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GENERIC LINES IN PROJECTIVE SPACE AND THE KOSZUL
PROPERTY

JOSHUA ANDREW RICE

Abstract. In this paper, we study the Koszul property of the homogeneous

coordinate ring of a generic collection of lines in Pn and the homogeneous

coordinate ring of a collection of lines in general linear position in Pn. We

show that if M is a collection of m lines in general linear position in Pn with

2m≤ n+1 and R is the coordinate ring of M, then R is Koszul. Furthermore,

if M is a generic collection of m lines in Pn and R is the coordinate ring of

M with m even and m+1 ≤ n or m is odd and m+2 ≤ n, then R is Koszul.

Lastly, we show that if M is a generic collection of m lines such that

m>
1

72

(
3(n2+10n+13)+

√
3(n−1)3(3n+5)

)
,

then R is not Koszul. We give a complete characterization of the Koszul

property of the coordinate ring of a generic collection of lines for n≤ 6 or m≤ 6.

We also determine the Castelnuovo–Mumford regularity of the coordinate ring

for a generic collection of lines and the projective dimension of the coordinate

ring of collection of lines in general linear position.

§1. Introduction

Let S =C[x0, . . . ,xn] be a polynomial ring, and let J be a graded homogeneous ideal of S.

Following Priddy’s work, we say the ring R= S/J is Koszul if the minimal graded free reso-

lution of the field C over R is linear [20]. Koszul rings are ubiquitous in commutative algebra.

For example, any polynomial ring, all quotients by quadratic monomial ideals, all quadratic

complete intersections, the coordinate rings of Grassmannians in their Plücker embedding,

and all suitably high Veronese subrings of any standard graded algebra are all Koszul [15].

Because of the ubiquity of Koszul rings, it is of interest to determine when we can guarantee

a coordinate ring will be Koszul. In 1992, Kempf proved the following theorem.

Theorem 1.1 (Kempf [17, Th. 1]). Let P be a collection of p points in Pn, and let R be

the coordinate ring of P. If the points of P are in general linear position and p≤ 2n, then

R is Koszul.

In 2001, Conca, Trung, and Valla extended the theorem to a generic collection of points.

Theorem 1.2. (Conca, Trung, and Valla [9, Th. 4.1]). Let P be a generic collection of p

points in Pn and R the coordinate ring of P. Then R is Koszul if and only if p≤ 1+n+ n2

4 .

We aim to generalize these theorems to collections of lines. In §2, we review necessary

background information and results related to Koszul algebras that we use in the other

sections. In §3, we study properties of coordinate rings of collections of lines and how they

differ from coordinate rings of collections of points. In particular, we show
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Theorem 3.5. Let M be a generic collection of m lines in Pn with n≥ 3, and R be the

coordinate ring of M. Then regS(R) = α, where α is the smallest nonnegative integer such

that
(
n+α
α

)
≥m(α+1).

In §4, we prove

Theorem 4.3. Let M be a generic collection of m lines in Pn such that m≥ 2, and let

R be the coordinate ring of M.

(a) If m is even and m+1≤ n, then R has a Koszul filtration.

(b) If m is odd and m+2≤ n, then R has a Koszul filtration.

In particular, R is Koszul.

Additionally, we show the coordinate ring of a generic collection of five lines in P6 is

Koszul by constructing a Koszul filtration. In §5, we prove

Theorem 5.2. Let M be a generic collection of m lines in Pn, and let R be the

coordinate ring of M. If

m>
1

72

(
3(n2+10n+13)+

√
3(n−1)3(3n+5)

)
,

then R is not Koszul.

Furthermore, there is an exceptional example of a coordinate ring that is not Koszul; if

M is a collection of three lines in general linear position in P4, then the coordinate ring

R is not Koszul. In §6, we exhibit a collection of lines that is not a generic collection but

the lines are in general linear position, and we give two examples of coordinate rings where

each define a generic collection of lines with quadratic defining ideals but for numerical

reasons each coordinate ring is not Koszul. We end the document with a table summarizing

the results of which coordinates rings are Koszul, which are not Koszul, and which are

unknown.

