoid this alternative so as not to proliferate names.

3.2 Output and input

The multiplicative connectives ⊗ and � are dual. We interpret A⊗B as the session type of
a channel which outputs an A and then behaves as a B, and A � B as the session type of a
channel which inputs an A and then behaves as a B.

The rule for output is:

P � Γ, y : A Q � Δ, x : B

x[y].(P | Q) � Γ, Δ, x : A⊗B
⊗

Processes P and Q act on disjoint sets of channels. Process P communicates along channel
y obeying protocol A, while process Q communicates along channel x obeying protocol B.
The composite process x[y].(P | Q) communicates along channel x obeying protocol A⊗B;
it allocates a fresh channel y, transmits y along x, and then concurrently executes P and Q.
Disjointness of P and Q ensures that there is no further entangling between x and y, which
guarantees freedom from races and deadlock.

The rule for input is:
R � Θ, y : A, x : B

x(y).R � Θ, x : A�B
�

Process R communicates along channel y obeying protocol A and along channel x obeying
protocol B. The composite process x(y).R communicates along channel x obeying protocol
A � B; it receives name y along x, and then executes R. Unlike with output, the single
process R communicates with both x and y. It is safe to permit the same process to com-
municate with x and y on the input side because there is no further entangling of x with y
on the output side, explaining the claim that disentangling x from y on output guarantees
freedom from races and deadlock.

For output, channel x has type B in the component process Q but type A⊗ B in the
composite process x[y].(P | Q). For input, channel x has type B in the component process
R but type A�B in the composite process x(y).R. One may regard the type of the channel
evolving as communication proceeds, corresponding to the notion of the session type.
Assigning the same channel name different types in the hypothesis and conclusion of a rule
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is the telling twist added by Caires & Pfenning (2010) in contrast to the use of different
variables in the hypothesis and conclusion followed by Abramsky (1994) and Bellin &
Scott (1994).

The computational content of the logic is most clearly revealed in the principal cuts of
each connective against its dual. Principal cut reductions are shown in Figure 3.

Cut of output ⊗ against input � corresponds to communication, as shown in rule (β⊗�):

νx.(x[y].(P | Q) | x(y).R) =⇒ νy.(P | νx.(Q | R))

In stating this rule, we take advantage of the fact that y is bound in both x[y].P and x(y).Q
to assume that the same bound name y has been chosen in each; Pitts (2011) refers to this
as the ‘anti-Barendregt’ convention.

Recall that x[y].P in our notation corresponds to νy.x〈y〉.P in π-calculus. Thus, the above
rule corresponds to the π-calculus reduction:

νx.(νy.x〈y〉.(P | Q) | x(z).R) =⇒ νy.P | νx.(Q | R{z/y})

This follows from from x〈y〉.P | x(z).R =⇒ P | R{z/y}, and the structural equivalences for
scope extrusion, since x /∈ fn(P).

One might wonder why the right-hand side of the above reduction is νx.(P | νy.(Q | R))
rather than νy.(Q | νx.(P | R))? The two are in fact equivalent by the use of the structural
rules:

νx :A.(P | νy :B.(Q | R))
≡ νx :A.(P | νy :B⊥.(R | Q)) (Swap)
≡ νy :B⊥.(νx :A.(P | R) | Q) (Assoc)
≡ νy :B.(Q | νx :A.(P | R)) (Swap)

Hence, either term serves equally well as the right-hand side.
The apparent lack of symmetry between A⊗B and B⊗A may appear unsettling: the first

means output A and then behave as B, the second means output B and then behave as A.
The situation is similar to Cartesian product, where B×A and A×B differ but satisfy an
isomorphism. Similarly, A⊗B and B⊗A are interconvertible.

w↔z � w : B⊥, z : B
Ax

y↔x � y : A⊥, x : A
Ax

x[z].(w↔z | y↔x) � w : B⊥, y : A⊥, x : B⊗A
⊗

w(y).x[z].(w↔z | y↔x) � w : A⊥ �B⊥, x : B⊗A
�

Let flipwx be the term in the conclusion of the above derivation. Given an arbitrary deriva-
tion ending in P � Γ, w : A⊗B, one may replace A⊗B with B⊗A as follows:

P � Γ, w : A⊗B flipwx � w : A⊥ �B⊥, x : B⊗A

νw.(P | flipwx) � Γ, x : B⊗A
Cut

Here process P communicates along w obeying the protocol A⊗B, outputting A and then
behaving as B. Composing P with Q yields the process that communicates along x obeying
the protocol B⊗A, outputting B and then behaving as A.

The multiplicative units are 1 for ⊗ and ⊥ for �. We interpret 1 as the session type of the
channel that transmits an empty ouput, and ⊥ as the session type of the channel that accepts
an empty input. These are related by duality: 1⊥ = ⊥. Their rules are shown in Figure 1.
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(β⊗�
)

P � Γ, y : A Q � Δ, x : B

x[y].(P | Q) � Γ, Δ, x : A⊗B
⊗

R � Θ, y : A⊥, x : B⊥

x(y).R � Θ, x : A⊥ �B⊥ �
νx.(x[y].(P | Q) | x(y).R) � Γ, Δ, Θ Cut

=⇒

P � Γ, y : A

Q � Δ, x : B R � Θ, y : A⊥, x : B⊥

νx.(Q | R) � Δ, Θ, y : A⊥ Cut

νy.(P | νx.(Q | R)) � Γ, Δ, Θ Cut

(β⊕�
)

P � Γ, x : A

x[inl].P � Γ, x : A⊕B
⊕1

Q � Δ, x : A⊥ R � Δ, x : B⊥

x.case(Q,R) � Δ, x : A⊥ �B⊥ �
νx.(x[inl].P | x.case(Q,R)) � Γ, Δ Cut

=⇒

P � Γ, x : A Q � Δ, x : A⊥

νx.(P | Q) � Γ, Δ Cut

(β!?)
P � ?Γ, y : A

!x(y).P � ?Γ, x : !A
!

Q � Δ, y : A⊥

?x[y].Q � Δ, x : ?A⊥ ?

νx.(!x(y).P | ?x[y].Q) � ?Γ, Δ Cut
=⇒ P � ?Γ, y : A Q � Δ, y : A⊥

νy.(P | Q) � ?Γ, Δ Cut

(β!W )
P � ?Γ, y : A

!x(y).P � ?Γ, x : !A
!

Q � Δ
Q � Δ, x : ?A⊥ Weaken

νx.(!x(y).P | Q) � ?Γ, Δ Cut
=⇒

Q � Δ
Q � ?Γ, Δ Weaken

(β!C)
P � ?Γ, y : A

!x(y).P � ?Γ, x : !A
!

Q � Δ, x : ?A, x′ : ?A

Q{x/x′} � Δ, x : ?A
Contract

νx.(!x(y).P | Q{x/x′}) � ?Γ, Δ
Cut

=⇒

P � ?Γ, y : A

!x(y).P � ?Γ, x : !A
!

P′ � ?Γ′, y′ : A

!x′(y′).P′ � ?Γ′, x′ : !A
!

Q � Δ, x : ?A⊥, x′ : ?A⊥

νx′.(!x′(y′).P′ | Q) � ?Γ′, Δ, x : ?A⊥ Cut

νx.(!x(y).P | νx′.(!x′(y′).P′ | Q)) � ?Γ, ?Γ′, Δ
Cut

νx.(!x(y).P | νx′.(!x′(y).P | Q)) � ?Γ, Δ
Contract

(β∃∀)
P � Γ, x : B{A/X}

x[A].P � Γ, x : ∃X .B
∃

Q � Δ, x : B⊥

x(X).Q � Δ, x : ∀X .B⊥ ∀

νx.(x[A].P | x(X).Q) � Γ, Δ Cut
=⇒

P � Γ, x : B{A/X} Q{A/X} � Δ, x : B⊥{A/X}
νx.(P | Q{A/X}) � Γ, Δ Cut

(β1⊥)

x[ ].0 � x : 1
1

P � Γ
x().P � Γ, x : ⊥ ⊥

νx.(x[ ].0 | x().P) � Γ Cut
=⇒ P � Γ

(β0
)
(no rule for 0 with 
)

Fig. 3. Principal cut reductions for CP.
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Cut of empty output 1 against empty input ⊥ corresponds to an empty communication, as
shown in rule (β1⊥):

νx.(x[ ].0 | x().P) =⇒ P

This rule resembles reduction of a nilary communication in the polyadic π-calculus.

