ON MAXIMUM MATCHINGS IN CUBIC GRAPHS

WITH A BOUNDED NUMBER OF BRIDGE-COVERING PATHS

Gary Chartrand ${ }^{1}$, S.F. Kapoor, !rtrud R. Oellermann
aid Sergio Ruiz ${ }^{2}$

Abstract

It is proved that if G is a connected cubic graph of order p all of whose bridges lie on r edge-disjoint paths of G, then every maximum matching of G contains at least $p / 2-\mid 2 r / 3\rfloor$ edges. Moreover, this result is shown to be best possible. 1. Introduction and historical background

A matching in a graph G is a set of pairwise nonadjacent (independent) edges of G. A matching with maximum cardinality is a maximum matching. If G has order p, then a matching of cardinality $p / 2$ is called a perfect matching. Graphs with perfect matchings were characterized by Tutte [5].

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 $\$ 22.00+0.00$.
G. Chartrand, S.F. Kapoor, O.R, Oellermann and S. Ruiz

THEOREM A. (Tutte). A graph G has a perfect matching if and only if for every proper subset S of $V(G)$, the number of odd components of $G-S$ does not exceed $|S|$.

Much research has centred around the determination of regular graphs that contain perfect matchings. A well known result on this subject is due to Petersen [4].

THEOREM B. (Petersen). Every cubic groph with at most two bridges contains a perfect matching.

This result cannot be improved, in general, since cubic graphs having three bridges but no perfect matchings exist. The graph of Figure 1 is the unique smallest such graph.

Figure 1

Note that the three bridges of the graph of Figure 1 do not lie on a single path. Indeed, since this graph has no perfect matching, this property is necessary, by a result of Errera [3].

THEOREM C. (Errera). If all the bridges of a connected cubic groph G lie on a single path of G, then G has a perfect matching.

The goal of this paper is to provide a generalisation of Theorem C by establishing a lower bound on the cardinality of a maximum matching in a connected cubic graph all of whose bridges lie on a specified number of edge-disjoint paths. Towards this end we state the following generalisation (see [1]) of the aforementioned theorem of Tutte.

THEOREM D. Let G be a cubic graph of order p and let ℓ be an integer with $0 \leq \ell \leq p / 2$. Then every maximum matching of G has at least ($p-2 \ell$)/2 edges if and only if for every proper subset S of $V(G)$, the number of odd components of $G-S$ does not exceed $|S|+2 \ell$.

2. The main result

We are now prepared to present a bound on the number of edges in a maximum matching in a connected cubic graph G in terms of the number of paths containing the bridges of G.

THEOREM 1. If the bridges of a connected cubic graph G lie on r edge-disjoint paths of G, then each maximum matching of G contains at least $p / 2-\lfloor 2 r / 3\rfloor$ edges.

Proof. Suppose, to the contrary, that G contains a maximum matching M with fewer that $p / 2-\lfloor 2 r / 3\rfloor$ edges. By Theorem D there exists a proper subset S of $V(G)$ such that the number n of odd components of $G-S$ exceeds $|S|+2\lfloor 2 r / 3\rfloor$. Let $|S|=k$. Since p is even, n and k are of the same parity, so that

$$
\begin{equation*}
n \geq k+2\lfloor 2 r / 3\rfloor+2 \ldots \tag{*}
\end{equation*}
$$

Denote the odd components of $G-S$ by $G_{1}, G_{2}, \ldots, G_{n}$. Since G is connected, every component $G_{i}(1 \leq i \leq n)$ contains at least one vertex that is adjacent to some vertex of S. Suppose, without loss of generality, that $G_{1}, G_{2}, \ldots, G_{t}$ denote the odd components of $G-S$ for which there exists exactly one edge e_{i} joining a vertex in $G_{i}(1 \leq i \leq t)$ to a vertex of S. For $i=t+1, t+2, \ldots, n$, then, there are at least three edges joining vertices of G_{i} to vertices of S; otherwise, for some $j(t+1 \leq j \leq n)$, vertices of G_{j} are joined to vertices of S by exactly two edges, implying that G_{j} has an odd number of odd vertices, which is not possible.