§2. Background

Let Pn denote n-dimensional projective space obtained from a C-vector space of

dimension n+1. A commutative Noetherian C-algebra R is said to be graded if R=
⊕

i∈N
Ri

as an Abelian group such that for all nonnegative integers i and j we have RiRj ⊆ Ri+j ,

and is standard graded if R0 =C and R is generated as a C-algebra by a finite set of degree 1

elements. Additionally, an R-moduleM is called graded if R is graded andM can be written

as M =
⊕

i∈N
Mi as an Abelian group such that for all nonnegative integers i and j we have

RiMj ⊆Mi+j . Note each summand Ri and Mi is a C-vector space of finite dimension. We

always assume our rings are standard graded. Let S be the symmetric algebra of R1 over C;

that is, S is the polynomial ring S =C[x0, . . . ,xn], where dim(R1) = n+1 and x0, . . . ,xn is a

C-basis of R1. We have an induced surjection S →R of standard graded C-algebras, and so

R∼= S/J, where J is a homogenous ideal and the kernel of this map. We say that J defines

R and call this ideal J the defining ideal. Denote by mR the maximal homogeneous ideal

of R. Except when explicitly said, all rings are graded and Noetherian and all modules

are finitely generated. We may view C as a graded R-module since C ∼= R/mR. The

function HilbM : N → N defined by HilbM (d) = dimC(Md) is called the Hilbert function
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578 J. A. RICE

of the R-module M. Furthermore, there exists a unique polynomial HilbP(d) with rational

coefficents, called the Hilbert polynomial such that HilbP(d) = Hilb(d) for d� 0.

The minimal graded free resolution F of an R-module M is an exact sequence of

homomorphisms of finitely generated free R-modules

F : · · · → Fn
dn−→ Fn−1

dn−1−−−→ ·· · → F1
d1−→ F0,

such that di−1di = 0 for all i,M ∼= F0/Im(d1), and di+1(Fi+1) ⊆ (x0, . . . ,xn)Fi for all

i ≥ 0. After choosing bases, we may represent each map in the resolution as a matrix.

We can write Fi =
⊕

jR(−j)β
R
i,j(M), where R(−j) denotes a rank one free module with

a generator in degree j, and the numbers βR
i,j(M) are called the graded Betti numbers

of M and are numerical invariants of M. The total Betti numbers of M are defined as

βR
i (M) =

∑
j β

R
i,j(M). When it is clear which module we are speaking about, we will write

βi,j and βi to denote the graded Betti numbers and total Betti numbers, respectively. By

construction, we have the equalities

βR
i (M) = dimCTor

R
i (M,C),

βR
i,j(M) = dimCTor

R
i (M,C)j .

Two more invariants of a module are its projective dimension and relative Castelnuovo–

Mumford regularity. These invariants are defined for an R-module M as follows:

pdimR(M) = sup{i |Fi �= 0}= sup{i |βi(M) �= 0},

regR(M) = sup{j− i |βi,j(M) �= 0}.

Both invariants are interesting and measure the growth of the resolution of M. For instance,

if R = S, then by Hilbert’s Syzygy Theorem we are guaranteed that pdimS(M) ≤ n+1,

where n+1 is the number of indeterminates of S.

Certain invariants are related to one another. For example, if pdimR(M) is finite, then the

Auslander–Buchsbaum formula relates the projective dimension to the depth of a module

(see [19, Th. 15.3]), where the depth of an R-module M is the length of the largest M -

regular sequence consisting of elements of R, and is denoted depth(M). Letting R = S,

the Auslander–Buchsbaum formula states that the projective dimension and depth of an

S -module M are complementary to one another:

pdimS(M)+depth(M) = n+1. (1)

The Krull dimension, or dimension, of a ring is the supremum of the lengths k of strictly

increasing chains P0 ⊂ P1 ⊂ . . . ⊂ Pk of prime ideals of R. The dimension of an R-module

is denoted dim(M) and is the Krull dimension of the ring R/I, where I =AnnR(M) is the

annihilator of M. The depth and dimension of a ring have the following properties along a

short exact sequence.

Proposition 2.1. ([11, Cor. 18.6]). Let R be a graded Noetherian ring and suppose that

0→M ′ →M →M
′′ → 0
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is an exact sequence of finitely generated graded R-modules. Then

(a) depth(M
′
)≥min{depth(M),depth(M

′′
)+1},

(b) depth(M)≥min{depth(M ′
),depth(M

′′
)},

(c) depth(M
′′
)≥min{depth(M),depth(M

′
)−1},

(d) dim(M) = max{dim(M
′′
),dim(M

′
)}.

Furthermore, depth(M)≤ dim(M).

An R-module M is Cohen–Macaulay, if depth(M) = dim(M). Since R is a module over

itself, we say R is a Cohen–Macaulay ring if it is a Cohen–Macaulay R-module. Cohen–

Macaulay rings have been studied extensively, and the definition is sufficiently general to

allow a rich theory with a wealth of examples in algebraic geometry. This notion is a

workhorse in commutative algebra, and provides very useful tools and reductions to study

rings [6]. For example, if one has a graded Cohen–Macaulay C-algebra, then one can take

a quotient by generic linear forms to produce an Artinian ring. A reduction of this kind

is called an Artinian reduction and provides many useful tools to work with, and almost

all homological invariants of the ring are preserved [18]. Unfortunately, we will not be able

to use these tools or reductions as the coordinate ring of a generic collection of lines is

almost never Cohen–Macaulay, whereas the coordinate ring of a generic collection of points

is always Cohen–Macaulay.

