
ON THE "EDGE OF THE WEDGE" THEOREM 

F E L I X E. BROWDER 

I n t r o d u c t i o n . In the mathemat ica l justification of the formal calculations 
of axiomatic quan tum field theory and the theory of dispersion relations, a 
strategic role is played by a theorem on analytic functions of several complex 
variables which has been given the euphonious name of the edge of the wedge 
theorem. T h e s ta tement of the theorem seems to be due originally to N . Bogo-
liubov (cf. 3, Mathemat ica l Appendix, pp. 654-673) bu t no complete proof 
which is fully satisfactory from the mathematical point of view has yet appeared 
in the l i terature. The main step in this direction was the t r ea tmen t of a special 
case by Bremmerman, Oehme, and Taylor in (3). (The most recent discussion 
of analytic functions of several complex variables from the viewpoint of 
axiomatic field theory by Wightman (7) contains no explicit reference to the 
theorem. A companion paper by Omnes (5) gives an incorrect proof of related 
results by a mis-reading of Har tog ' s theorem, for example, the proof of Theorem 
9 (5, p . 340). Several years ago, the writer was told by H. Grauer t t h a t L. 
Gârding had constructed a proof of the edge of the wedge theorem, though 
this proof has not yet been published, and less definite reports have it t h a t such 
a proof is contained in an unpublished manuscript of Beurling and Gârding.) 

I t is the object of the present paper to show t h a t the edge of the wedge 
theorem in its most general form may be obtained in a very direct fashion by 
combining simple arguments about distribution kernels with a theorem on 
analyt ici ty of functions of several variables proved by the writer in (4). This 
theorem, which is Theorem 2 below, was established by the writer in connec
tion with joint work on analytici ty of distribution kernels with Barros-Neto 
(1). Theorem 2 has recently become very popular and been announced in the 
pas t several months by R. Kunze and E. M. Stein, who obtained it in connec
tion with the s tudy of bounded representation of the classical Lie groups on 
Hilbert space, and by R. H. Cameron, who proved it in connection with a 
s tudy of Feynman integrals. 

Theorem 2, the proof of which is both elementary and t ransparent , furnishes 
a very effective tool for a direct intuit ive proof of the edge of the wedge theorem 
wi thout any essential use of Fourier transform calculations. We emphasize 
the intuit ive character of this proof since most discussions of most topics in 
this area proceed by extended formal calculations. 

T h e writer would like to thank Professors E. M. Stein, R. Kunze, R. H. 
Cameron, and R. Bla t tner for informative and s t imulat ing conversations. 
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1. Let n > 1. W e consider the complex space Cn of n dimensions whose 
points will be denoted by f = (fi, . . . , fw). Let i?* be the real ^-dimensional 
euclidean space imbedded in the na tura l way in Cn so t h a t Cn = Rn + iRn, 
t h a t is, f = £ + ir? with £, 7/ in i?w. Let £ be an open subset of Rn, C a cone 
in Rn with non-vacuous interior. 

Definition. By the positive and negative wedges W+ and W~ determined by 
E and C, we mean 

W+ = { f : f = Z + iv,l:eE,r,e C) 

w- = {f:r = ? - iv, s G £,*? e c}. 
T H E O R E M 1. (77^ erfge 0/ the wedge theorem.) Let F+ and F~ be two functions 

defined and holomorphic in the interior of the wedges W+ and W~, respectively. 
Suppose that £ + (£ + irj), considered as a distribution on E for fixed rj in C, 
converges to £ 0

+ G S)' (£) in the distribution topology as rj —> 0 in C. Suppose 
also that £~(£ — irj), considered as a distribution on E for fixed 77 in C, con
verges to Fo~ £ 3)' (£ ) in the distribution topology as 77 —> 0 in C. Suppose finally 
that F0

+ = Fo~. Then there exists a holomorphic function F on a neighbourhood 
of E X {0} in Cn which coincides with F+ and F~ on W+ and W~ respectively. 

