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ON MAXIMUM MATCHINGS IN CUBIC GRAPHS

WITH A BOUNDED NUMBER OF BRIDGE-COVERING PATHS

GARY CHARTRAND1, S.F. KAPOOR, ORTRUD R, OELLERMANN

AND SERGIO RUIZ2

It is proved that if G is a connected cubic graph of order p

all of whose bridges lie on r edge-disjoint paths of G ,

then every maximum matching of G contains at least p/2 - [2r/3j

edges. Moreover, this result is shown to be best possible.

1. Introduction and historical background

A matching in a graph G is a set of pairwise nonadjacent (independ-

ent) edges of G . A matching with maximum cardinality is a maximum

matching. If G has order p , then a matching of cardinality p/2 is

called a perfect matching. Graphs with perfect matchings were

characterized by Tutte C 5].
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THEOREM A. CTutte). A graph G has a perfect matching if and only

if for every proper subset S of VCG) , the number of odd components of

G-S does not exceed \s\ .

Much research has centred around the determination of regular graphs

that contain perfect matchings. A well known result on this subject is

due to Petersen [4].

THEOREM B. (Petersen). Every cubic graph with at most two bridges

contains a perfect matching.

This result cannot be improved, in general, since cubic graphs

having three bridges but no perfect matchings exist. The graph of Figure 1

is the unique smallest such graph.

Figure 1

Note that the three bridges of the graph of Figure 1 do not lie on a

single path. Indeed, since this graph has no perfect matching, this

property is necessary, by a result of Errera [3H.

THEOREM C. (Errera). If all the bridges of a connected cubic graph

G lie on a single path of G 3 then G has a perfect matching.

The goal of this paper is to provide a generalisation of Theorem C

by establishing a lower bound on the cardinality of a maximum matching in

a connected cubic graph all of whose bridges lie on a specified number of

edge-disjoint paths. Towards this end we state the following generalisation

(see LI]) of the aforementioned theorem of Tutte.
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THEOREM D. Let G be a cubic graph of order p and let I be an
integer with 0 ^ i, £ p/2 . Then every maximum matching of G has at least
(p - 2D/2 edges if and only if for every proper subset S of V(G) , the
number of odd components of G - S does not exceed \s\ + 21 .

2. The main result

We are now prepared to present a bound on the number of edges in a

maximum matching in a connected cubic graph G in terms of the number of

paths containing the bridges of G .

THEOREM 1. If the bridges of a connected cubic graph G lie on r

edge-disjoint paths of G , then each maximum matching of G contains at

least p/2 -\2r/S] edges.

Proof. Suppose, to the contrary, that G contains a maximum match-

ing M with fewer that p/2 - |_2r/3j edges. By Theorem D there exists a

proper subset S of V(G) such that the number n of odd components of

G - S exceeds |s| + 2\2r/3 | . Let \s\ = k . Since p is even, n and

k are of the same parity, so that

n > k + 2\2r/3] +2.. (*)

Denote the odd components of G - S by G1t Go) ,,,jG . Since G is
-J. u Yt

connected, every component G.(1 £ i ̂  n) contains at least one vertex

that is adjacent to some vertex of S . Suppose, without loss of generality,

that G~, GQ, •.. , G denote the odd components of G - S for which there

exists exactly one edge e. joining a vertex in G. (1 ̂  i •& t) to a
if i

vertex of S . For i=t+l,t+2}...1n, then, there are at least

three edges joining vertices of G. to vertices of S ; otherwise, for
Is

some j ( t + l $ j £ n ) t ver t ices of G. are joined to ver t ices of S by
3

exactly two edges, implying that G . has an odd number of odd vertices,
0

which is not possible.

Let V , P s ..., P denote r edge-disjoint paths of G which

contain all the bridges of G . Then for every i(l £ i £ r) , at most two

bridges of G that lie on P. are in the set {e13 eCJ ..., e.} . Hence
% S o t

t £ 2r . Since at least t + 3(n - t) = 3n - 2t edges join vertices of
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V(G-) u V(G ) u ... u V(G ) to vertices of S it follows that

3n - 4r < 3n - 2t <. 3k . Therefore, 3(n - k) < 4r so that by (*) }

3(2 \_2r/3_\ +2) < 4r , that is 3 \ 2r/3 \ + 3 < 2r . However,

2r + 1 = 3((2r - 2)/3) + 3^3 \_2r/3J + 3 < 2r ,

which gives a contradiction. D

Another bound (see [2]) for the number of edges in a maximum matching

in a connected cubic graph G depends only on the number of bridges in G .