The absolute Castelnuovo–Mumford regularity, or the regularity, is denoted regS(M) and

is the regularity of M as an S -module. There is a cohomological interpretation by local

duality [12]. Set Hi
mS

(M) to be the ith local cohomology module with support in the graded

maximal ideal of S. One has Hi
mS

(M) = 0 if i < depth(M) or i > dim(M) and

regS(M) = max{j+ i :Hi
mS

(M)j �= 0}.

In practice, bounding the regularity of M is difficult, since it measures the largest degree of

a minimal syzygy of M. We have tools to help the study of the regularity of an S -module.

Proposition 2.2. ([11, Exer. 4C.2, Th. 4.2, and Cor. 4.4]). Suppose that

0→M ′ →M →M
′′ → 0

is an exact sequence of finitely generated graded S-modules. Then

(a) regS(M
′
)≤max{regS(M),regS(M

′′
)+1},

(b) regS(M)≤max{regS(M
′
),regS(M

′′
)},

(c) regS(M
′′
)≤max{regS(M),regS(M

′
)−1},

and if d0 = min{d |Hilb(d) = HilbP(d)}, then reg(M) ≥ d0. Furthermore, if M is Cohen–

Macaulay, then regS(M) = d0. If M has finite length, then regS(M) = max{d :Md �= 0}.

To study these invariants, we place the graded Betti numbers of a module M into a table,

called the Betti table.
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0 1 2 3 4 5

0

1

...

M

β0,0 β1,1 β2,2 β3,3 β4,4 · · ·

β0,1 β1,2 β2,3 β3,4 β4,5 · · ·

...
...

...
...

...
. . .

The Betti table allows us to determine certain invariants easier; for example, the

projective dimension is the length of the table and the regularity is the height of the table.

Denote by HM (t) and PR
M (t), respectively, the Hilbert series of M and the Poincaré

series of an R-module M :

HM (t) =
∑
i≥0

HilbM (i)ti

and

PR
M (t) =

∑
i≥0

βR
i (M)ti.

It is worth observing that since M is finitely generated by homogenous elements of positive

degree, the Hilbert series of M is a rational function. A short exact sequence of modules

has a property we use extensively in this paper. If we have a short exact sequence of graded

S -modules

0−→A−→B −→ C −→ 0,

then

HB(t) = HA(t)+HC(t).

Whenever we use this property, we will refer to it as the additivity property of the Hilbert

series.

A standard graded C-algebra R is Koszul if C has a linear R-free resolution; that

is, βR
i,j(C) = 0 for i �= j. Koszul algebras possess remarkable homological properties. For

example,

Theorem 2.3. (Avramov, Eisenbud, and Peeva [4, Th. 1] [5, Th. 2]). The following are

equivalent:

(a) Every finitely generated R-module has finite regularity.

(b) The residue field has finite regularity.

(c) R is Koszul.

Koszul rings possess other interesting properties as well. Fröberg [14] showed that R is

Koszul if and only if HR(t) and the PR
C
(t) have the following relationship:

PR
C (t)HR(−t) = 1. (2)
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In general, the Poincaré series of C as an R-module can be irrational [1], but if R is Koszul,

then Equation (2) tells us the Poincaré series is always rational. So a necessary condition

for a coordinate ring R to be Koszul is PR
C
(t) = 1

HR(−t) must have nonnegative coefficients

in its Maclaurin series. Another necessary condition is that if R is Koszul, then the defining

ideal has a minimal generating set of forms of degree at most 2. This is easy to see since

βR
2,j(C) =

⎧⎨⎩βS
1,j(R), if j �= 2,

βS
1,2(R)+

(
n+1
2

)
, if j = 2

(see [8, Rem. 1.10]). Unfortunately, the converse does not hold, but Fröberg showed that if

the defining ideal is generated by monomials of degree at most 2, then R is Koszul.

Theorem 2.4. (Fröberg [15]). If R=S/J and J is a monomial ideal with each monomial

having degree at most 2, then R is Koszul.

More generally, if J has a Gröbner basis of quadrics in some term order, then R is

Koszul. If such a basis exists, we say that R is G-quadratic. More generally, R is LG-

quadratic if there is a G-quadratic ring A and a regular sequence of linear forms l1, . . . , lr
such that R∼=A/(l1, . . . , lr). It is worth noting that every G-quadratic ring is LG-quadratic,

and every LG-quadratic ring is Koszul and that all of these implications are strict [8]. We

briefly discuss in §6 if coordinate rings of generic collections of lines are G-quadratic or

LG-quadratic.

We now define a very useful tool in proving rings are Koszul.