In the s t a tement of Theorem 1, as in its proof below, we have used the 
definitions of the theory of distr ibutions of L. Schwartz (6) and we shall use 
some of the s tandard results of t h a t theory in the proof. 

We shall derive Theorem 1 from another more classical result which does 
not involve references to distr ibutions and the distr ibution topology. This is 
the following: 

T H E O R E M Y. Let F+ and F~ be two functions defined and holomorphic in the 
interior of the wedges W+ and W~, respectively. Suppose that F+ is continuous on 
the closure of W+ and that £ + (£ + irj) converges uniformly to £o+(£) for J in 
E as rj —> 0 in C. Suppose also that F~ is continuous on the closure of W~ and, 
that F~ (£ — irj) converges uniformly to F0~ (£) for £ in E as rj —> 0 in C. Suppose 
finally that £o+(£) = £o~(£), £ G E. Then there exists a neighbourhood N of 
£ X {0} in Cn, with N independent of the particular functions F+ and £~, and 
a holomorphic function F defined on N which coincides with F+ and F~ on W+ 

and W~, respectively. 

W e shall apply the following result established in (4) in the derivation of 
Theorem V': 

T H E O R E M 2. Consider Cn X Cm with co-ordinates z = x + iy G Cn, w = u 
+ iv G Cm. Let G(x, u) be a function defined for \x\ < 1, \u\ < 1. Suppose that 
G(x, u) satisfies either of the following {equivalent) conditions: 

(a) There exist constants Mi, Ri, M2, R2 > 0 such that for each fixed x in Rn 

with \x\ < l,G(x,u) has a holomorphic extension G(x, w) in w to the set \w\ < R2 

satisfying the inequality \G(x,w)\ < M2} while for each fixed u in Rm with \u\ < 1, 
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G(x, u) has a holomorphic extension G(z> u) in z to set \z\ < Ri satisfying the 
inequality \G(z, u)\ < Mi. 

(b) G(x, u) is real analytic on the set {(x, u): \x\ < 1, \u\ < 1} and there 
exist constants Mh ph M2, pi independent of x and u such that 

\Da
xG(x,u)\ <M1p1

]al\a\\ 

\Da
uG{x,u)\ < M2p2lal\a\l 

Then there exists an open neighbourhood N of the form 

N = {(z,w):\x\ <1 + e, \u\ < 1 + e, \y\ < e, \v\ < e}, (e > 0) 

such that G(x, u) has a holomorphic extension to N. The constant e depends on 
the Rj and the pj but not on the Mj. {Note that pj — Rr1.) The extension of G 
to N is bounded by a constant depending only on the M j and Rj. 

We remark that the existence of the domain N dependent only on the Rj 
is not explicitly remarked in (4) but follows without further argument from 
the proof given there. 

If we apply the criterion (b) of Theorem 2 in an iterative argument, we 
obtain immediately the following variant of Theorem 2 : 

THEOREM 2'. Let G(x) = G(xi, . . . , xn) be a function defined on a neigh
bourhood of a closed subset K of Rn which is real-analytic in each Xj with the 
others held fixed. Suppose further that there exists M > 0, p > 0, such that 

hGM < Mprr\ 

for 1 < j < n and all x in the fixed neighbourhood of K. Then G is real analytic 
on a neighbourhood of K and there exists a neighbourhood N of K in Cn, depending 
only on K and p but not on M, such that G admits a holomorphic extension to N. 

A simple consequence of Theorem 2' is the following: 

THEOREM 2"'. Let {aly . . . , an) be a set of n linearly independent unit vectors 
in Rn. Let G{x) be a function defined on a neighbourhood of a closed subset K 
of Rn with the property that for each x in the neighbourhood and each ajy the 
function hj(\) = G(x + \a,j) of the real variable X admits a holomorphic extension 
to the disk |X| < R, R a fixed constant, which satisfies the inequality 

(1) |A,(X)| < M 

for |X| < R, X e CK 
Then G admits a holomorphic extension to a neighbourhood N of K in Cn 

(with N depending only on K and R but not on M). 