Let $P_{1}, P_{2}, \ldots, P_{r}$ denote r edge-disjoint paths of G which contain all the bridges of G. Then for every $i(1 \leq i \leq r)$, at most two bridges of G that lie on P_{i} are in the set $\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$. Hence $t \leq 2 r$. Since at least $t+3(n-t)=3 n-2 t$ edges join vertices of
$V\left(G_{1}\right) \cup V\left(G_{2}\right) \cup \ldots \cup V\left(G_{n}\right)$ to vertices of S it follows that $3 n-4 r \leq 3 n-2 t \leq 3 k$. Therefore, $3(n-k) \leq 4 r$ so that by (*), $3(2|2 r / 3|+2) \leq 4 r$, that is $3\lfloor 2 r / 3 \mid+3 \leq 2 r$. However,

$$
2 r+1=3((2 r-2) / 3)+3 \leq 3\lfloor 2 r / 3\rfloor+3 \leq 2 r,
$$

which gives a contradiction.
Another bound (see [2]) for the number of edges in a maximum matching in a connected cubic graph G depends only on the number of bridges in G.

THEOREM E. Every maximon matching in a connected cubic graph of order p with fewer than $3(\ell+1)$ bridges $(\ell \geq 0)$ has at least ($p-2 \ell$)/2 edges.

If the bridges of a connected cubic graph lie on sufficiently few paths, then the bound provided in Theorem 1 on the number of edges in a maximum matching is an improvement on the bound provided in Theorem E. A specific statement of this improved result is given next.

COROLLARY 1. Let G be a connected cubic groph of order p having m bridges, and let. $\ell \geq 0$ be an integer such that $3 \ell \leq m<3(\ell+1)$. If these bridges lie on r edge-disjoint paths, where $\lfloor 2 r / 3\rfloor<\ell$, then the number of edges in a maximum matching of G is at least $p / 2-\lfloor 2 r / 3\rfloor$.

The result in Corollary 1 can be shown to be sharp, which we do next. Since the case $\ell=0$ corresponds to the existence of at most 2 bridges in a connected cubic graph, and sharpness is already known, we consider $\ell \geq 1$ to be given, and choose the maximum r with $r \equiv 0(\bmod 3)$, say $r=3 s$, such that $\lfloor 2 r / 3\rfloor<\ell$. Then

$$
r= \begin{cases}(3 \ell-6) / 2 & \text { if } \ell \text { is even }, \\ (3 \ell-3) / 2 & \text { if } \ell \text { is odd }\end{cases}
$$

We show that there exists a connected cubic graph G of order p having $m=3 \ell+j$ bridges $(j=0,1,2)$ all of which lie on r edge-disjoint paths but no fewer, such that each maximum matching contains $p / 2-\lfloor 2 r / 3\rfloor$ edges.

We begin by constructing a graph $P_{n}^{*}(n \geq 1)$, consisting of graphs $H_{1}, H_{2}, \ldots, H_{n}$, where $H_{i}(1 \leq i \leq n-1)$ is obtained by deleting an
edge of K_{4} and H_{n} is obtained by subdividing an edge of K_{4}. Denote the two vertices of degree 2 in $H_{i}(1 \leq i \leq n-1)$ by u_{i} and v_{i} and the vertex of degree 2 in H_{n} by u_{n}. Then P_{n}^{*} is produced by joining v_{i} and $u_{i+1}(1 \leq i \leq n-1)$. Observe that each $P_{n}^{*}(n \geq 1)$ has odd order. Let the graph H be the $12 s$-cycle $w_{1}, w_{2}, \ldots, w_{12 s}, w_{1}$ to which we add $2 s$ new vertices $x_{1}, x_{2}, \ldots, x_{2 s}$, where x_{i} is joined to $w_{6 i-5}, w_{6 i-3}$ and $w_{6 i-1}(1 \leq i \leq 2 s)$. Consider next the graphs $G_{1}, G_{2}, \ldots, G_{6 s-1}$, each isomorphic to P_{1}^{*}, and the graph $G_{6 s}$, where

$$
G_{6 s}= \begin{cases}P_{7+j}^{*} & \text { if } \ell \quad \text { is even } \\ P_{4+j}^{*} & \text { if } \ell \quad \text { is odd }\end{cases}
$$

The desired graph G is now produced by joining $w_{2 i}$ to the vertex u_{1} in $G_{i}(1 \leq i \leq 6 s)$ by an edge e_{i}. Figure 2 illustrates the graph G for $\ell=3, r=3, s=1, m=9$ and $j=0$.