Definition 2.5. Let R be a standard graded C-algebra. A family F of ideals is said to

be a Koszul filtration of R if:

(a) Every ideal I ∈ F is generated by linear forms.

(b) The ideal 0 and the maximal homogeneous ideal mR of R belong to F .

(c) For every ideal I ∈F different from 0, there exists an ideal K ∈F such that K ⊂ I,I/K

is cyclic, and K : I ∈ F .

Conca, Trung, and Valla [9] showed that if R has a Koszul filtration, then R is Koszul.

In fact, a stronger statement is true.

Proposition 2.6 ([9, Prop. 1.2]). Let F be a Koszul filtration of R. Then

TorRi (R/J,C)j = 0 for all i �= j and for all J ∈ F . In particular, R is Koszul.

Conca, Trung, and Valla construct a Koszul filtration to show certain sets of points in

general linear position are Koszul in [9]. Since we aim to generalize Theorems 1.1 and 1.2

to collections of lines, we must define what it means for a collection of lines to be generic

and what it means for a collection of lines to be in general linear position.

Definition 2.7. Let P be a collection of p points in Pn, and let M be a collection of m

lines in Pn. The points of P are in general linear position if any s points span a Pr, where

r =min{s−1,n}. Similarly, the lines of M are in general linear position if any s lines span

a Pr, where r =min{2s−1,n}. A collection of points in Pn is a generic collection if every

linear form in the defining ideal of each point has algebraically independent coefficients

over Q. Similarly, we say a collection of lines is a generic collection if every linear form in

the defining ideal of each line has algebraically independent coefficients over Q.
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We can interpret this definition as saying generic collections are sufficiently random since

the collection of them forms a dense subset of large parameter space. Furthermore, as one

should suspect, a generic collection of lines is in general linear position, since collections of

lines in general linear position are characterized by the nonvanishing of certain determinants

in the coefficients of the defining linear forms. The converse is not true (see Example 6.1).

Remark 2.8. Suppose P is a collection of p points in general linear position in Pn and

M is a collection of m lines in general linear position in Pn. The defining ideal for each point

is minimally generated by n linear forms and the defining ideal for each line is minimally

generated by n− 1 linear forms. We can see this because a point is an intersection of n

hyperplanes and a line is an intersection of n− 1 hyperplanes. Also, if K is the defining

ideal for P and J is the defining ideal for M, then dimC(K1) = n+1−p and dimC(J1) =

n+1−2m, provided either quantity is non-zero.

§3. Properties of coordinate rings of lines

This section aims to establish properties for the coordinate rings of generic collections of

lines and collections of lines in general linear position and compare them to the coordinate

rings of generic collections of points and collections of points in general linear position.

We will see that the significant difference between the two coordinate rings is that the

coordinate ring R of a collection of lines in general linear position is never Cohen–Macaulay,

unless R is the coordinate ring of a single line, while the coordinate rings of points in general

linear position are always Cohen–Macaulay. The lack of the Cohen–Macaulay property

presents difficulty since many techniques are not available to us, such as Artinian reductions.

Proposition 3.1. Let M be a collection of lines in general linear position in Pn

with n ≥ 3, and let R be the coordinate ring of M. If |M| = 1, then pdimS(R) = n− 1,

depth(R) = 2, and dim(R) = 2; if |M| ≥ 2, then pdimS(R) = n,depth(R) = 1, and

dim(R) = 2. In particular, R is Cohen–Macaulay if and only if |M|= 1.

Proof. We prove the claim by induction on |M|. Let m= |M| and let J be the defining

ideal of M. If m= 1, then by Remark 2.8 the ideal J is minimally generated by n−1 linear

forms. So, R is isomorphic to a polynomial ring in two indeterminates. Now, suppose that

m ≥ 2, and write J = K ∩ I, where K is the defining ideal for m− 1 lines and I is the

defining ideal for the remaining single line. By induction, depth(S/K)≤ 2 and dim(S/K) =

dim(S/I) = 2. Furthermore, S/(K + I) is Artinian, since the variety K defines intersects

trivially with the variety I defines. Hence, dim(S/(I+K)) = 0. So, by Proposition 2.1 the

depth(S/(I+K)) = 0.

Using the short exact sequence

0 S/J S/K⊕S/I S/(K+ I) 0,

and Proposition 2.1, we have two inequalities

min{depth(S/K⊕S/I),depth(S/(I+K))+1} ≤ depth(S/J),

and

min{depth(S/K⊕S/I),depth(S/J)−1} ≤ depth(S/(I+K)).
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Regardless if depth(S/K) is 1 or 2, our two inequalities yield depth(S/J) = 1. By the

Auslander–Buchsbaum formula, we have pdimS(S/J) = n. Lastly, Proposition 2.1, yields

dim(S/J) = 2.

