resolution that banned over-the-counter sales of antimicrobials in drugstores. That measure, focusing on outpatients, was not likely to succeed in controlling CRE spread in hospitals. Nevertheless, there was a substantial decrease in antimicrobial sales in private drugstores in response to public opinion.10 The extent to which this decrease has influenced or will influence antimicrobial resistance is a matter for further research.

We did not perform quantitative or qualitative analysis of press articles content. Those approaches were beyond our scope, but they open interesting venues for investigation. The Brazilian case shed light on the press media and public response to epidemiologically complex issues, such as HAIs and AMR. It also reinforces the importance of public communication for the practice of healthcare epidemiology. Messages to the general public must be delivered in clear, objective language and with evidence-grounded information. If we avoid negligence and panic, public awareness can support effective interventions for infection prevention and control.

Acknowledgments. Partial results of this study were presented (among other studies) in P.Z.A.C. doctoral thesis in the Postgraduate Program in Tropical Infectious, Botucatu School of Medicine, São Paulo State University (UNESP), City of Botucatu, São Paulo State, Brazil.

Financial support. F.F.C. received a student grant from the Brazilian Council for Scientific Development and Technology (CNPq), with CMCBF as advisor.

Conflicts of interest. All authors state that they have no conflict of interest regarding this study.

References


Monitoring healthcare professionals after monkeypox exposure: Experience from the first case imported to Asia

Win Mar Kyaw MPH1, Shawn Vassoo MRCP2,3, Hanley Jian An Ho MPH4, Monica Chan MRCP2,3, Tsin Wen Yeo PhD2,3, Charmaine Malenab Manuais MD5, Hou Ang MRCS5, Partha Pratim De FRCPa6, Brenda Sze Peng Ang MPH5,7 and Angela Li Ping Chow PhD5,4.

1Department of Clinical Epidemiology, Tan Tock Seng Hospital, Singapore, 2Infectious Disease Department, Tan Tock Seng Hospital, Singapore, 3National Centre for Infectious Diseases, Singapore, 4Department of Clinical Epidemiology, Tan Tock Seng Hospital, Singapore, 5Emergency Department, Tan Tock Seng Hospital, Singapore, 6Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore and 7Infection Prevention and Control Unit, Tan Tock Seng Hospital, Singapore

Table 1. Number of Press Articles Reporting Infections Caused by CRAB and CRE in Brazil, Distributed in Periods and Country’s Macregions

<table>
<thead>
<tr>
<th>Subject and Date</th>
<th>North</th>
<th>Northeast</th>
<th>Middle-West</th>
<th>Southeast</th>
<th>South</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006–2010</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>2011–2015</td>
<td>…</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>…</td>
<td>9</td>
</tr>
<tr>
<td>2016–2018</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>CRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006–2010</td>
<td>…</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>2011–2015</td>
<td>…</td>
<td>13</td>
<td>8</td>
<td>19</td>
<td>13</td>
<td>53</td>
</tr>
<tr>
<td>2016–2018</td>
<td>…</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>…</td>
<td>13</td>
</tr>
</tbody>
</table>

Note. CRAB, carbapenem-resistant Acinetobacter baumannii complex. CRE, carbapenem-resistant enterobacteriaceae.

To the Editor—Since monkeypox was first identified in humans in the Democratic Republic of Congo in 1970, most human monkeypox cases have been reported in Central and West Africa, with the largest documented outbreak occurring in Nigeria in 2017.1 Monkeypox, a rare viral zoonotic re-emerging disease caused by an orthopoxvirus, has similar clinical signs and symptoms as smallpox and a case-fatality rate of 11% in unvaccinated patients.2 It can be transmitted from person to person via direct contact with infected lesions, through respiratory secretions, or from contaminated objects and environments. Risk of infection for healthcare workers (HCWs) are high,3 and patient-to-HCW transmission of monkeypox has been reported in the Central African Republic and the United Kingdom, where staff used

Author for correspondence: Win Mar Kyaw, Email: mar_kyaw_win@ttsh.com.sg

Cite this article: Kyaw WM, et al. (2020). Monitoring healthcare professionals after monkeypox exposure: Experience from the first case imported to Asia. Infection Control & Hospital Epidemiology, 41: 373–375, https://doi.org/10.1017/icke.2019.362

© 2020 by The Society for Healthcare Epidemiology of America. All rights reserved.

https://doi.org/10.1017/icke.2019.362 Published online by Cambridge University Press
The Centers for Disease Control and Prevention has recommended standard and contact precautions for the management of human monkeypox.

