ON MAXIMUM MATCHINGS IN CUBIC GRAPHS
WITH A BOUNDED NUMBER OF BRIDGE-COVERING PATHS

GARY CHARTRAND1, S.F. KAPOOR, ORTRUD R. OELLERMANN
AND SERGIO RUIZ2

It is proved that if G is a connected cubic graph of order p
all of whose bridges lie on r edge-disjoint paths of G,
then every maximum matching of G contains at least $p/2 - \lfloor 2r/3 \rfloor$
edges. Moreover, this result is shown to be best possible.

1. Introduction and historical background

A matching in a graph G is a set of pairwise nonadjacent (independent)
edges of G. A matching with maximum cardinality is a maximum
matching. If G has order p, then a matching of cardinality $p/2$ is
called a perfect matching. Graphs with perfect matchings were
categorized by Tutte [5].

Received 5 January 1987. 1Research partially supported by a Faculty
Research Fellowship from Western Michigan University. 2Research supported
by the United Nations through the program PNUD-UNESCO, and Universidad
Católica de Valparaíso (Chile).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87
$\$2.00 + 0.00.
THEOREM A. (Tutte). A graph G has a perfect matching if and only if for every proper subset S of $V(G)$, the number of odd components of $G-S$ does not exceed $|S|$.

Much research has centred around the determination of regular graphs that contain perfect matchings. A well known result on this subject is due to Petersen [4].

THEOREM B. (Petersen). Every cubic graph with at most two bridges contains a perfect matching.

This result cannot be improved, in general, since cubic graphs having three bridges but no perfect matchings exist. The graph of Figure 1 is the unique smallest such graph.

![Figure 1](https://example.com/figure1.png)

Note that the three bridges of the graph of Figure 1 do not lie on a single path. Indeed, since this graph has no perfect matching, this property is necessary, by a result of Errera [3].

THEOREM C. (Errera). If all the bridges of a connected cubic graph G lie on a single path of G, then G has a perfect matching.

The goal of this paper is to provide a generalisation of Theorem C by establishing a lower bound on the cardinality of a maximum matching in a connected cubic graph all of whose bridges lie on a specified number of edge-disjoint paths. Towards this end we state the following generalisation (see [1]) of the aforementioned theorem of Tutte.
THEOREM D. Let G be a cubic graph of order p and let l be an integer with $0 \leq l \leq p/2$. Then every maximum matching of G has at least $(p - 2l)/2$ edges if and only if for every proper subset S of $V(G)$, the number of odd components of $G - S$ does not exceed $|S| + 2l$.

2. The main result

We are now prepared to present a bound on the number of edges in a maximum matching in a connected cubic graph G in terms of the number of paths containing the bridges of G.

THEOREM 1. If the bridges of a connected cubic graph G lie on r edge-disjoint paths of G, then each maximum matching of G contains at least $p/2 - \lfloor 2r/3 \rfloor$ edges.

Proof. Suppose, to the contrary, that G contains a maximum matching M with fewer than $p/2 - \lfloor 2r/3 \rfloor$ edges. By Theorem D there exists a proper subset S of $V(G)$ such that the number n of odd components of $G - S$ exceeds $|S| + 2\lfloor 2r/3 \rfloor$. Let $|S| = k$. Since p is even, n and k are of the same parity, so that

$$n \geq k + 2\lfloor 2r/3 \rfloor + 2.$$ \hfill (4)

Denote the odd components of $G - S$ by G_1, G_2, \ldots, G_n. Since G is connected, every component $G_i (1 \leq i \leq n)$ contains at least one vertex that is adjacent to some vertex of S. Suppose, without loss of generality, that G_1, G_2, \ldots, G_t denote the odd components of $G - S$ for which there exists exactly one edge e_i joining a vertex in $G_i (1 \leq i \leq t)$ to a vertex of S. For $i = t + 1, t + 2, \ldots, n$, then, there are at least three edges joining vertices of G_i to vertices of S; otherwise, for some $j (t + 1 \leq j \leq n)$, vertices of G_j are joined to vertices of S by exactly two edges, implying that G_j has an odd number of odd vertices, which is not possible.