Figure 2

Clearly G is connected, cubic, and each edge $e_{i}(1 \leq i \leq 68)$ is a bridge of G. Further, since G_{68} contains $6+j$ or $3+j$ bridges, depending on whether ℓ is even or odd, respectively, it follows that G contains exactly $6 s+6+j$ or $68+3+j$ bridges, according to whether ℓ is even or odd. Since the bridges of G lie on $r=3 s$ edgedisjoint paths, Corollary 1 implies that every maximum matching of G contains at least $p / 2-\lfloor 2 r / 3\rfloor$ edges.

It remains to be shown that every maximum matching of G contains at most $p / 2-\lfloor 2 r / 3\rfloor$ edges. We use Theorem D to prove this statement. Let $S=\left\{\omega_{2 i} \mid 1 \leq i \leq 6 s\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{2 s}\right\}$. Then $|S|=8 s$, and

$$
G-S=\left\{\begin{array}{l}
6 s K_{1} \cup(6 s-1) P_{1}^{*} \cup P_{7+j}^{*} \quad \text { if } \ell \text { is even }, \\
6 s K_{1} \cup(6 s-1) P_{1}^{*} \cup P_{4+j}^{*} \text { if } \& \text { is odd } .
\end{array}\right.
$$

Therefore, $G-S$ contains $12 s=|S|+4 s$ odd components. Theorem D now implies that every maximum matching of G contains at most $p / 2-2 s=p / 2-\lfloor 2 r / 3\rfloor$ edges. Hence every maximum matching of G contains exactly $p / 2-\lfloor 2 r / 3 \mid$ edges.

The cases where $r \equiv 1(\bmod 3)$ or $r \equiv 2(\bmod 3)$ can be handled in a similar manner. If $r \equiv 1(\bmod 3)$, the maximum r with $\left\lfloor 2 r / 3_{\mathbf{~}} \mid<\ell\right.$ is given by

$$
r= \begin{cases}(3 \ell-4) / 2 & \text { if } \ell \text { is even, } \\ (3 \ell-1) / 2 & \text { if } \ell \text { is odd }\end{cases}
$$

Further, the maximum r for $r \equiv 2(\bmod 3)$ and $\lfloor 2 r / 3 \mid<\&$ satiafies

$$
r= \begin{cases}(3 \ell-2) / 2 & \text { if } \ell \text { is even }, \\ (3 \ell+1) / 2 & \text { if } \ell \text { is odd. }\end{cases}
$$

Then using a construction similar to the one described for $r \equiv O(\bmod 3)$ we can show, for the above choices of r, that there is a graph G having $m+j$ bridges $(j=0,1,2$ and $3 \ell \leq m<3(\ell+1)$) all of which lie on r edge-disjoint paths and where every maximum matching of G has $p / 2-\lfloor 2 r / 3\rfloor$ edges. Consequently, the result stated in Corollary 1 is the best possible.

References

[1] C. Berge, "Two theorems in graph theory", Proc, Nat. Acad, Sci. 43 (1957), 842-844.
[2] G. Chartrand, S.F. Kapoor, L. Lesniak and S. Schuster, "Near 1factors in graphs", Proceedings of the Fourteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantivm 41 (1984), 131-147.
[3] A. Errera, "Du colorage des cartes", Mathesis 36 (1922), 56-60.
[4] J. Petersen, "Die theorie der regulären graphen", Acta Math. 15 (1891), 163-220.
[5] W.T. Tutte, "The factorizations of linear graphs", J. London Math. Soc. 22 (1947), 107-111.

Department of Maths and Statistics
Western Michigan University
KALAMAZOO, MI 49008-3899
U.S.A.

Instituto de Matematicas,
Universidad Catolica de Valpararaiso,
Chile.

[^0]: Received 5 January 1987. ${ }^{1}$ Research partially supported by a Faculty Research Fellowship from Western Michigan University. ${ }^{2}$ Research supported by the United Nations through the program PNUD-UNESCO, and Universidad Cat6lica de Valparaiso (Chile).