Example. We give a series of examples inspired by Internet commerce, based on similar
examples in Caires & Pfenning (2010). Our first example is that of a sale, where the client
sends a product name and credit card number to a server, which returns a receipt. Define:

Buy
def= Name⊗ (Credit⊗ (Receipt⊥ �⊥))

Sell
def= Name⊥ � (Credit⊥ � (Receipt⊗1))

buyx
def= x[u].(put-nameu | x[v].(put-creditv | x(w).x().get-receiptw))

sellx
def= x(u).x(v).x[w].(computeu,v,w | x[ ].0)

Here Name is the type of product names; Credit is the type of credit card numbers; Receipt

is the type of receipts; put-nameu transmits on u the name of a product, say ‘tea’; put-creditv

transmits on v a credit card number; computeu,v,w accepts name u and credit card v, and
computes a receipt, which it transmits on w; get-receiptw accepts receipt w, and continues
with the buyer’s business; Γ specifies other channels used by the client; and Θ specifies
other channels used by the server.

Observe that Buy = Sell⊥ and

buyx � Γ, x : Buy sellx � Θ, x : Sell

νx.(buyx | sellx) � Γ, Θ Cut

By three applications of (β⊗�) and one of (β1⊥), we have

νx.(buyx | sellx) =⇒
νu.(put-nameu | νv.(put-creditv | νw.(computeu,v,w | get-receiptw)))

illustrating the interaction of output and input.

Example. As a further example, illustrating use of the units 1 and ⊥, we consider a way
to express two parallel computations. We introduce a primitive computation

pary,z � y : 1, z : 1

that sends a signal along both y and z in parallel. Then we can derive a term that executes
two processes P � Γ and Q � Δ in parallel, as follows:

pary,z � y : 1, z : 1
P � Γ

y().P � y : ⊥, Γ ⊥

νy.(pary,z | y().P) � z : 1, Γ Cut
Q � Δ

z().Q � z : ⊥, Δ ⊥

νz.(νy.(pary,z | y().P) | z().Q) � Γ, Δ Cut

In what follows, we abbreviate the above derivation as

P � Γ Q � Δ
P | Q � Γ, Δ Mix

We will see that Mix has a logical interpretation in Section 6.
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3.3 Selection and choice

The additive connectives ⊕ and � are dual. We interpret A⊕B as the session type of a
channel which selects from either an A or a B, and A � B as the session type of a channel
which offers a choice of either an A or a B.

The rule for left selection is:

P � Γ, x : A

x[inl].P � Γ, x : A⊕B
⊕1

Process P communicates along channel x obeying protocol A. The composite process
x[inl].P communicates along channel x obeying protocol A⊕B; it transmits along x a
request to select the left option from a choice, and then executes process P. The rule for
right selection is symmetric.

The rule for choice is:
Q � Δ, x : A R � Δ, x : B

x.case(Q,R) � Δ, x : A�B
�

The composite process x.case(Q,R) communicates along channel x obeying protocol A�B;
it receives a selection along channel x and executes either process Q or R accordingly.

For selection, channel x has type A in the component process P and type A⊕B in the
composite process x[inl].P. For choice, channel x has type A in the component process Q,
type B in the component process R, and type A�B in the composite process x.case(Q,R).
Again, one may regard the type of the channel evolving as communication proceeds,
corresponding to the notion of session type.

Cut of selection ⊕ against choice � corresponds to picking an alternative as shown in
rule (β⊕�):

x[inl].P | x.case(Q,R) =⇒ νx.(P | Q)

The rule to select the right option is symmetric.
The additive units are 0 for ⊕ and 
 for �. We interpret 0 as the session type of a channel

that selects from among no alternatives, and ⊥ as the session type of a channel that offers a
choice among no alternatives. These are related by duality: 0⊥ = 
. Their rules are shown
in Figure 1. There is no rule for 0 because it is impossible to select from no alternatives.
Hence, there is also no reduction for a cut of an empty selection against an empty choice
as shown in Figure 3.

Example. We extend our previous example to offer a choice of two operations, selling an
item or quoting a price. To start with, we specify the second form of Internet commerce,
quoting a price, where the client sends a product name to the server, which returns its price.
Define:

Shop
def= (Name⊗ (Price⊥ �⊥))

Quote
def= (Name⊥ � (Price⊗1))

shopx
def= x[u].(put-nameu | x(v).get-pricev))

quotex
def= x(u).x[v].(lookupu,v | x[ ].0)

Here Name is the type of product names; Price is the type of prices; put-nameu transmits
on u the name of a product, say ‘tea’; lookupu,v accepts name u and looks up the price,
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which it transmits along v; get-price accepts price v, and continues with the requester’s
business; Δ specifies other channels used by the client; and Θ specifies other channels used
by the server. Apart from the distinguished channel x, sellX and quoteX use the same other
channels, while buyX and shopx may use different other channels.

Observe that Shop = Quote⊥ and

shopx � Δ, x : Shop quotex � Θ, x : Quote

νx.(shopx | quotex) � Δ, Θ Cut

By two applications of (β⊗�) and one of (β1⊥), we have

νx.(shopx | quotex) =⇒ νu.(put-nameu | νv.(lookupu,v | get-pricev)))

further illustrating the interaction of output and input.
We now combine the two servers into one that offers a choice of either service, and

promote each of the previous clients into one that first selects the appropriate service and
then behaves as before. Define:

Select
def= Buy⊕Shop

Choice
def= Sell�Quote

select-buyx
def= x[inl].buyx

select-shopx
def= x[inr].shopx

choicex
def= x.case(sellx,quotex)

Observe that Select = (Choice)⊥ and

select-buyx � Γ, x : Choose choicex � Θ, x : Offer

νx.(select-buyx | choicex) � Γ, Θ Cut

By one application of (β⊕�) we have

νx.(select-buyx | choicex) =⇒ νx.(buyx | sellx)

illustrating the interaction of selection and choice. Similarly, the above judgement also
holds if we replace select-buyx with select-shopx and Γ with Δ, and we have

νx.(select-shopx | choicex) =⇒ νx.(shopx | quotex)

illustrating the other selection.

3.4 Servers and clients

The exponential connectives ! and ? are dual. We interpret !A as the session type of a server
that will repeatedly accept an A, and interpret ?A as the session type of a collection of
clients that may each request an A. A server must be impartial, providing the same service
to each client, whereas clients may pass different requests to the same server. Hence, !A
offers uniform behaviour, while ?A accumulates diverse behviours.

The rule for servers is:
P � ?Γ, y : A

!x(y).P � ?Γ, x : !A
!
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Process P communicates along channel y obeying protocol A. The composite process
!x(y).P communicates along channel x obeying the protocol !A; it receives y along x,
and then spawns a fresh copy of P to execute. All channels used by P other than y must
obey a protocol of the form ?B, for some B, to ensure that replicating P respects the type
discipline. Intuitively, a process may only provide a replicable service if it is implemented
by communicating only with other processes that provide replicable services.

There are three rules for clients corresponding to the fact that a server may have one,
none, or many clients. The three rules correspond to the rules of classical linear logic for
dereliction, weakening, and contraction.

The first rule is for a single client.

Q � Δ, y : A

?x[y].Q � Δ, x : ?A
?