Let P_1, P_2, \ldots, P_r denote r edge-disjoint paths of G which contain all the bridges of G. Then for every $i (1 \leq i \leq r)$, at most two bridges of G that lie on P_i are in the set $\{e_1, e_2, \ldots, e_t\}$. Hence $t \leq 2r$. Since at least $t + 3(n - t) = 3n - 2t$ edges join vertices of
Another bound (see [2]) for the number of edges in a maximum matching in a connected cubic graph \(G \) depends only on the number of bridges in \(G \).

THEOREM E. Every maximum matching in a connected cubic graph of order \(p \) with fewer than \(3(\lambda + 1) \) bridges (\(\lambda \geq 0 \)) has at least \((p - 2\lambda)/2 \) edges.

If the bridges of a connected cubic graph lie on sufficiently few paths, then the bound provided in Theorem 1 on the number of edges in a maximum matching is an improvement on the bound provided in Theorem E. A specific statement of this improved result is given next.

COROLLARY 1. Let \(G \) be a connected cubic graph of order \(p \) having \(m \) bridges, and let \(\lambda \geq 0 \) be an integer such that \(3\lambda \leq m < 3(\lambda + 1) \).

If these bridges lie on \(r \) edge-disjoint paths, where \(\lfloor 2r/3 \rfloor < \lambda \), then the number of edges in a maximum matching of \(G \) is at least \(p/2 - \lfloor 2r/3 \rfloor \).

The result in Corollary 1 can be shown to be sharp, which we do next. Since the case \(\lambda = 0 \) corresponds to the existence of at most 2 bridges in a connected cubic graph, and sharpness is already known, we consider \(\lambda \geq 1 \) to be given, and choose the maximum \(r \) with \(r \equiv 0 \pmod{3} \), say \(r = 3s \), such that \(\lfloor 2r/3 \rfloor < \lambda \). Then

\[
 r = \begin{cases}
 (3\lambda - 6)/2 & \text{if } \lambda \text{ is even}, \\
 (3\lambda - 3)/2 & \text{if } \lambda \text{ is odd}.
 \end{cases}
\]

We show that there exists a connected cubic graph \(G \) of order \(p \) having \(m = 3\lambda + j \) bridges (\(j = 0, 1, 2 \)) all of which lie on \(r \) edge-disjoint paths but no fewer, such that each maximum matching contains \(p/2 - \lfloor 2r/3 \rfloor \) edges.

We begin by constructing a graph \(P_n^* (n \geq 1) \), consisting of graphs \(H_1, H_2, \ldots, H_n \), where \(H_i (1 \leq i \leq n - 1) \) is obtained by deleting an
edge of \(K_4 \) and \(H_n \) is obtained by subdividing an edge of \(K_4 \). Denote the two vertices of degree 2 in \(H_i \) \((1 \leq i \leq n-1)\) by \(u_i \) and \(v_i \) and the vertex of degree 2 in \(H_n \) by \(u_n \). Then \(P^*_n \) is produced by joining \(v_i \) and \(u_{i+1} \) \((1 \leq i \leq n-1)\). Observe that each \(P^*_n(n \geq 1) \) has odd order. Let the graph \(H \) be the \(12s \)-cycle \(w_1, w_2, \ldots, w_{12s}, w_1 \) to which we add 2s new vertices \(x_1, x_2, \ldots, x_{2s} \), where \(x_i \) is joined to \(w_{6i-5}, w_{6i-3} \) and \(w_{6i-1} \) \((1 \leq i \leq 2s)\). Consider next the graphs \(G_1, G_2, \ldots, G_{6s-1} \), each isomorphic to \(P^*_1 \), and the graph \(G_{6s} \), where

\[
G_{6s} = \begin{cases}
P^*_1 & \text{if } l \text{ is even}, \\
P^*_2 & \text{if } l \text{ is odd}.
\end{cases}
\]

The desired graph \(G \) is now produced by joining \(w_{2i} \) to the vertex \(u_1 \) in \(G_i \) \((1 \leq i \leq 6s)\) by an edge \(e_i \). Figure 2 illustrates the graph \(G \) for \(k = 3, r = 3, s = 1, m = 9 \) and \(j = 0 \).