THEOREM E. Every maximum matching in a connected cubic graph of

order p with fewer than 3(1 + 1) bridges (I £ 0) has at least

(p - 21)/2 edges.

If the bridges of a connected cubic graph lie on sufficiently few

paths, then the bound provided in Theorem 1 on the number of edges in a

maximum matching is an improvement on the bound provided in Theorem E.

A specific statement of this improved result is given next.

COROLLARY 1. Let G be a connected cubic graph of order p having

m bridges* and let- % > 0 be an integer such that 3% < m < 3(l + 1).

If these bridges lie on r edge-disjoint paths, where \_2r/3\ < I j then

the number of edges in a maximum matching of G is at least p/2 - \_2r/3J.

The result in Corollary 1 can be shown to be sharp, which we do next.

Since the case SL = 0 corresponds to the existence of at most 2 bridges

in a connected cubic graph, and sharpness is already known, we consider

H S 1 to be given, and choose the maximum r with r = 0 fmod 3) ,

say r = 3s , such that \_2r/3 | < I . Then

(31 - 6)/2 if H is even ,

(31 - 3)/2 if I is odd .

We show that there exists a connected cubic graph G of order p having

m = 31 + j bridges (j = 0, 13 2) all of which lie on r edge-disjoint

paths but no fewer, such that each maximum matching contains p/2- \_2r/3 \

edges.

We begin by constructing a graph P* (n ̂  1) 3 consisting of graphs

13 H , ...SH , where H.(l <, i < n - 1) is obtained by deleting an
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edge of K and H is obtained by subdividing an edge of K . Denote

the two vertices of degree 2 in R.tl £ i £ n - J.) by u. and V. and

the vertex of degree 2 in H by u Then P* is produced by joining

V. and u.-(l £ i < n - 1) . Observe that each P*(n > 1) has odd
^ i+l n

order. Let the graph H be the 22s-cycle u y . ,tJ y ^ y to

J a;OJ ...j x , where x. is joined towhich we add 2s new vertices

wo- CJ V*a. , and Wo. , (1 < i < 2s) . Consider next the graphs
0%—b ois—6 01—1

ff-j G_j . . . j G. - j each isomorphic to Pi , and the graph G. , where

P* . if 1 is even ,

G6s =
P* . if i. is odd .
4j

The desired graph G is now produced by joining Wo. to the vertex

W- in G»(l & i, & 6s) by an edge e, . Figure 2 illustrates the graph

G for l = 3 , r = 3 J 8 = l , m = 9 and j = 0 .

Figure 2
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Clearly G is connected, cubic, and each edge e. (1 < i £ 6e) is a
if

bridge of G . Further, since (?„ contains 6 + j or 3 + j bridges,

depending on whether i. is even or odd, respectively, it follows that G

contains exactly 68+6+3 or 6e + 3 + Q bridges, according to

whether SL is even or odd. Since the bridges of G lie on r = 3s edge-

disjoint paths, Corollary 1 implies that every maximum matching of G

contains at least p/2 - \_2r/3j edges.

It remains to be shown that every maximum matching of G contains at

most p/2 - |_2r/3j edges. We use Theorem D to prove this statement. Let

5 = {w2i I 1 < i £ 58} u {x13 x2, ..., x2g) . Then ||

G - S

u (6s - DP* u P*+.

68K2 u (6s - DP* u P*4+.

if i.

\ = 8s , and

is even ,

if * is odd

Therefore, G - S contains 12s = \s\ + 4s odd components. Theorem D

now implies that every maximum matching of G contains at most

p/2- 2s = p/2 - \_2r/3j edges. Hence every maximum matching of G contains

exactly p/2 - \_2r/3 ] edges.

The cases where r = 1 Cmod 3) or r = 2 (mod 3) can be handled in

a similar manner. If r = 1 (mod 3) , the maximum r with \_2r/3 \ < i

is given by

(31 - 4)/2 if I is even,

r =

(3% - D/2 if I is odd.

Further, the maximum r for r = 2 (mod 3) and \_2r/3 \ < % satisfies

(31 - 2)/2 if I is even,

r =
(31 + D/2 if I is odd.

Then using a construction similar to the one described for r = 0fmod 3)

we can show, for the above choices of r , that there is a graph G

having m + j bridges (3 =0,1, 2 and 31 <, m < 3(1 + D) all of

which lie on r edge-disjoint paths and where every maximum matching of

G has p/2 - \_2r/3 \ edges. Consequently, the result stated in Corollary

1 is the best possible.
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