Process Q communicates along channel y obeying protocol A. The composite process
?x[y].Q communicates along channel x obeying protocol ?A; it allocates a fresh channel
y, transmits y along x, and then executes process Q. Cut of rule ! against rule ? corresponds
to spawning a single copy of a server to communicate with a client, as shown in rule (β!?):

νx.(!x(y).P | ?x[y].Q) =⇒ νy.(P | Q)

The second rule is for no clients.
Q � Δ

Q � Δ, x : ?A
Weaken

A process Q that does not communicate along any channel obeying protocol A may be
regarded as communicating along a channel obeying protocol ?A. Cut of rule ! against
Weaken corresponds to garbage collection, deallocating a server that has no clients, as
shown in rule (β!W ):

νx.(!x(y).P | Q) =⇒ Q, if x �∈ fn(Q)

The third rule aggregates multiple clients.

Q � Δ, x : ?A, x′ : ?A

Q{x/x′} � Δ, x : ?A
Contract

Process Q communicates along two channels x and x′ both obeying protocol ?A. Process
Q{x/x′} is identical to Q, save all occurrences of x′ have been renamed to x; it com-
municates along a single channel x obeying protocol ?A. Cut of rule ! against Contract
corresponds to replicating a server, as shown in rule (β!C):

νx.(!x(y).P | Q{x/x′}) =⇒ νx.(!x(y).P | νx′.(!x′(y).P | Q))

The type derivation on the right-hand side of rule (β!C) applies Contract once for each free
name in Γ. The derivation is written using the following priming convention: we assume
that to each name zi there is associated another name z′i, and we write P′ for the process
identical to P, save that each free name zi in P has been replaced by z′i; that is, if fn(P) =
{z1, . . . ,zn} then P′ = P{z′1/z1, . . . ,z

′
n/zn}.

Example. We further extend our example so that the server offers a replicated service
to multiple clients. Presume that in the preceding examples the channels Θ used by sellx,
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quotex, and choicex are in fact of the form ?Θ so that each process is implemented by
communicating only with other processes that provide replicable services. Define:

Client
def= ?Select

Server
def= !Choice

clientx
def= ?x(y).select-buyy | ?x(y).select-shopy

serverx
def= !x(y).choicey

Here the combination of the two processes in clientx is formed using the Mix rule, as
discussed in the second example of Section 3.2.

Observe that Client = Server⊥ and

clientx � Γ, Δ, x : Client serverx � ?Θ, x : Server

νx.(clientx | serverx) � Γ, Δ, ?Θ Cut

By one application of (β!C) and two of (β!?) we have

νx.(clienty | servery) =⇒ (νy.select-buyy | choicey) | (νy′.select-shopy′ | choicey′)

illustrating the interaction of a replicable server with multiple clients. Note that pushing
the two instances of choice inside the instance of Mix requires two uses of the structural
rule Assoc from Section 3.1 and two uses of the commuting conversion κ0 discussed in
Section 3.6.

Alternative notation. A referee notes that weakening and contraction could be given
explicit notation rather than implicit, for instance, using ?x[ ].Q to denote weakening and
?x[x′,x′′].Q to denote contraction, yielding type rules

Q � Δ
?x[ ].Q � Δ, x : ?A

Weaken

and
Q � Δ, x′ : ?A, x′′ : ?A

?x[x′,x′′].Q � Δ, x : ?A
Contract

while reduction rules (β!W ) and (β!C) become

νx.(!x(y).P | ?x[ ].Q) =⇒?z1[ ]. · · · .?zn[ ].Q

and
νx.(!x(y).P | ?x[x′,x′′].Q) =⇒

?z1[z
′
1,z

′′
1 ]. · · · .?zn[z′n,z

′′
n ].νx′.(!x′(y′).P′ | νx′′.(!x′′(y′′).P′′ | Q))

where fn(P) = {y,z1, . . . ,zn}. We avoid this alternative because the implicit notation is
more convenient.

3.5 Polymorphism

The quantifiers ∃ and ∀ are dual. We interpret ∃X .B as the session type of a channel that
instantiates propositional variable X to a given proposition, and interpret ∀X .B as the
session type of a process that generalises over X . These correspond to type application
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and type abstraction in polymorphic λ -calculus, or to sending and receiving types in the
polymorphic π-calculus of Turner (1995).

The rule for instantiation is:

P � Γ, x : B{A/X}
x[A].P � Γ, x : ∃X .B

∃

Process P communicates along channel x obeying protocol B{A/X}. The composite pro-
cess x[A].P communicates along channel x obeying protocol ∃X .B; it transmits a represen-
tation of A along x, and then executes P.

The rule for generalisation is:

Q � Δ, x : B

x(X).Q � Δ, x : ∀X .B
∀ (X �∈ fv(Δ))

Process Q communicates along channel x obeying protocol B. The composite process
x(X).Q communicates along channel x obeying protocol ∀X .B; it receives a description
of a proposition along channel x, binds the proposition to the propositional variable X , and
then executes Q.

Cut of instantiation ∃ against generalisation ∀ corresponds to transmitting a representa-
tion of a proposition, as shown in rule (β∃∀):

νx.(x[A].P | x(X).Q) =⇒ νx.(P | Q{A/X})

This rule behaves similarly to beta reduction of a type abstraction against a type application
in polymorphic λ -calculus, or communication of a type in the polymorphic π-calculus.

Example. Quantification supports a definition of the Church numerals in our system.
Define

Church
def= ∀X .?(X ⊗X⊥)� (X⊥ �X)

zerox
def= x(X).x(s).x(z).z↔x

onex
def= x(X).x(s).x(z).?s[ f ]. f [a].(a↔z | f↔x)

twox
def= x(X).x(s).x(z).?s[ f ]. f [a].(a↔z |?s[g].g[b].( f↔b | g↔x))

Observe that if we define A � B = A⊥ � B then the type of the Church numerals may be
rewritten as ∀X .!(X � X) � (X � X), which may appear more familiar. The terms zerox,
onex, and twox accept a type variable X , a process s :?(X ⊗X⊥) and a value z : X⊥, and
invoke s zero, one, or two times on z to return a value of type X . We may invoke the Church
numerals by instantiating X , s, and z appropriately.

Define process

countx,y � x : Church⊥, y : Nat

that accepts a Church numeral on x and transmits the corresponding natural on y as follows:

countx,y
def= x[Nat].x[s].(!s( f ). f (a).incra, f | x[z].(noughtz | x↔y))

Here Nat is the type of natural numbers; process incra,b � a : Nat⊥, b : Nat accepts a natural
along a and transmits a value one greater along b; and process noughta � a : Nat transmits
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the value zero along a. Then

νx.(zerox | countx,y) =⇒ noughty

νx.(onex | countx,y) =⇒ νz.(noughtz | incrz,y)
νx.(twox | countx,y) =⇒ νa.(νz.(noughtz | incrz,a) | incra,y)

These three processes transmit 0, 1, or 2, respectively, along y.
Similarly, define process

pingx,y,w � x : Church⊥, y : ?⊥, w : 1

that accepts a Church numeral on x and transmits a corresponding number of signals along
y, and when done transmits a signal along w as follows:

pingx,y,w
def= x[1].x[s].(!s[ f ]. f (a).a().?y[u].u(). f [ ].0 | x[z].(z[ ].0 | x().w[ ].0))

Then
νx.(zerox | pingx,y,w) =⇒ w[ ].0
νx.(onex | pingx,y,w) =⇒ ?y[u].u().w[ ].0
νx.(twox | pingx,y,w) =⇒ ?y[u].u().?y[v].v().w[ ].0

These three processes transmit 0, 1, or 2 signals, respectively, along y, and then a signal
along w.

3.6 Commuting conversions

Commuting conversions are shown in Figures 4 and 5.
Each commuting conversion pushes a cut inside a communication operation. There are

two conversions for ⊗, depending upon whether the cut pushes into the left or right branch.
Each of the remaining logical operators has one conversion, with the exception of ⊕, which
has two (only the left rule is shown, the right rule is symmetric); and the exception of 1
and 0, which have none.