Proof of Theorem 2". Let 5 be the uniquely defined non-singular transforma
tion of Rn carrying each unit vector e3 along the positive x raxis into a}. Then 
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G (Sx) is a function satisfying the hypotheses of Theorem 2' but with K 
replaced by S~lK. Indeed it follows from the Cauchy integral formula that 

< MR~\ 
x=o 

However, 

W'G (*+ x % ) | x =°= ( ( f l*'v ) 'G ) w=(Gy w*)). 
Thus G (Sx) admits an analytic extension Gi(f) to a neighbourhood N\ of 
5 - ^ in Cn. Setting G(f) = GiGS^f), N = SNh we find that N is a neigh
bourhood of K in Cw and G is a holomorphic extension of G(x) to N. 

Proof of Theorem 1'. Let {ai, . . . , aw} be a linearly independent set of w 
unit vectors lying in the interior of C. (Such a set exists because C has a non-
vacuous interior.) For each j , 1 < j < n, we consider the two functions of 
the simple complex variable X defined by 

A+(\) = ,F+(x + Aa,), 

^7(M = F~(x + Xa^). 

Since Im(x + Xa;) = (Im X)-a^, it follows that Im(x + Xa;) £ C if Im(X) 
> 0, and Im(x + Xa,) Ç Int(C) if Im(X) > 0. Similarly Im(x + Xa,) G ( - C ) 
if Im(X) < 0, and Im(x + Xâ ) Ç Int(— C) if Im(X) > 0. The two functions 
hj+(\) and hf(\) are therefore defined and analytic in the upper and lower 
half-planes, respectively, for |X| < dist(x, Rn — E). They are both continuous 
up to the real-axis moreover within this circle and are equal there. By the 
Schwartz reflection principle, they are both therefore restrictions of a single 
function hj(\) analytic on the whole disk |X| < dXJ and the function hj(\) 
is bounded by the common bounds for hj+ and hf. For any y in E such that 
y = x + \a,j, hj(x + \a,j) = Fo+(y) is independent of j . We thus have a 
situation satisfying the hypotheses of Theorem 2". There must therefore 
exist a common analytic extension F(£) of FQ

+ = F0~ on E which coincides 
with hj(x + Xaj) wherever both are defined, that is, F coincides with F+ and 
F~ on the intersections of the respective domains. The neighbourhood N on 
which F(Ç) is defined depends only on E by the fact that the radius of analy-
ticity of hj(x + Xa;) depends only on x and not on the choice of the functions 
F+ and F~. 

2. We turn now to the proof of Theorem 1 itself, using Theorem F. 

Proof of Theorem 1. To prove the existence of a common analytic extension 
of F+ and F~} it suffices to consider a complex neighbourhood of each point 
x of E. For simplicity, we may assume that x = 0 and choose a disk Ei about 
0 such that 4Ei C E. 

0 9 *'« (X) 
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Let CC°°(JE) be the family of C00 functions with compact support in E. It 
follows from the hypotheses of Theorem 1 that if we denote by 

ff(y)<l>(y)dy 

the pairing between a distribution f on E and a testing function $ in Cc
co(E)y 

then for each | G 2Eh the function 

#(£ + ii?) = J>+(£ - ? + in)4>(y)dy, 
is analytic for 77 G Im(C), and continuous on the positive wedge W\+ = 2EX 

+ iC. Similarly the function 

F<t>(% - n) = JF~(£ - y - iri)<t>(y)dy 

is analytic in the interior of the negative wedge W\~ = 2E\ — iC and con
tinuous on the closed wedge. On 2Ei, the common face of the two wedges, 
^ + ( ? ) = F<tr(£), by the definition of equality of distributions. Therefore we 
may apply Theorem Y to this pair of functions and assert that there exists a 
fixed neighbourhood iVi of 2E\ X {0} in Cn such that F^ and F^~ admit a 
common holomorphic extension F^ to N\ for each <f> in Cc