Remark 3.2. We would like to note that when n = 2,R is a hypersurface and so

pdimS(R) = 1,depth(R) = 2, and dim(R) = 2. Thus, we restrict our attention to the case

n ≥ 3. Furthermore, an identical proof shows that if P is a collection of points in general

linear position in Pn and R is the coordinate ring of P, then pdimS(R) = n,depth(R) = 1,

and dim(R) = 1. Hence, R is Cohen–Macaulay.

In [9], Conca, Trung, and Valla used the Hilbert function of points in Pn in general

linear position to prove the corresponding coordinate ring is Koszul, provided the number

of points is at most 2n+1. There is a generalization for the Hilbert function to a generic

collection of points. We present both together as a single theorem for completeness, we do

not use the Hilbert function for a generic collection of points.

Theorem 3.3. ([7], [9]). Suppose that P is a collection of p points in Pn. If P is a

generic collection, or P is a collection in general linear position with p ≤ 2n+1, then the

Hilbert function of R is

HilbR(d) = min

{(
n+d

d

)
,p

}
.

In particular, if p≤ n+1, then

HR(t) =
(p−1)t+1

1− t
.

Since we aim to generalize Theorems 1.1 and 1.2, we would like to know the Hilbert series

of the coordinate ring of a generic collection of lines. The famous Hartshorne–Hirschowitz

Theorem provides an answer.

Theorem 3.4. (Hartshorne–Hirschowitz [16]). Let M be a generic collection of m lines

in Pn, and let R be the coordinate ring of M. The Hilbert function of R is

HilbR(d) = min

{(
n+d

d

)
,m(d+1)

}
.

This theorem is very difficult to prove. One could ask if any generalization holds for

planes, and unfortunately, this is not known and is an open problem. Interestingly, this

theorem allows us to determine the regularity for the coordinate ring R of a generic collection

of lines.

Theorem 3.5. Let M be a generic collection of m lines in Pn with n≥ 3, and let R be

the coordinate ring of M. Then regS(R) = α, where α is the smallest nonnegative integer

satisfying
(
n+α
α

)
≥m(α+1).

Proof. Ifm=1, then by Remark 2.8 and a change of basis we can write the defining ideal

as J = (x0, . . . ,xn−2). The coordinate ring R is minimally resolved by the Koszul complex

on x0, . . . ,xn−2. So, regS(R) = 0, and this satisfies the inequality. Suppose that m≥ 2 and

let α be the smallest nonnegative integer satisfying
(
n+α
α

)
≥m(α+1). By Theorem 3.4 and

Proposition 2.2, regS(R)≥ α.
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We show the reverse inequality by induction on m. Let J be the defining ideal for the

collection M. Note, removing a line from a generic collection of lines maintains the generic

property for the new collection. Let K be the defining ideal for m− 1 lines, and let I be

the defining ideal for the remaining line such that J =K∩I. By induction regS(S/K) = β,

and β is the smallest nonnegative integer satisfying the inequality
(
n+β
β

)
≥ (m−1)(β+1).

Now, we claim that regS(S/K) = β ∈ {α,α−1}. To prove this, we need two inequalities:

m−2≥ β and
(
n+β
β+1

)
≥ n(m−1). We have the first inequality since(

n+m−2

m−2

)
− (m−1)(m−2+1) =

(n+m−2)!

n!(m−2)!
− (m−1)2

=
(m+1)!

3!(m−2)!
− (m−1)2

=
(m−3)(m−2)(m−1)

3!

≥ 0.

Thus, m−2≥ β. We have the second inequality, since by assumption(
n+β

β

)
≥ (m−1)(β+1),

and rearranging terms gives (
n+β

β+1

)
≥ n(m−1).

These inequalities together yield the following:(
n+β+1

β+1

)
=

(
n+β

β

)
+

(
n+β

β+1

)
≥ (m−1)(β+1)+n(m−1)

= (m−1)(β+1)+m+(m−1)(n−1)−1

≥ (m−1)(β+1)+m+(m−1)2−1

≥ (m−1)(β+1)+m+β+1

=m(β+2).

Hence, β+1≥ α. Furthermore, the inequality(
n+β−1

β−1

)
< (m−1)(β−1+1)≤mβ

implies that α≥ β. So, regS(S/K) = β where β ∈ {α,α−1}.
Consider the short exact sequence

0−→ S/J −→ S/K⊕S/I −→ S/(K+ I)−→ 0.