An important aspect of CP is revealed by considering rule (κ�), which pushes cut inside
input:

νz.(x(y).P | Q) =⇒ x(y).νz.(P | Q)

On the left-hand side process Q may interact with the environment, while on the right-hand
side Q is guarded by the input and cannot interact with the environment. In our setting, this
is not problematic. If x is bound by an outer cut, then the guarding input is guaranteed to
match a corresponding output at some point. If x is not bound by an outer cut, then we
consider the process halted while it awaits external communication along x; compare this
with the use of labelled transitions in Lemma 5.7 of Caires & Pfenning (2010).

3.7 Cut elimination

In addition to the rules of Figures 2–5, we add a standard rule relating reductions to
structural equivalences:

P ≡ Q Q =⇒ R R ≡ S
P =⇒ S
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(κ⊗1)
P � Γ, y : A, z : C Q � Δ, x : B

x[y].(P | Q) � Γ, Δ, x : A⊗B, z : C
⊗

R � Θ, z : C⊥

νz.(x[y].(P | Q) | R) � Γ, Δ, Θ, x : A⊗B
Cut

=⇒

P � Γ, y : A, z : C R � Θ, z : C⊥

νz.(P | R) � Γ, Θ, y : A
Cut

Q � Δ, x : B

x[y].(νz.(P | R) | Q) � Γ, Δ, Θ, x : A⊗B
⊗

(κ⊗2)
P � Γ, y : A Q � Δ, x : B, z : C

x[y].(P | Q) � Γ, Δ, x : A⊗B, z : C
⊗

R � Θ, z : C⊥

νz.(x[y].(P | Q) | R) � Γ, Δ, Θ, x : A⊗B
Cut

=⇒

P � Γ, y : A

Q � Δ, x : B, z : C R � Θ, z : C⊥

νz.(Q | R) � Δ, Θ, x : B
Cut

x[y].(P | νz.(Q | R)) � Γ, Δ, Θ, x : A⊗B
⊗

(κ
�

)
P � Γ, y : A, x : B, z : C

x(y).P � Γ, x : A�B, z : C
�

Q � Δ, z : C⊥

νz.(x(y).P | Q) � Γ, Δ, x : A�B
Cut

=⇒

P � Γ, y : A, x : B, z : C Q � Δ, z : C⊥

νz.(P | Q) � Γ, Δ, y : A, x : B
Cut

x(y).νz.(P | Q) � Γ, Δ, x : A�B
�

(κ
�

)
P � Γ, x : A, z : C Q � Γ, x : B, z : C

x.case(P,Q) � Γ, x : A�B, z : C
�

R � Δ, z : C⊥

νz.(x.case(P,Q) | R) � Γ, Δ, x : A�B
Cut

=⇒

P � Γ, x : A, z : C R � Δ, z : C⊥

νz.(P | R) � Γ, Δ, x : A
Cut

Q � Γ, x : B, z : C R � Δ, z : C⊥

νz.(Q | R) � Γ, Δ, x : B
Cut

x.case(νz.(P | R),νz.(Q | R)) � Γ, Δ, x : A�B
�

(κ⊕)
P � Γ, x : A, z : C

x[inl].P � Γ, x : A⊕B, z : C
⊕

Q � Δ, z : C⊥

νz.(x[inl].P | Q) � Γ, Δ, x : A⊕B
Cut

=⇒
P � Γ, x : A, z : C Q � Δ, z : C⊥

νz.(P | Q) � Γ, Δ, x : A
Cut

x[inl].νz.(P | Q) � Γ, Δ, x : A⊕B
⊕

Fig. 4. Commuting conversions for CP, Part I.

And we add congruence rules for cuts:

P1 =⇒ P2

νx.(P1 | Q) =⇒ νx.(P2 | Q)
Q1 =⇒ Q2

νx.(P | Q1) =⇒ νx.(P | Q2)

These rules are standard in treatments of cut elimination. We do not add congruences for
other operators; see below.

CP satisfies subject reduction: well-typed processes reduce to well-typed processes.
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(κ!)
P � ?Γ, y : A, z : ?C

!x(y).P � ?Γ, x : !A, z : ?C
!

Q � ?Δ, z : !C⊥

νz.(!x(y).P | Q) � ?Γ, ?Δ, x : !A
Cut

=⇒

P � ?Γ, y : A, z : ?C Q � ?Δ, z : !C⊥

νz.(P | Q) � ?Γ, ?Δ, y : A
Cut

!x(y).νz.(P | Q) � ?Γ, ?Δ, x : !A
!

(κ?)
P � Γ, y : A, z : C

?x(y).P � Γ, x : ?A, z : C
?

Q � Δ, z : C⊥

νz.(?x(y).P | Q) � Γ, Δ, x : ?A
Cut

=⇒
P � Γ, y : A, z : C Q � Δ, z : C⊥

νz.(P | Q) � Γ, Δ, y : A
Cut

?x(y).νz.(P | Q) � Γ, Δ, x : ?A
?

(κ∃)
P � Γ, x : B{A/X}, z : C

x[A].P � Γ, x : ∃X .B, z : C
∃

Q � Δ, z : C⊥

νz.(x[A].P | Q) � Γ, Δ, x : ∃X .B
Cut

=⇒

P � Γ, x : B{A/X}, z : C Q � Δ, z : C⊥

νz.(P | Q) � Γ, Δ, x : B{A/X} Cut

x[A].νz.(P | Q) � Γ, Δ, x : ∃X .B
∃

(κ∀)
P � Γ, x : B, z : C

x(X).P � Γ, x : ∀X .B, z : C
∀

Q � Δ, z : C⊥

νz.(x(X).P | Q) � Γ, Δ, x : ∀X .B
Cut

=⇒
P � Γ, x : B, z : C Q � Δ, z : C⊥

νz.(P | Q) � Γ, Δ, x : B
Cut

x(X).νz.(P | Q) � Γ, Δ, x : ∀X .B
∀

(κ⊥)
P � Γ, z : C

x().P � Γ, x : ⊥, z : C
⊥

Q � Δ, z : C⊥

νz.(x().P | Q) � Γ, Δ, x : ⊥ Cut
=⇒

P � Γ, z : C Q � Δ, z : C⊥

νz.(P | Q) � Γ, Δ Cut

x().νz.(P | Q) � Γ, Δ, x : ⊥ ⊥

(κ
)

x.case() � Γ, x : 
, z : C



Q � Δ, z : C⊥

νz.(x.case() | Q) � Γ, Δ, x : ⊥ Cut =⇒ x.case() � Γ, Δ, x : 
 


Fig. 5. Commutative conversions for CP, Part II.

Theorem 1
If P � Γ and P =⇒ Q then Q � Γ.

Proof sketch: Figures 2–5 contain the relevant proofs. �
Say process P is a cut if it has the form νx.(Q | R) for some x, Q, and R. CP satisfies

top-level cut elimination: every process reduces to a process that is not a cut.

Theorem 2
If P � Γ then there exists a Q such that P =⇒ Q and Q is not a cut.

Proof sketch: Each rule is either Ax, Cut, or a logical rule. If P is a cut, there are three
possibilities: If one side of the cut uses the axiom, apply AxCut. If one side of the cut
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is itself a cut, recursively eliminate the cut. In the remaining cases, either both sides are
logical rules that act on the cut variable, in which case a principal reduction of Figure 3 ap-
plies, or at least one side is a logical rule acting on a variable other than the cut variable, in
which case a commuting reduction of Figure 4 or 5 applies. Since we support impredicative
polymorphism, where a polymorphic type may be instantiated by a polymorphic type, care
is required in formulating the induction to ensure termination, but this is standard (Gallier
1990). �

This result resembles the Principal Lemma of Cut Elimination (Girard et al. 1989,
Section 13.2), which eliminates a final cut rule, possibly replacing it with (smaller) cuts
further up the proof tree. Top-level cut elimination corresponds to lack of deadlock; it
ensures that any process can reduce until it needs to perform an external communica-
tion.

If our goal was to eliminate all cuts, we would need to introduce additional congruence
rules, such as

P =⇒ Q
x(y).P =⇒ x(y).Q

and similarly for each operator. Such rules do not correspond well to our notion of com-
putation on processes, so we omit them; this is analogous to the usual practice of not
permitting reduction under lambda.