Singapore, an island city-state in Southeast Asia, is a major travel hub that received >5,000 visitors from Africa between January and May 2019. On May 8, 2019, the human monkeypox case was confirmed in Singapore in a 38-year-old Nigerian man who arrived in Singapore on April 28, 2019, to attend a workshop. Before his travel to Singapore, he had resided and worked in the Delta state in Nigeria and had attended a wedding on April 21 in a village in Ebonyi State, Nigeria, where he consumed bushmeat. He presented to the emergency department of Tan Tock Seng Hospital on May 7 with fever, muscle aches, and vesicular skin lesions. Due to his travel history, he was transferred from the emergency department, he was admitted into an NEP isolation room at the emergency department. After staying for 5 hours at the emergency department, he was admitted into an NEP in an isolation unit at the adjoining National Centre for Infectious Diseases for further clinical management on the same day, and laboratory confirmed as monkeypox infection the next day (May 8).

Table 1. Categories of Healthcare Workers (HCWs) by Location, Type of Contact, and Type of Personal Protective Equipment

<table>
<thead>
<tr>
<th>Location</th>
<th>HCW Categories</th>
<th>Type of Contact</th>
<th>Gloves</th>
<th>Gown</th>
<th>Face Mask*</th>
<th>Goggles/Visorb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency department</td>
<td>2 physicians and 5 nurses professionals</td>
<td>Direct patient contact</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency department</td>
<td>2 nurse professionals</td>
<td>Contact with patient’s surroundings</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency department</td>
<td>3 housekeeping</td>
<td>Contact with patient’s surroundings</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency department</td>
<td>1 radiology and 2 security</td>
<td>Direct patient contact</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Laboratory department</td>
<td>4 lab technicians</td>
<td>Contact with patient’s specimen (specimen collection/processing)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Laboratory department</td>
<td>2 lab technicians</td>
<td>Contact with patient’s specimen (specimen reception)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Laboratory department</td>
<td>3 lab technicians</td>
<td>Contact with patient’s specimen (specimen reception)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Laboratory department</td>
<td>3 lab technicians</td>
<td>Contact with patient’s specimen (specimen processing)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

*aN95 respirator for respiratory protection.
*bEye protection.

day 1 to day 21 postexposure to monitor their health status. After the initial phone call, the 2 physicians were advised to monitor their own health. Symptoms monitored included fever, swollen lymph nodes, skin rash, headache, and myalgia. All exposed HCWs were also given the phone numbers of the surveillance team for immediate contact if they felt acutely ill. Unwell HCWs were immediately referred to the dedicated infectious disease clinic with appropriate precautions in place for review at the earliest available time. Because the risk of exposure was ascertained to be low for all staff contacts, they were allowed to continue with their routine activities during the surveillance period.

During the follow-up period of 21 days, 2 nursing staff reported respiratory symptoms. They were reviewed by infectious disease physicians and were clinically diagnosed with viral upper respiratory infections. They were treated symptomatically, were given medical leave to rest, and recovered uneventfully. At the end of the surveillance period, none of the 27 HCWs developed symptoms suggestive of monkeypox infection.

We have comprehensively and systematically documented the contact tracing processes and active surveillance activities in a tertiary-care hospital in response to a human monkeypox case importation. A well-developed protocol that enables the early detection of suspected cases of emerging infectious diseases ensured that patients are managed in appropriate isolation room facilities in the emergency department from the outset; this would greatly minimize exposure in a crowded emergency department. Furthermore, clear infection prevention guidelines on the appropriate PPE for different HCWs, based on patient care activities and the transmission risk, are crucial. All HCWs who had attended to the patient had complied with the hospital’s infection prevention guidelines. Finally, although the risk of transmission of monkeypox to the HCWs was deemed to be extremely low, we took additional measures to actively follow up on each HCW contact to provide assurance and health education to anxious staff who did not have a good understanding of monkeypox. Early detection of symptoms in close contacts through active phone surveillance may facilitate prompt medical review and diagnosis of new infections to prevent further transmission.