œ(E). 
We thus have a mapping cj> —> F<f> from Cc°°(£) to H(Ni), where we let 

H(Ni) denote the Frechet space of holomorphic functions on Ni. Call this 
mapping T. T is obviously linear. Moreover, T is a closed mapping since if 
(j>k —> <t> in C^^K), 2£ compact in E, F0n —> /z in H (Ni). Then it follows that 
^ A + ~~* ^V+ m Int(Wi+), /v" in Int(WY~) so that h is the uniquely determined 
analytic extension of F^+ and F^~ to A7i, that is, h = 7^ = 7\0). By the 
closed graph theorem, therefore, T is a continuous linear map. Moreover, 
the imbedding map of H(Ni) into C°°(A7i) (that is, S(iVi) in the notation of 
(6)) is continuous. By the Schwartz Kernel theorem, there exists a distribution 
k^y on Ni X E such that 

(2) F0(f) = J*rCy)*(y)^, (My) = *r.*), 

for all </> G Cc°°(£), f G iVi. (Actually fef (y) may be identified with an analytic 
map from N1to £>'(£).) 

We now remark that if u G £1, <t> G Cc
œ(Ei), then 0M(;y) = <t>(u + y) defines 

a function in Cc
œ(E). Moreover, if £ G £1, ^ G Int(C), 

*£(£ + **?) = J>+(£ - ^ + *i?)*(« + y ) ^ 

= SF+(£ + u - y + n)<t>(y)dy 

= F$(è + u + ir,). 
Similarly, 

^7u(£ - n) = F*(t + u - irj). 

By the uniqueness of the analytic continuation, 

^«(? + iy) = F<t>(i + u + il)-

In other words, T commutes locally with translations. 
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Applying the kernel representation (2), we obtain on the one hand 

^«(f) = ^ ( f + u)= Sh+u(y)<Ky)dy, 

and, on the other hand, 

^ u ( f ) = J*r(y)0(w + y)dy = jk^(y - u)(j>(y)dy. 

Hence by the uniqueness of the kernel representat ion, for y in 2Ei , u G 2Ei , 

f € iVi, we have 

If f = g + 7̂7, £ G -Ëi, j € JEI, and if we set u = —%, y\ = y — è, 

becomes 

^ f ,2/1 = RiV,Vl-%-

(Indeed, we have jus t repeated the s tandard a rgument t h a t kernels which 
commute with translat ions must be of convolution type, t h a t is, depend on 
the difference of the arguments .) 

As a mapping from Cc°°(Ei) to H(N), where N is the intersection of Ai with 
the tube above E\, T is a "convolut ion" with the kernel kçtlJ = kiVty-^. Let 
k(X) = kin-%. I t follows t h a t if a sequence {</>fc} from Cc°°(£i) converges to the 
Dirac del ta a t 0 in ®'(Ei) , then FH = T(0/c) will converge to fe(f) in ^)'(N). 
However, all the functions F$k are holomorphic on N so t h a t their convergence 
in © ' (A) implies their uniform convergence on compact subsets on A and the 
holomorphic character of their limit fe(f) on A. On the interiors of the wedges 
Wi+ and Wi~, F^ will converge to F+{£) and F~(f) , respectively. Therefore 
&(f) is a holomorphic extension of F+ and T7- on a neighbourhood of x, and 
the proof of Theorem 1 is complete. 

Added in proof. In a la t ter to the writer, Dr . R. Stora has pointed out 
t h a t a mathemat ica l ly complete proof of the edge of the wedge theorem 
(along lines different from the present one) was given by H . Epstein, J . M a t h . 
Phys. , 1 (1960), 524-531. Epstein refers to the unpublished proof of Beurling 
and Garding based upon the ideas of Dyson, Phys . Rev., 110 (1958). 

Another proof of Theorem 2 has been given by T . Ko take in his s tudy 
of analyt ic i ty of fundamental solutions for parabolic equat ions. 
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