A NOTE ON THE HADAMARD PRODUCT

M. Marcus* and N.A. Khan
(received February 2, 1959)

Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$, be two n-square matrices over the complex numbers. Then the n-square matrix $H=\left(h_{i j}\right)=$ $\left(a_{i j} b_{i j}\right)$ is called the Hadamard product of A and $B, H=A o B$, [1;p.174]. Let the n^{2}-square matrix $K=A \otimes B$ denote the Kronecker product of A and B. The element $k_{r s}$ of K is given by $k_{r s}=a_{i_{1} j_{1}} b_{i_{2} j_{2}}$, where

$$
\begin{align*}
& r=i_{2}+n\left(i_{1}-1\right) \quad 1 \leqslant i_{1}, j_{1}, i_{2}, j_{2} \leqslant n \tag{1}\\
& s=j_{2}+n\left(j_{1}-1\right) .
\end{align*}
$$

We show that H and K are related and from this obtain some new information regarding the eigenvalues of H. We first recall that a k-square matrix C is said to be a principal submatrix of an n-square matrix D, if there exists a sequence of integers $1 \leqslant i_{1}<\ldots<i_{k} \leqslant n$ such that $d_{i_{s}} i_{t}=c_{s t}, s, t=1, \ldots, k$.

THEOREM. H is a principal submatrix of K.

Proof. Let $r_{\alpha}=n(\alpha-1)+\alpha, 1 \leqslant \alpha \leqslant n$. We show that the principal submatrix ($\mathrm{k}_{\mathrm{r}_{\alpha} \mathrm{r}_{\beta}}$) of K is actually H.
From (1)

$$
\begin{aligned}
& k_{r_{\alpha} r_{\beta}}=a_{i_{1}} j_{1} b_{i_{2}} j_{2}, \text { where } \\
& n(\alpha-1)+\alpha=r_{\alpha}=i_{2}+n\left(i_{1}-1\right) \\
& n(\beta-1)+\beta=r_{\beta}=j_{2}+n\left(j_{1}-1\right) .
\end{aligned}
$$

[^0]Can. Math. Bull., Vol. 2, No. 2, May 1959

Then

$$
n\left(i_{1}-\infty\right)+\left(i_{2}-\alpha\right)=0
$$

$$
\begin{equation*}
n\left(j_{1}-\beta\right)+\left(j_{2}-\beta\right)=0 . \tag{2}
\end{equation*}
$$

If $i_{1}-\alpha \neq 0$ then from (2) $\left(\mathrm{i}_{2}-\alpha\right) \equiv 0(\mathrm{n})$; but $\left|\mathrm{i}_{2}-\alpha\right|<\mathrm{n}$ and hence $i_{2}-\alpha=0$. Thus $i_{1}=\alpha=i_{2}$ and similarly $j_{1}=\beta=j 2$. Hence $\mathrm{k}_{\mathrm{r}_{\alpha} \mathrm{r}_{\beta}}=\mathrm{a}_{\alpha \beta} \mathrm{b}_{\alpha \beta}$ and the proof is complete.

The eigenvalues of $A \otimes B$ are $\alpha_{i} \beta_{j}, i, j=1, \ldots, n$. Assume A and B are non-negative hermitian and order the eigenvalues of $A \otimes B$ as follows:

$$
\begin{equation*}
\lambda_{1}=\alpha_{1} \beta_{1} \geqslant \cdots \geqslant \lambda_{n^{2}}=\alpha_{n} \beta_{n} . \tag{3}
\end{equation*}
$$

COROLLARY 1. If A and B are non-negative (positive definite) hermitian then $A O B$ is non-negative (positive definite) hermitian and

$$
\alpha_{\mathrm{n}} \beta_{\mathrm{n}} \leqslant \lambda_{\mathrm{s}+\mathrm{n}^{2}-\mathrm{n}} \leqslant \mu_{\mathrm{s}} \leqslant \lambda_{\mathrm{s}} \leqslant \alpha_{1} \beta_{1}, \quad s=1, \ldots, n .
$$

where $\mu_{1} \geqslant \ldots \geqslant \mu_{n}$ are the eigenvalues of AoB and the λ_{i} are as in (3).