If β = α, then Theorem 3.4 and the additive property of the Hilbert series yields the

following:
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HS/(K+I)(t) =
(
HS/K(t)+HS/I(t)

)
−HS/J(t)

=

(
α−1∑
k=0

(
n+k

k

)
tk+

∞∑
k=α

(m−1)(k+1)tk+
∞∑
k=0

(k+1)tk

)

−
α−1∑
k=0

(
n+k

k

)
tk−

∞∑
k=α

m(k+1)tk

=

α−1∑
k=0

(k+1)tk.

and similarly if β = α−1, then

HS/(K+I)(t) =
(
HS/K(t)+HS/I(t)

)
−HS/J(t)

=

(
α−2∑
k=0

(
n+k

k

)
tk+

∞∑
k=α−1

(m−1)(k+1)tk+
∞∑
k=0

(k+1)tk

)

−
α−1∑
k=0

(
n+k

k

)
tk−

∞∑
k=α

m(k+1)tk

=

α−2∑
k=0

(k+1)tk+

(
mα−

(
n+α−1

α−1

))
tα−1.

Note that mα−
(
n+α−1
α−1

)
is positive since α is the smallest nonnegative integer such that(

n+α
α

)
≥m(α+1). So, S/(K+ I) is Artinian. By Proposition 2.2, regS(S/(K+ I)) = α−1.

Since regS(S/K) = α or regS(S/K) = α−1 and regS(S/I) = 0, then regS(S/J)≤ α. Thus,

regS(R) = α.

Remark 3.6. By Proposition 3.1, the coordinate ring R for a generic collection of lines

is not Cohen–Macaulay, but regS(R) = α, where α is precisely the smallest nonnegative

integer where Hilb(d) =HilbP(d) for d≥α. By Proposition 2.2, if a ring is Cohen–Macaulay

then the regularity is precisely this number. So, even though we are not Cohen–Macaulay,

we do not lose everything in generalizing these theorems.

Compare the previous result with the following general regularity bound for intersections

of ideals generated by linear forms.

Theorem 3.7. (Derksen and Sidman [10, Th. 2.1]). If J =
j⋂

i=1

Ii is an ideal of S, where

each Ii is an ideal generated by linear forms, then regS(S/J)≤ j.

The assumption that R is a coordinate ring of a generic collection of lines tells us the

regularity exactly, which is much smaller than the Derksen–Sidman bound for a fixed n. By

way of comparison, we compute the following estimate.

Corollary 3.8. Let M be a generic collection of m lines in Pn with n≥ 3, and let R

be the coordinate ring of M. Then

regS(R)≤
⌈

n−1
√
n!
(

n−1
√
m−1

)⌉
.

Proof. Let p(x) = (x+n) · · ·(x+2)−n!m. The polynomial p(x) has a unique positive

root by the Intermediate Value Theorem, since the (x+n) · · ·(x+2) is increasing on the
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nonnegative real numbers. Let a be this positive root, and observe that the smallest

nonnegative integer α satisfying the inequality
(
n+α
α

)
≥ m(α+1) is precisely the ceiling

of the root a.

We now use an inequality of Minkowski (see [13, (1.5)]). If xk and yk are positive for

each k, then

n−1

√√√√n−1∏
k=1

(xk+yk)≥ n−1

√√√√n−1∏
k=1

xk+
n−1

√√√√n−1∏
k=1

yk.

Thus,

n−1
√
n!m= n−1

√
(a+n) · · ·(a+2)

≥ a+
n−1
√
n!

Therefore,

n−1
√
n!m− n−1

√
n!≥ a.

Taking ceilings gives the inequality.

We would like to note that regS(R) is roughly asymptotic to the upper bound.

Proposition 3.1 and Theorem 3.5 tell us the coordinate ring R of a non-trivial generic

collection of lines in Pn is not Cohen–Macaulay, pdimS(R) = n, and the regularity is the

smallest nonnegative integer α satisfying
(
n+α
α

)
≥m(α+1). So, the resolution of R is well-

behaved, in the sense that if n is fixed and we allow m to vary we may expect the regularity

to be low compared to the number of lines in our collection.

§4. Koszul filtration for a collection of lines

In this section, we determine when a generic collection of lines, or a collection of lines in

general linear position, will yield a Koszul coordinate ring. To this end, most of the work

will be in constructing a Koszul filtration in the coordinate ring of a generic collection of

lines.

Proposition 4.1. Let M be a collection of m lines in general linear position in Pn,

with n ≥ 3, and let R be the coordinate ring of M. If n+1 ≥ 2m, then after a change of

basis the defining ideal is minimally generated by monomials of degree at most 2. Thus, R

is Koszul.

Proof. We use ·̂ to denote a term removed from a sequence. Let R be the coordinate

ring of M with defining ideal J. Through a change of basis and Remark 2.8, we may assume

the defining ideal for each line has the following form:

Li = (x0, . . . , x̂n−2i+1, x̂n−2i+2, . . . ,xn−1,xn),

for i = 1, . . . ,m. Since every Li is monomial, so is J. Furthermore, since n+1 ≥ 2m, the

regS(R)≤ 1. Thus, J is generated by monomials of degree at most 2. Theorem 2.4 guarantees

R is Koszul.