![Figure 2](https://doi.org/10.1017/S0004972700003737) Published online by Cambridge University Press
G. Chartrand, S.F. Kapoor, O.R. Oellermann and S. Ruiz

Clearly \(G \) is connected, cubic, and each edge \(e \) (\(1 \leq i \leq 6 \theta \)) is a bridge of \(G \). Further, since \(G_{6 \theta} \) contains \(6 + j \) or \(3 + j \) bridges, depending on whether \(\ell \) is even or odd, respectively, it follows that \(G \) contains exactly \(6 \theta + 6 + j \) or \(6 \theta + 3 + j \) bridges, according to whether \(\ell \) is even or odd. Since the bridges of \(G \) lie on \(r = 3 \theta \) edge-disjoint paths, Corollary 1 implies that every maximum matching of \(G \) contains at least \(p/2 - \lfloor 2r/3 \rfloor \) edges.

It remains to be shown that every maximum matching of \(G \) contains at most \(p/2 - \lfloor 2r/3 \rfloor \) edges. We use Theorem D to prove this statement. Let \(S = \{ \omega_{2i} \mid 1 \leq i \leq 6 \theta \} \cup \{ x_1, x_2, \ldots, x_{2 \theta} \} \). Then \(|S| = 8 \theta \), and

\[
G - S = \begin{cases}
6 \theta K_2 \cup (6 \theta - 1)P_1 \cup P_4^* & \text{if } \ell \text{ is even,} \\
6 \theta K_2 \cup (6 \theta - 1)P_1^* \cup P_4 & \text{if } \ell \text{ is odd.}
\end{cases}
\]

Therefore, \(G - S \) contains \(12 \theta = |S| + 4 \theta \) odd components. Theorem D now implies that every maximum matching of \(G \) contains at most \(p/2 - 2 \theta = p/2 - \lfloor 2r/3 \rfloor \) edges. Hence every maximum matching of \(G \) contains exactly \(p/2 - \lfloor 2r/3 \rfloor \) edges.

The cases where \(r \equiv 1 \pmod{3} \) or \(r \equiv 2 \pmod{3} \) can be handled in a similar manner. If \(r \equiv 1 \pmod{3} \), the maximum \(r \) with \(\lfloor 2r/3 \rfloor < \ell \) is given by

\[
r = \begin{cases}
(3 \ell - 4)/2 & \text{if } \ell \text{ is even,} \\
(3 \ell - 1)/2 & \text{if } \ell \text{ is odd.}
\end{cases}
\]

Further, the maximum \(r \) for \(r \equiv 2 \pmod{3} \) and \(\lfloor 2r/3 \rfloor < \ell \) satisfies

\[
r = \begin{cases}
(3 \ell - 2)/2 & \text{if } \ell \text{ is even,} \\
(3 \ell + 1)/2 & \text{if } \ell \text{ is odd.}
\end{cases}
\]

Then using a construction similar to the one described for \(r \equiv 0 \pmod{3} \) we can show, for the above choices of \(r \), that there is a graph \(G \) having \(m + j \) bridges (\(j = 0, 1, 2 \) and \(3 \ell \leq m < 3(\ell + 1) \)) all of which lie on \(r \) edge-disjoint paths and where every maximum matching of \(G \) has \(p/2 - \lfloor 2r/3 \rfloor \) edges. Consequently, the result stated in Corollary 1 is the best possible.
Maximum matchings in cubic graphs

References

Department of Maths and Statistics
Western Michigan University
KALAMAZOO, MI 49008 - 3899
U.S.A.

Instituto de Matematicas,
Universidad Catolica de Valpararaiso,
Chile.