A NOTE ON THE HADAMARD PRODUCT

M. Marcus* and N.A. Khan

(received February 2, 1959)

Let A = (a_{ij}) , B = (b_{ij}) , be two n-square matrices over the complex numbers. Then the n-square matrix H = (h_{ij}) = $(a_{ij}b_{ij})$ is called the Hadamard product of A and B, H = AoB, [1; p. 174]. Let the n²-square matrix K = A&B denote the Kronecker product of A and B. The element k_{rs} of K is given by $k_{rs} = a_{ij1} b_{i2j2}$, where

(1)
$$r = i_2 + n(i_1 - 1)$$
 $1 \le i_1, j_1, i_2, j_2 \le n$.
 $s = j_2 + n(j_1 - 1)$.

We show that H and K are related and from this obtain some new information regarding the eigenvalues of H. We first recall that a k-square matrix C is said to be a principal submatrix of an n-square matrix D, if there exists a sequence of integers $1 \le i_1 < \ldots < i_k \le n$ such that $d_{i_si_t} = c_{st}$, s,t = 1,...,k.

THEOREM. H is a principal submatrix of K.

Proof. Let $r_{\alpha} = n(\alpha - 1) + \alpha$, $1 \le \alpha \le n$. We show that the principal submatrix $(k_{r_{\alpha}r_{\beta}})$ of K is actually H.

$$\begin{aligned} k_{r_{\alpha}r_{\beta}} &= a_{i_{1}j_{1}}b_{i_{2}j_{2}}, \text{ where} \\ n(\alpha - 1) + \alpha &= r_{\alpha} = i_{2} + n(i_{1} - 1) \\ n(\beta - 1) + \beta &= r_{\beta} = j_{2} + n(j_{1} - 1) \end{aligned}$$

 * This work was supported by U.S. National Science Foundation Grant, NSF - G5416.

Can. Math. Bull., Vol. 2, No. 2, May 1959

From (1)

Then

$$n(i_1 - \infty) + (i_2 - \infty) = 0$$

(2)

$$n(j_1 - \beta) + (j_2 - \beta) = 0.$$

If $i_1 - \alpha \neq 0$ then from (2) $(i_2 - \alpha) \equiv 0(n)$; but $|i_2 - \alpha| < n$ and hence $i_2 - \alpha = 0$. Thus $i_1 = \alpha = i_2$ and similarly $j_1 = \beta = j_2$. Hence $k_{r_{\alpha}}r_{\beta} = a_{\alpha\beta}b_{\alpha\beta}$ and the proof is complete.

The eigenvalues of A \otimes B are $\alpha_i \beta_j$, i,j = 1,...,n. Assume A and B are non-negative hermitian and order the eigenvalues of A \otimes B as follows:

$$(3) \qquad \lambda_1 = \alpha_1 \beta_1 \ge \cdots \ge \lambda_n \mathbf{i} = \alpha_n \beta_n.$$

COROLLARY 1. If A and B are non-negative (positive definite) hermitian then AoB is non-negative (positive definite) hermitian and

$$\alpha_{n}\beta_{n} \leq \lambda_{s+n^{2}-n} \leq \mu_{s} \leq \lambda_{s} \leq \alpha_{1}\beta_{1}, \quad s=1,\ldots,n.$$

where $\mu_1 \ge \ldots \ge \mu_n$ are the eigenvalues of AoB and the λ_i are as in (3).

Proof. By the theorem, AoB is a principal submatrix of A&B and hence we may apply* the Cauchy inequalities [2; p. 75]. These inequalities state the following: If D is any n-square hermitian matrix with eigenvalues $d_1 \ge \ldots \ge d_n$ and C is any k-square principal submatrix of D with eigenvalues $d_1^{\dagger} \ge \ldots \ge d_k^{\dagger}$ then $d_{s+n-k} \le d_s^{\dagger} \le d_s$, $s = 1, \ldots, k$. The fact that C is hermitian when D is hermitian is obvious.

Another proof of the fact that AoB is non-negative (positive definite) is given in [1; p. 173].

^{*} Referee's footnote: The fact that AoB is a principal submatrix of A&B implies that AoB = $P_{\mathcal{M}} A \otimes B P_{\mathcal{M}}$, where $P_{\mathcal{M}}$ is an orthogonal projector of $B_n 2$, an n²-dimensional vector space, onto \mathcal{M} , a linear manifold of rank n. Thus 14.2 of [2] applies.

We write $A \ge 0$, (A > 0), to indicate that for the n-square matrix A, $a_{ij} \ge 0$, $(a_{ij} > 0)$. It is clear that if $A \ge 0$, (> 0), and $B \ge 0$, (> 0), then AoB ≥ 0 , (> 0). It is known that if $A \ge 0$ then there exists an eigenvalue $\lambda_{M}(A) \ge 0$ such that if λ is any other eigenvalue of A then $|\lambda| \le \lambda_{M}(A)$.

COROLLARY 2. If
$$A \ge 0$$
, (> 0) , and $B \ge 0$, (> 0) ,
then
(4) $\lambda_{M}(A \circ B) \le$, $(<)$, $\lambda_{M}(A) \lambda_{M}(B)$.

Proof. In [3] it is proved that if $X \ge 0$, (> 0), and Y is any principal submatrix of X then $\lambda_{M}(Y) \le$, (<), $\lambda_{M}(X)$. We apply this to AoB as a principal submatrix of A B.

As an application of Corollary 2, let $A^{(1/n)}$ denote the matrix whose (i,j) element is $a_{ij}^{1/n}$. Then from (4)

$$\begin{split} \lambda_{\mathsf{M}}(\mathsf{A}) &= \lambda_{\mathsf{M}}(\mathsf{A}^{(1/n)} \circ \dots \circ \mathsf{A}^{(1/n)}) \leq \lambda_{\mathsf{M}}^{n}(\mathsf{A}^{(1/n)}), \\ \lambda_{\mathsf{M}}^{1/n}(\mathsf{A}) &\leq \lambda_{\mathsf{M}}(\mathsf{A}^{(1/n)}). \end{split}$$

Let A' denote the transpose of A. Suppose A is non-negative hermitian. Then A' is also non-negative hermitian and hence by Corollary 1, with $B = A^{\dagger}$,

$$\lambda_{\mathsf{M}}(\mathrm{AoA}^{i}) \leq \lambda_{\mathsf{M}}(\mathrm{A}) \lambda_{\mathsf{M}}(\mathrm{A}^{i}) = \lambda_{\mathsf{M}}^{2}(\mathrm{A}).$$

Thus if $h_{ij} = |a_{ij}|^2$ then

$$\lambda_{\rm M}^{1/2}$$
 (H) $\leq \lambda_{\rm M}^{(\rm A)}$.

REFERENCES

- P.R. Halmos, Finite dimensional vector spaces, 2nd ed., (New York, 1958).
- H.L. Hamburger and M.F. Grimshaw, Linear transformations in n-dimensional vector space, (Cambridge, 1951).
- H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Zeit. 52 (1950), 642-648.

University of British Columbia Muslim University, Aligarh, India