4 A session-typed functional language

This section presents GV, a session-typed functional language based on one devised by
Gay & Vasconcelos (2010), and presents its translation into CP.

Our presentation of GV differs in some particulars from that of Gay & Vasconcelos
(2010). Most notably, our system is guaranteed free from deadlock whereas theirs is not.
Achieving this property requires some modifications to their system. We split their ses-
sion type ‘end’ into two dual types ‘end!’ and ‘end?’, and we replace their constructs
‘accept’, ‘request’, and ‘fork’, by two new constructs ‘with-connect-to’ and
‘terminate’.

A number of features of Gay & Vasconcelos (2010) are not echoed here. Their system
is based on asynchronous buffered communication, they show that the size required of
asynchronous buffers can be bounded by analysing session types, and they support re-
cursive functions, recursive session types, and subtyping. We omit these contributions for
simplicity, but see no immediate difficulty in extending our results to include them. Of
course, adding recursive terms or recursive session types may remove the property that all
programs terminate.

For simplicity, we also omit a number of other possible features. We do not consider
base types, which are straightforward. We also do not consider how to add replicated
servers with multiple clients along the lines suggested by ! and ? in CP, or how to add
polymorphism along the lines suggested by ∃ and ∀ in CP, but both extensions appear
straightforward.
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Session types. Session types are defined by the following grammar:

S ::=
!T .S output value of type T then behave as S
?T .S input value of type T then behave as S
⊕{li : Si}i∈I select from behaviours Si with label li
�{li : Si}i∈I offer choice of behaviours Si with label li
end! terminator, convenient for use with output
end? terminator, convenient for use with input

Let S range over session types, and let T,U,V range over types. Session type !T .S describes
a channel along which a value of type T may be sent and which subsequently behaves as
S. Dually, ?T .S describes a channel along which a value of type T may be received and
which subsequently behaves as S. Session type ⊕{li : Si}1∈I describes a channel along
which one of the distinct labels li may be sent and which subsequently behaves as Si.
Dually, �{li : Si}1∈I describes a channel along which one of the labels li may be received,
and which subsequently behaves as Si. Finally, end! and end? describe channels that cannot
be used for further communication. As we will see, it is convenient to use one if the last
action on the channel is a send, and the other if the last action on the channel is a receive.

Types. Types are defined by the following grammar:

T,U,V ::=
S session type (linear)
T ⊗U tensor product (linear)
T � U function (linear)
T →U function (unlimited)
Unit unit (unlimited)

Every session type is also a type, but not conversely. Types are formed from session types,
tensor product, two forms of function space, and a unit for tensor product.

Each type is classified as linear or unlimited:

lin(S) lin(T ⊗U) lin(T � U) un(T →U) un(Unit)

Here lin(T ) denotes a type that is linear, and un(T ) denotes a type that is unlimited. Session
types, tensor, and one type of function are limited; the other type of function and unit are
unlimited. Unlimited types support weakening and contraction, while linear types do not.
Unlimited types correspond to those written with ! in CP.

Duals. Each session type S has a dual S, defined as follows:

!T .S = ?T .S
?T.S. = !T .S

⊕(li : Si)i∈I = �(li : Si)i∈I

�(li : Si)i∈I = ⊕(li : Si)i∈I
end! = end?
end? = end!
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x : T � x : T
Id � unit : Unit

Unit

Φ � N : U un(T )
Φ, x : T � N : U

Weaken
Φ, x : T, x′ : T � N : U un(T )

Φ, x : T � N{x/x′} : U
Contract

Φ, x : T � N : U

Φ � λx.N : T � U
�-I

Φ � L : T � U Ψ � M : T
Φ, Ψ � L M : U

�-E

Φ � L : T � U un(Φ)
Φ � L : T →U

→-I
Φ � L : T →U
Φ � L : T � U

→-E

Φ � M : T Ψ � N : U
Φ, Ψ � (M,N) : T ⊗U

⊗-I
Φ � M : T ⊗U Ψ, x : T, y : U � N : V

Φ, Ψ � let (x,y) = M in N : V
⊗-E

Φ � M : T Ψ � N : !T .S
Φ, Ψ � send M N : S

Send
Φ � M : ?T .S

Φ � receive M : T ⊗S
Receive

Φ � M : ⊕{li : Si}i∈I

Φ � select l j M : S j
Select

Φ � M : �{li : Si}i∈I (Ψ, x : Si � Ni : T )i∈I

Φ, Ψ � case M of {li : x.Ni}i∈I : T
Case

Φ, x : S � M : end! Ψ, x : S � N : T

Φ, Ψ � with x connect M to N : T
Connect

Φ � M : end?

Φ � terminate M : Unit
Terminate

Fig. 6. GV, a session-typed functional language.

Input is dual to output, selection is dual to choice, and the two terminators are dual. Duality
between input and output does not take the dual of the type.

Duality is an involution, S = S.

Environments. We let Φ, Ψ range over environments associating variables to types. Write
un(Φ) to indicate that each type in Φ is unlimited. As in Section 3, order in environments
is ignored and we use linear maintenance.

Terms. Terms are defined by the following grammar:

L,M,N ::=
x identifier
unit unit constant
λx.N function abstraction
L M function application
(M,N) pair construction
let (x,y) = M in N pair deconstruction
send M N send value M on channel N
receive M receive from channel M
select l M select label l on channel M
case M of {li : x.Ni}i∈I offer choice on channel M
with x connect M to N connect M to N by channel x
terminate M terminate input
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The first six operations specify a linear λ -calculus, and the remaining six specify commu-
nication along a channel.

The terms are best understood in conjunction with their type rules, as shown in Figure 6.
The rules for variables, unit, weakening, contraction, function abstraction and application,
and pair construction and deconstruction are standard. Functions are either limited or
unlimited. As usual, function abstraction may produce an unlimited function only if all
of its free variables are of unlimited type. Following Gay & Vasconcelos (2010), we do
not give a separate rule for application of an unlimited function, but instead give a rule
permitting an unlimited function to be treated as a linear function, which may then be
applied using the rule for linear function application.

For simplicity, we do not require that each term has a unique type. In particular, a
λ -expression where all free variables have unlimited type may be given either linear or
unlimited function type. In a practical system, one might introduce subtyping and arrange
that each term has a unique smallest type.

The rule for output is

Φ � M : T Ψ � N : !T .S
Φ, Ψ � send M N : S

Send

Channels are managed linearly, so each operation on channels takes the channel before
the operation as an argument, and returns the channel after the operation as the result.
Executing ‘send M N’ outputs the value M of type T along channel N of session type !T .S,
and returns the updated channel, which after the output has session type S.

The rule for input is

Φ � M : ?T .S
Φ � receive M : T ⊗S

Receive

Executing ‘receive M’ inputs a value from channel M of session type ?T .S, and returns a
pair consisting of the input value of type T , and the updated channel, which after the input
has session type S. The returned pair must be linear because it contains a session type,
which is linear.

Gay & Vasconcelos (2010) treat ‘send’ and ‘receive’ as function constants, and require
two versions of ‘send’ to cope with complications arising from currying. We treat ‘send’
and ‘receive’ as language constructs, which avoids the need for two versions of ‘send’.
Thanks to the rules for limited and unlimited function abstraction, λx.λy.send x y has type
T � !T .S � S and also type T → !T .S � S when un(T ).

Select and Case are similar to Send and Receive, and standard.
The rule to create new channels is:

Φ, x : S � M : end! Ψ, x : S � N : T

Φ, Ψ � with x connect M to N : T
Connect

Executing ‘with x connect M to N’ creates a new channel x with session type S, where x
is used at type S within term M and at the dual type S within term N. The two terms M
and N are evaluated concurrently. As is usual when forking off a value, only one of the two
sub-terms returns a value that is passed to the rest of the program. The left sub-term returns
the exhausted channel, which has type end!. The right sub-term returns a value of type T
that is passed on to the rest of the program.
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Finally, we require a rule to terminate the other channel:

Φ � M : end?