Acknowledgments. Authors acknowledge all staff involved in contact tracing operations at the hospital.
Methods of a study of terminal cleaning of patient rooms

John D. Coppin BS, MPH1, Frank C. Villamaria BS, MPH, MS1, Marjory D. Williams PhD, RN1,2, Laurel A. Copeland PhD3, John E. Zeber PhD1,4 and Chetan Jinadatha MD, MPH5,6

1Department of Research, Central Texas Veterans’ Healthcare System, Temple, Texas, 2Department of Nursing, Central Texas Veterans’ Health Care System, Temple, Texas, 3Veterans’ Affairs Central Western Massachusetts Healthcare System, Leeds, Massachusetts, 4University of Massachusetts Amherst School of Public Health & Health Science, Amherst, Massachusetts, 5Department of Medicine, Central Texas Veterans’ Health Care System, Temple, Texas and 6College of Medicine, Texas A&M Health Science Center, Bryan, Texas

To the Editor—It is encouraging to see that people have reviewed our article “Increased Time Spent on Terminal Cleaning of Patient Rooms May Not Improve Disinfection of High-Touch Surfaces.” However, a related Letter to the Editor raises concerns that some may be misinterpreting both the thrust of our paper and our study methodology.

In our pragmatic report, we aimed to promote better cleaning by presenting research results that suggest that more than adequate time spent on terminal cleaning may not result in additionally lower bio-burden on high-touch surfaces. We hope this information will cause the best methods of analysis and interpretation. Finally, we provided a full financial support disclosure statement in our article. The salary support for this study was provided by the authors’ employers.

Acknowledgments. The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans’ Affairs. Xenex Healthcare Service did not participate in study design or in the collection, analysis, and interpretation of data or in the writing of the report or in the decision to submit the paper for publication.

Financial support. This study was supported by a merit review grant from the Department of Veterans’ Affairs to J.Z. (grant no. IIR 12-347), and laboratory activity was supported by a grant from Xenex Healthcare Services, with additional support from the Central Texas Veterans’ Health Care System (Temple, TX), Scott & White Healthcare (Temple, TX), and the jointly sponsored Center for Applied Health Research (Temple, TX).

Conflicts of interest. All authors declare no competing interests.

Our analysis plan followed best practices for analyzing count data: use a generalized linear model with appropriate choice of family and link function, and avoid log transforming the data. We used Bayesian models and reported uncertainty in our estimates, rather than rely on a p-value. Recent articles highlight the pitfalls of statistical significance, which can be particularly problematic in small observational studies without preregistration. Major journals are now requiring some form of uncertainty interval rather than P values. We also chose to include model estimates on the actual outcome scale. This makes interpretation easy for those familiar with the outcome (ABC counts from press plates) but not familiar with statistical terminology like incident rate ratios. Our goal was to apply the best methods of analysis and interpretation.

To the Editor—It is encouraging to see that people have reviewed our article “Increased Time Spent on Terminal Cleaning of Patient Rooms May Not Improve Disinfection of High-Touch Surfaces.” However, a related Letter to the Editor raises concerns that some may be misinterpreting both the thrust of our paper and our study methodology.

In our pragmatic report, we aimed to promote better cleaning by presenting research results that suggest that more than adequate time spent on terminal cleaning may not result in additionally lower bio-burden on high-touch surfaces. We hope this information will cause the best methods of analysis and interpretation. Finally, we provided a full financial support disclosure statement in our article. The salary support for this study was provided by the authors’ employers.

Acknowledgments. The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans’ Affairs. Xenex Healthcare Service did not participate in study design or in the collection, analysis, and interpretation of data or in the writing of the report or in the decision to submit the paper for publication.

