
Introduction

There are two ways to think about (∞, 1)-categories. The first is that an (∞, 1)-
category, as its name suggests, should be some kind of higher categorical
structure. The second is that an (∞, 1)-category should encode the data of a
homotopy theory. So we first need to know what a homotopy theory is, and
what a higher category is.

We can begin with the classical homotopy theory of topological spaces. In
this setting, we consider topological spaces up to homotopy equivalence, or
up to weak homotopy equivalence. Techniques were developed for defining
a nice homotopy category of spaces, in which we define morphisms between
spaces to be homotopy classes of maps between CW complex replacements of
the original spaces being considered. However, the general framework here is
not unique to topology; an analogous situation can be found in homological
algebra. We can take projective replacements of chain complexes, then chain
homotopy classes of maps, to define the derived category, the algebraic ana-
logue of the homotopy category of spaces.

The question of when we can make this kind of construction (replacing by
some particularly nice kinds of objects and then taking homotopy classes of
maps) led to the definition of a model category by Quillen in the 1960s [100].
The essential information consists of some category of mathematical objects,
together with some choice of which maps are to be designated as weak equiv-
alences; these are the maps we would like to think of as invertible but may not
be. The additional data of a model structure, and the axioms this data must sat-
isfy, guarantee the existence of a well-behaved homotopy category as we have
in the above examples, with no set-theoretic problems arising.

A more general notion of homotopy theory was developed by Dwyer and
Kan in the 1980s. Their simplicial localization [57] and hammock localiza-
tion [56] constructions provided a method in which a category with weak
equivalences can be assigned to a simplicial category, or category enriched in
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simplicial sets. More remarkably, they showed that up to a natural notion of
equivalence (now called Dwyer–Kan equivalence), every simplicial category
arises in this way [55]. Thus, if a “homotopy theory” is just a category with
weak equivalences, then we can think of simplicial categories as homotopy
theories. In other words, simplicial categories provide a model for homotopy
theories.

However, with Dwyer–Kan equivalences, the category of small simplicial
categories itself forms a category with weak equivalences, and therefore has a
homotopy theory. Hence, we have a “homotopy theory of homotopy theories”.
In fact, this category has a model structure, making it a homotopy theory in the
more rigorous sense [27].

In practice, unfortunately, this model structure is not as nice as we might
wish. It is not compatible with the monoidal structure on the category of sim-
plicial categories, does not seem to have the structure of a simplicial model
category in any natural way, and has weak equivalences which are difficult to
identify for any given example. Therefore, a good homotopy theorist might
seek an equivalent model structure with better properties.

An alternative model, that of complete Segal spaces, was proposed by Rezk
[103]. Complete Segal spaces are simplicial diagrams of simplicial sets, sat-
isfying some conditions which allow them to be thought of as something like
simplicial categories but with weak composition. Their corresponding model
category is cartesian, and is given by a localization of the Reedy model struc-
ture on simplicial spaces. Hence, the weak equivalences between fibrant ob-
jects are just levelwise weak equivalences of simplicial sets, and we have a
good deal of extra structure that the model category of simplicial categories
does not possess.

Meanwhile, in the world of category theory, simplicial categories were seen
as models for (∞, 1)-categories, or weak ∞-categories, with k-morphisms de-
fined for all k ≥ 1, that satisfy the property that, for k > 1, the k-morphisms are
all weakly invertible. To see why simplicial categories provide a natural model,
it is perhaps easier to consider instead topological categories, where we have
a topological space of morphisms between any two objects. The 1-morphisms
are just points in these mapping spaces. The 2-morphisms are paths between
these points; at least up to homotopy, they are invertible. Then 3-morphisms
are homotopies between paths, 4-morphisms are homotopies between homo-
topies, and we could continue indefinitely.

In the 1990s, Segal categories were developed as a weakened version of sim-
plicial categories. They are simplicial spaces with discrete 0-space, and look
like homotopy versions of the nerves of simplicial categories. They were first
defined by Dwyer, Kan, and Smith [58], but developed from this categorical
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perspective by Hirschowitz and Simpson [70]. The model structure for Segal
categories, begun in their work, was given explicitly by Pellissier [97].

Yet another model for (∞, 1)-categories was given in the form of quasi-
categories or weak Kan complexes, first defined by Boardman and Vogt [36].
They were developed extensively by Joyal, who defined many standard cat-
egorical notions, for example limits and colimits, within this more general
setting. Although much of his work is still unpublished, the beginnings of these
ideas can be found in [73]. The notion was adopted by Lurie, who established
many of Joyal’s results independently [88].

Finally, going back to the original motivation, Barwick and Kan proved that
there is a model category on the category of small categories with weak equiv-
alences; they instead use the term “relative categories” [11].

Comparisons between all these various models were conjectured by several
people, including Toën [115] and Rezk [103]. In a slightly different direction,
Toën proved that any model category satisfying a particular list of axioms must
be Quillen equivalent to the complete Segal space model structure, hence ax-
iomatizing what is meant to be a homotopy theory of homotopy theories, or
homotopy theory of (∞, 1)-categories [116].

Eventually, explicit comparisons were made, as shown in the following
diagram:

SC SeCat f SeCatc CSS

QCat RelCat

The single arrows indicate that Quillen equivalences were given in both di-
rections, and these were established by Joyal and Tierney [74]. The Quillen
equivalence between simplicial categories and quasi-categories was proved in
different ways by Joyal, Lurie [88], and Dugger and Spivak [51, 52]. The
Quillen equivalence between complete Segal spaces and relative categories
was given by Barwick and Kan [11]. The zigzag across the top row was es-
tablished by the present author [30]. The original model structure for Segal
categories is denoted by SeCatc; the additional one SeCat f was established
for the purposes of this proof.

In short, the purpose of this book is to make sense of this diagram. What, ex-
plicitly, are simplicial categories, Segal categories, quasi-categories, complete
Segal spaces, and relative categories? What is the model category correspond-
ing to each, and how can they be compared to one another? The answers to
these questions have all been known and are in the literature, but we bring
them together here.
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