Φ � terminate M : Unit
Terminate

Executing ‘terminate M’ evaluates term M which returns an exhausted channel of type
end? (of linear type), which is deallocated. The expression returns the value of type Unit,
which is an unlimited type and hence may be discarded.

The constructs for Connect and Terminate between them deallocate two ends of a chan-
nel. The system is designed, so it is convenient to use end! on a channel whose last
operation is Send or Select, and end? on a channel whose last operation is Receive or
Case.

Usually, session-typed systems make end an unlimited type that is self-dual, but the
formulation here fits better with Classical Linear Logic (CLL). A variation where end is a
linear type requiring explicit deallocation is considered by Vasconcelos (2011).

One might consider alternative designs, say to replace Connect by an operation that
creates a channel and returns both ends of it in a pair of type S⊗S, or to replace Terminate
by an operation that takes a pair of type end!⊗end? and returns unit. However, both of these
designs are difficult to translate into CP, which suggests they may suffer from deadlock.

Example. We reprise the example of a sale from Section 3.2, where the client sends a
product name and credit card number to a server, which returns a receipt. Define:

Buy
def= !Name.!Credit.?Receipt.end?

Sell
def= ?Name.?Credit.!Receipt.end!

buyx
def= let u = get-name in

let x1 = send u x in

let v = get-credit in

let x2 = send v x1 in

let (w,x3) = receive x2 in

let unit = terminate x3 in

put-receipt w

sellx
def= let (u,x1) = receive x in

let (v,x2) = receive x1 in

let w = compute u v in

send w x2

Here let (x,y) = M in N is pair deconstruction, as introduced above; and let x = M in N
stands for (λx.N) M; and let unit = M in N stands for (λx.N) M where x : Unit does
not apear in N. Let Name be the type of product names; Credit be the type of credit
card numbers; Receipt be the type of receipts; and Rest be the type of the rest of the
computation. The first three types are unlimited, and Rest may be either linear or unlimited.
Assume environments Φ and Ψ define variables of the given types:

Φ def= get-name : Name, get-credit : Credit, put-receipt : Receipt → Rest

Ψ def= compute : Name → Credit → Receipt
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Observe that Buy = Sell and

Ψ, x : Sell � sellx : end! Φ, x : Buy � buyx : Rest

Ψ, Φ � with x connect sellx to buyx : Rest
Connect

4.1 Translation

The translation of GV into CP is given in Figures 7 and 8.

Session types. The translation of session types is as follows:

�!T .S� = �T �⊥ ��S�

�?T .S� = �T �⊗ �S�

�⊕{li : Si}i∈I� = �S1�� · · ·��Sn�, I = {1, . . . ,n}
��{li : Si}i∈I� = �S1�⊕·· ·⊕ �Sn�, I = {1, . . . ,n}

�end!� = ⊥
�end?� = 1

This translation is surprising in that each operator translates to the dual of what one might
expect! The session type for output in GV, !T .S is translated into �, the connective that
is interpreted as input in CP, and the session type for input in GV, ?T .S is translated into
⊗, the connective that is interpreted as output in CP. Similarly, ⊕ and � in GV translate,
respectively, to � and ⊕ in CP. Finally, end! and end? in GV translate, respectively, to ⊥
and 1 in CP, the units for � and ⊗.

The intuitive explanation of this duality is that Send and Receive in GV take channels
as arguments whereas the interpretation of the connectives in CP is for channels as results.
Indeed, the send operation takes a value and a channel, and sends the value to that channel
– in other words, the channel must input the value. Dually, the receive operation takes a
channel and returns a value – in other words, the channel must output the value. A similar
inversion occurs with respect to Select and Case.

Recall that duality on session types in GV leaves the types of sent and received values
unchanged:

!T .S = ?T .S ?T.S. = !T .S

Conversely, the translation of these operations takes the dual of the sent value, but not the
received value:

�!T .S� = �T �⊥ ��S� �?T .S� = �T �⊗ �S�

In classical linear logic, A � B = A⊥ � B so the right-hand side of the first line could
alternatively be written �T � � �S�. Accordingly, and as one would hope, the translation
preserves duality: �S� = �S�⊥.

Types. The translation of types is as follows:

�T � U� = �T �⊥ ��U�

�T →U� = !(�T �⊥ ��U�)
�T ⊗U� = �T �⊗ �U�

�Unit� = !
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�
x : T � x : T

Id
�

z = x↔z � x : �T �⊥, z : �T � Ax

�
� unit : Unit

Unit
�

z = y.case() � y : 
 


!z(y).y.case() � z : !
 !

�
Φ � N : U un(T )

Φ, x : T � N : U
Weaken

	
z =

�N�z � �Φ�⊥, z : �U��N�z � �Φ�⊥, x : �T �⊥, z : �U� Weaken

�
Φ, x : T, x′ : T � N : U un(T )

Φ, x : T � N{x/x′} : U
Contract

	
z =

�N�z � �Φ�⊥, x : �T �⊥, x′ : �T �⊥, z : �U��N{x/x′}�z � �Φ�⊥, x : �T �⊥, z : �U� Contract

�
Φ, x : T � N : U

Φ � λx.N : T � U
�-I

	
z =

�N�z � �Φ�⊥, x : �T �⊥, z : �U�
z(x).�N�z � �Φ�⊥, z : �T �⊥ ��U� �

�
Φ � L : T � U Ψ � M : T

Φ, Ψ � L M : U
�-E

	
z =

�L�y � �Φ�⊥, y : �T �⊥ ��U� �M�x � �Ψ�⊥, x : �T � y↔z � y : �U�⊥, z : �U� Ax

y[x].(�M�x | y↔z) � �Ψ�⊥, y : �T �⊗ �U�⊥, z : �U� ⊗

νy.(�L�y | y[x].(�M�x | y↔z)) � �Φ�⊥, �Ψ�⊥, z : �U� Cut

�
Φ � L : T � U un(Φ)

Φ � L : T →U
→-I

	
z =

�L�y � �Φ�⊥, y : �T � U�
!z(y).�L�y � �Φ�⊥, z : !�T � U� !


Φ � L : T →U
Φ � L : T � U

→-E
�

z =

�L�y � �Φ�⊥, y : !�T � U� x↔z � x : �T � U�⊥, z : �T � U� Ax

?y[x].x↔z � y : ?�T � U�⊥, z : �T � U� ?

νy.(�L�y | ?y[x].x↔z) � �Φ�⊥, z : �T � U� Cut

�
Φ � M : T Ψ � N : U
Φ, Ψ � (M,N) : T ⊗U

⊗-I

	
z =

�M�y � �Φ�⊥, y : �T � �N�z � �Ψ�⊥, z : �U�
z[y].(�M�y | �N�z) � �Φ�⊥, �Ψ�⊥, z : �T �⊗ �U� ⊗

�
Φ � M : T ⊗U Ψ, x : T, y : U � N : V

Φ, Ψ � let (x,y) = M in N : V
⊗-E

	
z =

�M�y � �Φ�⊥, y : �T �⊗ �U� �N�z � �Ψ�⊥, x : �T �⊥, y : �U�⊥, z : �V �
y(x).�N�z � �Ψ�⊥, y : �T �⊥ ��U�⊥, z : �V � �

νy.(�M�y | y(x).�N�z) � �Φ�⊥, �Ψ�⊥, z : �V � Cut

Fig. 7. Translation from GV into CP, Part I.

Session types are also types, they are translated as above.
The right-hand side of the first equation could alternatively be written �T � � �U�,

showing that linear functions translate as standard.
The right-hand side of the second equation could alternatively be written !(�T � � �U�).

