
Theory and Practice of Logic Programming 1 (1): 127–128, January 2001.

Printed in the United Kingdom c© 2001 Cambridge University Press

127

TPLP pearls submission guidelines

LEE NAISH

Errors, like straws, upon the surface flow;

He who would search for pearls must dive below.

– John Dryden

I am honoured to be the editor of the Logic Programming Pearls section of the

journal Theory and Practice of Logic Programming. Below are some brief guidelines

for submission of papers to this section. Note that submissions of pearls in logic

programming languages other than Prolog are welcome. Functional programming

language pearls, although similar in spirit, are more appropriately submitted to

another journal such as the Journal of Functional Programming.

A programming pearl is a short piece of self-contained code of outstanding

quality. Ideally it should be clearly correct, elegant, concise, efficient, etc., though in

some cases a (small) subset of these may not apply. It may be a useful application

or may primarily be an example of a useful programming technique. Portability is

not so important in this context, but if it can be achieved without sacrificing other

qualities, so much the better.

Accompanying text explains the code and its qualities. These may be exposed by

describing how a programmer could derive the code. Ideally, a logic programming

pearl should also showcase the logic programming paradigm, for example, declar-

ative semantics, nondeterminism, logic variables, definite clause grammars, meta

programming, and so forth.

The following classification may help clarify what is considered to be a logic

programming pearl.

Natural Pearls Like theorems in mathematics, natural pearls are discovered rather

than manufactured. A logic program embodies a formulation of the mathematical

logic behind a problem. This logic, plus a logic programming interpreter, induces an

algorithm to solve the problem. Things of great beauty can be formed from these

elements.

Cultured Pearls Cultured pearls are, in part, artifacts of our technology and are

regarded somewhat less highly than natural pearls. They may depend on some

particular implementation technique such as the Warren Abstract Machine or a

specific language feature.

Black Pearls Black pearls contain impurities but are still beautiful. A program is

not rejected as a pearl only on the grounds of impurity.

https://doi.org/10.1017/S1471068400001071 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068400001071


128 L. Naish

Cut and Paste Some artifacts may seem like pearls to the untrained eye, but can

be distinguished by those of more refined taste. The most ugly scar on the face

of Prolog programming is the abused cut. Using goto in C because you don’t

understand while loops is not a recipe for pearls. Similarly, knowing when to use

and not use cut is a prerequisite for good Prolog programming. A good reference for

Prolog programming is Richard O’Keefe’s The Craft of Prolog published by MIT

Press.

https://doi.org/10.1017/S1471068400001071 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068400001071