Unfortunately, the simplicity of the previous proof does not carry over for larger generic

collections of lines. We need a lemma.
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Lemma 4.2. Let M be a generic collection of m lines in Pn, and let R be the coordinate

ring of M. If regS(R) = 1, then the Hilbert series of R is

HS/J(t) =
(1−m)t2+(m−2)t+1

(1− t)2
.

If regS(R) = 2, then the Hilbert series of R is

HS/J(t) =
(1+n−2m)t3+(3m−2n−1)t2+(n−1)t+1

(1− t)2
.

Proof. By Theorem 3.5, the regularity is the smallest nonnegative integer α satisfying(
n+α
α

)
≥m(α+1). Suppose regS(R) = 1. By Theorem 3.4, the Hilbert series for R is

HR(t) = 1+2mt+3mt2+4mt3+ · · ·

= 1−m

(
t(t−2)

(1− t)2

)
=

t2−2t+1−mt2+2mt

(1− t)2

=
(1−m)t2+2(m−1)t+1

(1− t)2
.

Now, suppose regS(R) = 2. By Theorem 3.4, the Hilbert series for R is

HR(t) = 1+(n+1)t+3mt2+4mt3+ · · ·

= 1+(n+1)t−m

(
t2(2t−3)

(1− t)2

)
=

(n+1)t3− (2n+1)t2+(n−1)t+1−2mt3+3mt2

(1− t)2

=
(n+1−2m)t3+(3m−2n−1)t2+(n−1)t+1

(1− t)2
.

We can now construct a Koszul filtration for the coordinate ring of certain larger generic

collections of lines.

Theorem 4.3. Let M be a generic collection of m lines in Pn such that n ≥ 3 and

m≥ 3, and let R be the coordinate ring of M.

(a) If m is even and m+1≤ n, then R has a Koszul filtration.

(b) If m is odd and m+2≤ n, then R has a Koszul filtration.

In particular, R is Koszul.

Proof. We only prove (a) due to the length of the proof and note that (b) is done

identically except for the Hilbert series computations. In both cases, we may assume that

n ≤ 2(m− 1), otherwise Proposition 4.1 and Remark 2.8 prove the claim. By Remark 2.8

and a change of basis, we may assume the defining ideals for our m lines have the following

form:
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L1 = (x0, . . . ,xn−4,xn−3,xn−2)

L2 = (x0, . . . ,xn−4,xn−1,xn)

...

Li = (x0, . . . , x̂n−2i+1, x̂n−2i+2, . . . ,xn)

...

Lk = (x0, . . . , x̂n−2k+1, x̂n−2k+2, . . . ,xn)

Lk+1 = (l0, . . . , ln−4, ln−3, ln−2)

Lk+2 = (l0, . . . , ln−4, ln−1, ln)

...

Lk+i = (l0, . . . , l̂n−2i+1, l̂n−2i+2, . . . , ln)

...

L2k = (l0, . . . , l̂n−2k+1, l̂n−2k+2, . . . , ln),

where li are general linear forms in S. Denote the ideals

J =
2k⋂
i=1

Li, K =
k⋂

i=1

Li, I =
2k⋂

i=k+1

Li,

so that J = K ∩ I. Let R = S/J ; to prove that R is Koszul, we will construct a Koszul

filtration. To construct the filtration, we need the two Hilbert series H(J+(x0)):(x1)(t) and

H(J+(l0)):(l1)(t). We first calculate the former. Observe (x0,x1)⊆ Li and (l0, l1)⊆ Lk+i for

i= 1, . . . ,k. Using the modular law [2, Chapter 1], we have the equality

(J +(x0)) : (x1) = (K ∩ I+K ∩ (x0)) : (x1) = (I+(x0)) : (x1). (3)

So, it suffices to determine HS/((I+(x0)):(x1))(t). To this end, we first calculate

HS/(I+(x0,x1))(t). To do so, we use the short exact sequence

0→ S/(I+(x0))∩ (I+(x1))→ S/(I+(x0))⊕S/(I+(x1))

→ S/(I+(x0,x1))→ 0.

Our assumption m+1≤ n≤ 2(m−1) guarantees that regS(S/I) = 1. Thus, by Lemma 4.2

HS/I(t) =
(1−k)t2+2(k−1)t+1

(1− t)2
, (4)

and since x0 and x1 are nonzerodivisors on S/I, we have the following two Hilbert series:

HS/(I+(x0))(t) =HS/(I+(x1))(t) =
(1−k)t2+2(k−1)t+1

1−t .