There are two standard translations of intuitionistic logic into classical linear logic or,
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�
Φ � M : T Ψ � N : !T .S

Φ, Ψ � send M N : S
Send

	
z =

�M�y � �Φ�⊥, y : �T � x↔z � x : �S�⊥, z : �S� Ax

x[y].(�M�y | x↔z) � �Φ�⊥, x : �T �⊗ �S�⊥, z : �S� ⊗ �N�x � �Ψ�⊥, x : �T �⊥ ��S�
νx.(x[y].(�M�y | x↔z) | �N�x) � �Φ�⊥, �Ψ�⊥, z : �S� Cut


 Φ � M : ?T .S
Φ � receive M : T ⊗S

Receive
�

z = �M�z � �Φ�⊥, z : �T �⊗ �S�
�

Φ � M : ⊕{li : Si}i∈I

Φ � select l j M : S j
Select



z =

�M�x � �Φ�⊥, x : �S1�� · · ·��Sn�
x↔z � x : �S j�⊥, z : �S j� Ax

x[in j].x↔z � x : �S1�⊥⊕·· ·⊕ �Sn�⊥, z : �S j� ⊕i

νx.(�M�x | x[in j].x↔z) � �Φ�⊥, z : �S j� Cut

�
Φ � M : �{li : Si}i∈I (Ψ, x : Si � Ni : T )i∈I

Φ, Ψ � case M of {li : x.Ni}i∈I : T
Case



z =

�M�x � �Φ�⊥, x : �S1�⊕·· ·⊕ �Sn� (�Ni�z � �Ψ�⊥, x : �Si�⊥, z : �T �)i∈I

x.case(�N1�, . . . ,�Nn�) � x : �S1�� · · ·��Sn�, z : �T � �
νx.(�M�x | x.case(�N1�, . . . ,�Nn�)) � �Φ�⊥, �Ψ�⊥, z : �T � Cut

�
Φ, x : S � M : end! Ψ, x : S � N : T

Φ, Ψ � with x connect M to N : T
Connect

	
z =

�M�y � �Φ�⊥, x : �S�⊥, y : ⊥ y[].0 � y : 1
1

νy.(�M�y | y[].0) � �Φ�⊥, x : �S�⊥ Cut �N�z � �Ψ�⊥, x : �S�, z : �T �
νx.(νy.(�M�y | y[].0) | �N�z) � �Φ�⊥, �Ψ�⊥, z : �T � Cut

�
Φ � M : end?

Φ � terminate M : Unit
Terminate

	
z =

�M�x � �Φ�⊥, x : 1

y.case() � y : 
 


!z(y).y.case() � z : !
 !

x().!z(y).y.case() � x : 0, z : !
 0

νx.(�M�x | x().!z(y).y.case()) � �Φ�⊥, z : !

Cut

Fig. 8. Translation from GV into CP, Part II.

equivalently, of λ -calculus into linear λ -calculus. Girard’s (1987) original takes (A →
B)◦ = !A◦ � B◦ and corresponds to call-by-name, while a lesser known alternative takes
(A → B)∗ = !(A∗ � B∗) and corresponds to call-by-value (see Benton & Wadler, 1996 and
Toninho et al., 2012). The second is used here.

In classical linear logic, there is a bi-implication between 1 and !
 (in many models,
this bi-implication is an isomorphism), so the right-hand side of the last equation could
alternatively be written 1, the unit for ⊗.

An unlimited type in GV translates to a type constructed with ! in CP: If un(T ) then
�T � = !A, for some A.
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Terms. Translation of terms is written in a continuation-passing style standard for trans-
lations of λ -calculi into process calculi. The translation of term M of type T is written
�M�z, where z is a channel of type �T �; the process that translates M transmits the answer
it computes along z. More precisely, if Φ � M : T then �M�z � �Φ�⊥, z : �T �, where the Φ
to the left of the turnstile in GV translates, as one might expect, to the dual �Φ�⊥ on the
right of the turn-style in CP.

The translation of terms is shown in Figures 7 and 8. Rather than simply giving a
translation from terms of GV to terms of CP, we show the translation as taking type
derivation trees to type derivation trees. Giving the translation on type derivation trees
rather than terms has two advantages. Firstly, it eliminates any ambiguity arising from the
fact, noted previously, that terms in GV do not have unique types. Secondly, it makes it
easy to validate that the translation preserves types.

Figure 7 shows the translations for operations of a linear λ -calculus. A variable trans-
lates to an axiom, weakening and contraction translate to weakening and contraction.
Both function abstraction and product deconstruction translate to input, and both function
application and product construction translate to output. The translation of each elimination
rule (�-E, →-E, and ⊗-E) also requires a use of Cut.

Figure 8 shows the translation for operations for communication. For purposes of the
translation, it is convenient to work with n-fold analogues of ⊕ and �, writing ∈i for
selection and case(P1, . . . ,Pn) for choice.

Despite the inversion noted earlier in the translation of session types, the translation of
Send involves an output operation of the form x[y].(P |Q), the translation of Select involves
a select operation of the form x[in j].P, the translation of Case involves a choice operation
of the form case(Q1, . . . ,Qn), the translation of end! in Connect involves an empty output
of the form y[ ].0, and the translation of Terminate involves an empty input of the form
x().P. Each of these translations also introduces a Cut, corresponding to communication
with supplied channel. The translation of Receive is entirely trivial, but the corresponding
input operation of the form x(y).R appears in the translation of ⊗-E, which deconstructs
the returned pair. Finally, the translation of Connect involves a Cut, which corresponds to
introducing a channel for communication between the two sub-terms.

The translation preserves types.

Theorem 3
If Φ � M : T then �M�x � �Φ�⊥, x : �T �.

Proof sketch: See Figures 7 and 8. �
We also claim that the translation preserves the intended semantics. The formal seman-

tics of Gay & Vasconcelos (2010) is based on asynchronous buffered communication,
which adds additional complications, so we leave a formal proof of correspondence be-
tween the two for the future work.

5 Related work

Session types. Session types were introduced by Honda (1993), and further extended by
Takeuchi et al. (1994), Honda et al. (1998), and Yoshida & Vasconcelos (2007). Subtyping
for session types is considered by Gay & Hole (2005), and the linear functional language
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for session types considered in this paper was introduced by Gay & Vasconcelos (2010).
Session types have been applied to describe operating system services by Fähndrich et al.
(2006).

Deadlock freedom. Variations on session types that guarantee deadlock freedom are pre-
sented in Sumii & Kobayashi (1998) and Carbone & Debois (2010). Unlike CP, where
freedom from deadlock follows from the relation to cut elimination, in the first it is ensured
by introducing a separate partial order on time tags, and in the second by introducing a
constraint on underlying dependency graphs.

Linear types for process calculus. A variety of linear type systems for process calculus
are surveyed by Kobayashi (2002). Most of these systems look rather different than session
types, but Kobayashi et al. (1996) present an embedding of session types into a variant of
π-calculus with linear types for channels.

Linear proof search. Functional programming can be taken as arising from the Curry–
Howard correspondence by associating program evaluation with proof normalisation. Anal-
ogously, logic programming can be taken as arising by associating program evaluation with
proof search. Logic programming approaches based on linear logic give rise to systems
with some similarities to CP (see Miller, 1992 and Kobayashi & Yonezawa, 1993, 1994,
1995).

Polymorphism. CP’s support of polymorphism is based on the polymorphic π-calculus
introduced by Turner (1995) and further discussed by Pierce & Turner (2000) and Pierce
& Sangiorgi (2000). More recently, Caires et al. (2013) extended session types to poly-
morphism and established logical relations for parametricity. All of the above use explict
polymorphism (Church-style). In contrast, Berger et al. (2005) introduced a polymorphi-
cally typed session calculus that uses implicit polymorphism (Curry-style).

Linear logic as a process calculus. Various interpretations of linear logic as a process
calculus are proposed by Abramsky (1993, 1994) and Abramsky et al. (1996), the second
of these being elaborated in detail by Bellin & Scott (1994).