Proof. By the theorem, AoB is a principal submatrix of $A \otimes B$ and hence we may apply* the Cauchy inequalities [2; p.75]. These inequalities state the following: If D is any $n-s q u a r e ~ h e r-$ mitian matrix with eigenvalues $d_{l} \geqslant \ldots \geqslant d_{n}$ and C is any $k-$ square principal submatrix of D with eigenvalues $d_{l}^{\prime} \geqslant \ldots \geqslant d_{k}^{\prime}$ then $d_{s+n}-k \leqslant d_{s}^{!} \leqslant d_{s}, s=1, \ldots, k$. The fact that C is hermitian when D is hermitian is obvious.

Another proof of the fact that AoB is non-negative (positive definite) is given in $[1 ;$ p. 173].

[^1]We write $A \geqslant 0,(A>0)$, to indicate that for the n-square matrix $A, a_{i j} \geqslant 0,\left(a_{i j}>0\right)$. It is clear that if $A \geqslant 0,(>0)$, and $B \geqslant 0,(>0)$, then $A \circ B \geqslant 0,(>0)$. It is known that if $A \geqslant 0$ then there exists an eigenvalue $\lambda_{M}(A) \geqslant 0$ such that if λ is any other eigenvalue of A then $|\lambda| \leqslant \lambda_{m}(A)$.

COROLLARY 2. If $A \geqslant 0,(>0)$, and $B \geqslant 0,(>0)$, then

$$
\begin{equation*}
\lambda_{M}(\mathrm{~A} \circ \mathrm{~B}) \leqslant,(<), \lambda_{M}(\mathrm{~A}) \lambda_{M}(\mathrm{~B}) \tag{4}
\end{equation*}
$$

Proof. In [3] it is proved that if $\mathrm{X} \geqslant 0,(>0)$, and Y is any principal submatrix of X then $\lambda_{M}(Y) \leqslant,(<), \lambda_{M}(X)$. We apply this to AoB as a principal submatrix of $A B$.

As an application of Corollary 2 , let $A^{(1 / n)}$ denote the matrix whose (i, j) element is $\mathrm{a}_{\mathrm{ij}}{ }^{1 / \mathrm{n}}$. Then from (4)

$$
\begin{aligned}
& \lambda_{M}(A)=\lambda_{M}\left(A^{(1 / n)} o \ldots o A^{(1 / n)}\right) \leqslant \lambda_{M}^{n}\left(A^{(1 / n)}\right) \\
& \quad \lambda_{M}^{1 / n}(A) \leqslant \lambda_{M}\left(A^{(1 / n)}\right)
\end{aligned}
$$

Let A' denote the transpose of A. Suppose A is non-negative hermitian. Then A^{\prime} is also non-negative hermitian and hence by Corollary 1 , with $B=A^{\prime}$,

$$
\lambda_{M}\left(\mathrm{AOA}^{1}\right) \leqslant \lambda_{M}(\mathrm{~A}) \lambda_{M}\left(\mathrm{~A}^{\prime}\right)=\lambda_{M}^{2}(\mathrm{~A})
$$

Thus if $h_{i j}=\left|a_{i j}\right|^{2}$ then

$$
\lambda_{M^{1 / 2}(H)} \leqslant \lambda_{M}(\mathrm{~A})
$$

REFERENCES

1. P.R. Halmos, Finite dimensional vector spaces, 2nd ed., (New York, 1958).
2. H.L. Hamburger and M.F. Grimshaw, Linear transformations in n-dimensional vector space, (Cambridge, 1951).
3. H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Zeit. 52 (1950), 642-648.

University of British Columbia
Muslim University, Aligarh, India

[^0]: * This work was supported by U.S. National Science Foundation Grant, NSF - G5416.

[^1]: * Referee's footnote: The fact that $A o B$ is a principal submatrix of $A \otimes B$ implies that $A O B=P_{m} A \otimes B P_{m}$, where P_{m} is an orthogonal projector of $\mathrm{B}_{\mathrm{n}} 2$, an n^{2}-dimensional vector space, onto K , a linear manifold of rank n . Thus 14.2 of [2]applies.