Financial support. This study was supported by a merit review grant from the Department of Veterans’ Affairs to J.Z. (grant no. IIR 12-347), and laboratory activity was supported by a grant from Xenex Healthcare Services, with additional support from the Central Texas Veterans’ Health Care System (Temple, TX), Scott & White Healthcare (Temple, TX), and the jointly sponsored Center for Applied Health Research (Temple, TX).

Conflicts of interest. All authors declare no competing interests.

Our analysis plan followed best practices for analyzing count data: use a generalized linear model with appropriate choice of family and link function, and avoid log transforming the data. We used Bayesian models and reported uncertainty in our estimates, rather than rely on a p-value. Recent articles highlight the pitfalls of statistical significance, which can be particularly problematic in small observational studies without preregistration. Major journals are now requiring some form of uncertainty interval rather than P values. We also chose to include model estimates on the actual outcome scale. This makes interpretation easy for those familiar with the outcome (ABC counts from press plates) but not familiar with statistical terminology like incident rate ratios. Our goal was to apply the best methods of analysis and interpretation.

To the Editor—It is encouraging to see that people have reviewed our article “Increased Time Spent on Terminal Cleaning of Patient Rooms May Not Improve Disinfection of High-Touch Surfaces.” However, a related Letter to the Editor raises concerns that some may be misinterpreting both the thrust of our paper and our study methodology.

In our pragmatic report, we aimed to promote better cleaning by presenting research results that suggest that more than adequate time spent on terminal cleaning may not result in additionally lower bio-burden on high-touch surfaces. We hope this information will cause the best methods of analysis and interpretation. Finally, we provided a full financial support disclosure statement in our article. The salary support for this study was provided by the authors’ employers.

Acknowledgments. The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans’ Affairs. Xenex Healthcare Service did not participate in study design or in the collection, analysis, and interpretation of data or in the writing of the report or in the decision to submit the paper for publication.

Financial support. This study was supported by a merit review grant from the Department of Veterans’ Affairs to J.Z. (grant no. IIR 12-347), and laboratory activity was supported by a grant from Xenex Healthcare Services, with additional support from the Central Texas Veterans’ Health Care System (Temple, TX), Scott & White Healthcare (Temple, TX), and the jointly sponsored Center for Applied Health Research (Temple, TX).

Conflicts of interest. All authors declare no competing interests.

Our analysis plan followed best practices for analyzing count data: use a generalized linear model with appropriate choice of family and link function, and avoid log transforming the data. We used Bayesian models and reported uncertainty in our estimates, rather than rely on a p-value. Recent articles highlight the pitfalls of statistical significance, which can be particularly problematic in small observational studies without preregistration. Major journals are now requiring some form of uncertainty interval rather than P values. We also chose to include model estimates on the actual outcome scale. This makes interpretation easy for those familiar with the outcome (ABC counts from press plates) but not familiar with statistical terminology like incident rate ratios. Our goal was to apply the best methods of analysis and interpretation.

To the Editor—It is encouraging to see that people have reviewed our article “Increased Time Spent on Terminal Cleaning of Patient Rooms May Not Improve Disinfection of High-Touch Surfaces.” However, a related Letter to the Editor raises concerns that some may be misinterpreting both the thrust of our paper and our study methodology.

In our pragmatic report, we aimed to promote better cleaning by presenting research results that suggest that more than adequate time spent on terminal cleaning may not result in additionally lower bio-burden on high-touch surfaces. We hope this information will cause the best methods of analysis and interpretation. Finally, we provided a full financial support disclosure statement in our article. The salary support for this study was provided by the authors’ employers.

Acknowledgments. The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans’ Affairs. Xenex Healthcare Service did not participate in study design or in the collection, analysis, and interpretation of data or in the writing of the report or in the decision to submit the paper for publication.

Financial support. This study was supported by a merit review grant from the Department of Veterans’ Affairs to J.Z. (grant no. IIR 12-347), and laboratory activity was supported by a grant from Xenex Healthcare Services, with additional support from the Central Texas Veterans’ Health Care System (Temple, TX), Scott & White Healthcare (Temple, TX), and the jointly sponsored Center for Applied Health Research (Temple, TX).

Conflicts of interest. All authors declare no competing interests.