This paper is inspired by a series of papers by Caires, Pfenning, Toninho, and Pérez.
Caires and Pfenning (2010) firstly observed the correspondence relating formulas of linear
logic to session types; its journal version is Caires et al. (2012b). Pfenning et al. (2011)
extended the correspondence to dependent types in a stratified system, with concurrent
communication at the outer level and a dependently typed functional language at the inner
level. Pfenning et al. (2011) extended that system to support proof-carrying code and proof
irrelevance. Toninho et al. (2012) explore encodings of λ -calculus into πDILL. Pérez
et al. (2012) introduce logical relations on linear-typed processes to prove termination
and contextual equivalences. Caires et al. (2012a) is the text of an invited talk at the
Workshop on Types in Language Design and Implementation (TLDI), summarising much
of the above.

Two additional papers have appeared since the International Conference on Functional
Programming (ICFP) version of this paper. Caires et al. (2013) add polymorphism and
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parametricity. Toninho et al. (2013) exploit monads to integrate a functional language with
a session-typed process calculus.

Mazurak & Zdancewic (2010) present Lolliproc, which also offers a Curry–Howard
interpretation of session types by relating the call/cc control operators to communication
using a double-negation operator on types.

DILL versus CLL. Caires et al. (2012b) consider a variant of πDILL based on one-sided
sequents of classical linear logic, which they call πCLL. Their πCLL is similar to CP, but
differs in important particulars: its bookkeeping is more elaborate, using two zones: one
linear and another intuitionitic; it has no axiom, so cannot easily support polymorphism;
and it does not support reductions corresponding to the commuting conversions.

Caires et al. (2012b) state, they prefer a formulation based on DILL to one based on
CLL, because DILL satisfies a locality property for replicated input, while CLL does not.
Locality requires that names received along a channel may be used to send output but not
to receive input, and is useful both from an implementation point of view and because
a process calculus so restricted satisfies additional observational equivalences as shown
by Merro & Sangiorgi (2004). Caires et al. (2012b) only restrict replicated input because
restricting all input is too severe for a session-typed calculus. However, the good properties
of locality have been studied only in the case where all input is prohibited on received
names. It remains to be seen as to what extent the fact that DILL imposes locality for
replicated names is significant.

In addition, in a private communication, Pfenning relayed that he believes DILL may
be amenable to extension to dependent types, while he suspects CLL is not because strong
sums become degenerate in some classical settings as shown by Herbelin (2005). However,
linear logic is more amenable to constructive treatment than traditional classical logic as
argued by Girard (1991), so it remains unclear to what extent CP, or πCLL, may support
dependent types.

6 Conclusions

One reason that λ -calculus provides such a successful foundation for functional program-
ming is that it includes both fragments that guarantee termination (typed λ -calculi) and
fragments that can model any recursive function (untyped λ -calculus, or typed λ -calculi
augmented with a general fix point operator). Indeed, the former can be seen as giving rise
to the latter by considering recursive types with recursion in negative positions; untyped
λ -calculus can be modelled by a solution to the recursive type equation X � X → X .
Similarly, a foundation for concurrency based on linear logic will be of limited value if
it only models race-free and deadlock-free processes. Are there extensions that support
more general forms of concurrency?

Girard (1987) proposes one such extension, the Mix rule. In our notation, this is written
as:

P � Γ Q � Δ
P | Q � Γ, Δ Mix

Mix differs from Cut in that there are no channels in common between P and Q, rather
than one. Mix is equivalent to provability of the proposition A⊗B � A�B for any A and
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B. Systems with Mix still do not deadlock, but support concurrent structures that cannot
arise under CLL, namely, systems with two components that are independent. An example
in Section 3.2 introduced a primitive computation

pary,z � y : 1, z : 1

which is equivalent to the Mix rule. Mix is defined in terms of the primitive by setting

P | Q
def= νz.(νy.(pary,z | y().P) | z().Q)

Equivalently, the primitive can be defined in terms of Mix by setting

pary,z
def= y[].0 | z[].0

Caires et al. (2012a) consider two variations of the rules for 1 and ⊥, the second of which
is less restrictive and, surprisingly, derives a rule similar to Mix.

Abramsky et al. (1996) propose another extension, the Binary Cut rule (a special case
of Multicut). In our notation, this is written as:

P � Γ, x : A, y : B Q � Δ, x : A⊥, y : B⊥

νx :A,y :B.(P | Q) � Γ, Δ BiCut

Binary Cut differs from Cut in that there are two channels in common between P and Q,
rather than one. Binary Cut is equivalent to provability of the proposition A � B � A⊗B
for any A and B. Binary Cut allows one to express systems where communications form a
loop and may race or deadlock.

Systems with both Mix and Binary Cut are compact in that from either of A⊗B and
A � B one may derive the other. Abramsky et al. (1996) provide a translation of full π-
calculus into a compact linear system, roughly analogous to the embedding of untyped
λ -calculus into typed λ -calculus based on the isomorphism X � X → X . Searching for
principled extensions of CP that support the unfettered power of the full π-calculus is a
topic for the future work.

Session types have been developed in many directions since being introduced by Honda
(1993). Among the most important of these is multi-party session types, introduced by
Honda et al. (2008) and elaborated by many others. Another topic for the future work
is whether the logical foundations introduced by Caires & Pfenning (2010) and further
developed here extend to multiparty session types.

As λ -calculus provided foundations for functional programming in the last century, may
we hope for this emerging calculus to provide foundations for concurrent programming in
the coming century?
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Pérez, J., Caires, L., Pfenning, F. & Toninho, B. (2012) Linear logical relations for session-based
concurrency. In European Symposium on Programming (ESOP), pp. 539–558.

Pfenning, F., Caires, L. & Toninho, B. (2011) Proof-carrying code in a session-typed process
calculus. In Certified Programs and Proofs (CPP), pp. 21–36.

Pierce, B. C. & Sangiorgi, D. (2000) Behavioral equivalence in the polymorphic pi-calculus. J. ACM
47(3), 531–584.

Pierce, B. C. & Turner, D. N. (2000) Pict: A programming language based on the pi-calculus. In
Proof, Language, and Interaction, Essays in Honour of Robin Milner, Plotkin, G. D., Stirling, C.
and Tofte, M. (eds). Cambridge, MA: MIT Press, pp. 455–494. ISBN: 978-0-262-16188-6.

Pitts, A. M. (2011) Structural recursion with locally scoped names. J. Funct. Program. 21(3), 235–
286.

Sumii, E. & Kobayashi, N. (1998) A generalized deadlock-free process calculus. (High-Level
Concurrent Languages (HLCL), 1998). Electron. Notes Theor. Comput. Sci. 16(3), 225–247.

Takeuchi, K., Honda, K. & Kubo, M. (1994) An interaction-based language and its typing system. In
Proceedings of the 6th International PARLE Conference, Athens, Greece, Halatsis, C., Maritsas,
D. G., Philokyprou, G. and Theodoridis, S. (eds), LNCS, vol. 817. Berlin, Germany: Springer-
Verlag, pp. 398–413.

Toninho, B., Caires, L. & Pfenning, F. (2012) Functions as session-typed processes. In Foundations
of Software Science and Computation (FoSSaCS), pp. 346–360.

Toninho, B., Caires. L. & Pfenning, F. (2013) Higher-order processes, functions, and sessions: A
monadic integration. In 22nd European Symposium on Programming (ESOP’13), Lecture Notes
in Computer Science, vol. 7792 . New York, NY: Springer, pp. 350–369.

Turner, D. N. (1995) The Polymorphic Pi-Calculus: Theory and Implementation, PhD thesis,
University of Edinburgh, Edinburgh, UK.

Vasconcelos, V. T. (2011) Sessions, from types to programming languages. Bull. Eur. Assoc. Theor.
Comput. Sci. 103, 53–73.

Wadler, P. (September 2012) Propositions as sessions. In International Conference on Functional
Programming (ICFP), pp. 273–286.

Yoshida, N. & Vasconcelos, V. T. (2007) Language primitives and type discipline for
structured communication-based programming revisited: Two systems for higher-order session
communication. Electron. Notes Theor. Comput. Sci. 171(4), 73–93.

https://doi.org/10.1017/S095679681400001X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681400001X