Furthermore, the coordinate ring S/(I + (x0)) ∩ (I + (x1)) corresponds precisely to a

collection of 2k distinct points. These points must necessarily be in general linear position,

since by assumption 2k=m≤ n+1 and no three are collinear. So, by Theorem 3.3, we have

HS/(((I+(x0))∩(I+(x1)))(t) =
(2k−1)t+1

1− t
.
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By the additivity of the Hilbert series

HS/(I+(x0,x1))(t) =HS/(I+(x0))(t)+HS/(I+(x1))(t)−HS/(I+(x0))∩(I+(x1))(t)

= 2

(
(1−k)t2+2(k−2)t+1

1− t

)
− (2k−1)t+1

1− t

= 1+2(k−1)t.

Thus, by the short exact sequence

0→ S/((I+(x0)) : (x1))(−1)→ S/(I+(x0))→ S/(I+(x0,x1))→ 0,

Equation (3), and the additivity of the Hilbert series

HS/((J+(x0)):(x1))(t) =HS/(I+(x0)):(x1)(t) (5)

=
1

t

(
HS/(I+(x0))(t)−HS/(I+(x0,x1))

)
=

1

t

(
(1−k)t2+2(k−1)t+1

1− t
−1−2(k−1)t

)
=

(k−1)t+1

1− t
.

This gives us our desired Hilbert series. An identical argument and interchanging I with K

and x0 and x1 with l0 and l1 yields

HS/K(t) =
(1−k)t2+2(k−1)t+1

(1− t)2
, (6)

HS/(K+(l0))(t) =HS/(K+(l1))(t) =
(1−k)t2+2(k−1)t+1

(1− t)2
,

and

HS/((J+(l0)):(l1))(t) =HS/((J+(x0)):(x1))(t).

We can now define a Koszul filtration F for R. We use · to denote the image of an element

of S in R= S/J for the remainder of the paper. We have already seen in Equation (5) that

HS/(J+(x0)):(x1)(t) =
(k−1)t+1

(1− t)
= 1+

∞∑
i=1

kti.

Hence, n− k + 1 linearly independent linear forms are in a minimal generating set of

(J +(x0)) : (x1). Clearly l0, . . . , ln−2k,x0 ∈ (J +(x0)) : (x1), label zn−2k+2, . . . , zn−k as the

remaining linear forms from a minimal generating set of (J+(x0)) : (x1). Similarly, choose

yi from (J+(l0)) : (l1) so that x0,x1, . . . ,xn−2k, l0,yn−k+2, . . . ,yn−k are linear forms forming

a minimal generating set of (J +(l0)) : (l1).

The set {l0, . . . , ln−2k,x0, zn−2k+1, . . . , zn−k,x1} is a linearly independent set over S,

otherwise x2
1 ∈ J + (x0). This means x2

1 ∈ (Li + (x0)) for i = k+ 1, . . . ,2k, a contradic-

tion. Similarly, {x0, . . . ,xn−2k, l0,yn−2k+1, . . . ,yn−k, l1} is linearly independent over S. Let

wn−k+2, . . . ,wn+1, and un−k+2, . . . ,un+1 be extensions of

{l0, . . . , ln−2k,x0, zn−2k+1, . . . , zn−k,x1}
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and

{x0, . . . ,xn−2k, l0,yn−2k+1, . . . ,yn−k, l1}

to minimal systems of generators of mR, respectively. Define F as follows:

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,(x0), (x0,x1), (l0), (l0, l1),
...

...

(x0,x1, . . . ,xn−2k), (l0, l1, . . . , ln−2k),

(x0,x1, . . . ,xn−2k, l0), (l0, l1, . . . , ln−2k,x0),

(x0,x1, . . . ,xn−2k, l0,yn−2k+2), (l0, l1, . . . , ln−2k,x0, zn−2k+2),
...

(x0,x1, . . . ,xn−2k, l0,yn−2k+2, . . . ,yn−k),

(l0, l1, . . . , ln−2k,x0, zn−2k+2, . . . , zn−k),

(x0,x1, . . . ,xn−2k, l0,yn−2k+2, . . . ,yn−k, l1),

(l0, l1, . . . , ln−2k,x0, zn−2k+2, . . . , zn−k,x1),
...

(x0,x1, . . . ,xn−2k, l0,yn−2k+2, . . . ,yn−k, l1,un−k+2),

(l0, l1, . . . , ln−2k,x0, zn−2k+2, . . . , zn−k,x1,wn−k+2),
...

(x0,x1, . . . ,xn−2k, l0,yn−2k+2, . . . ,yn−k, l1,un−k+2, . . . ,un),

(l0, l1, . . . , ln−2k,x0, zn−2k+2, . . . , zn−k,x1,wn−k+2, . . . ,wn),

mR.

We now prove F is a Koszul filtration. We do this by proving several claims. Throughout

the process, we use the inclusion (x0,x1)∩(l0, l1)⊆ J.Afterward, we summarize all computed

colons and list the claims that prove the calculated colons.

Claim 4.4. The ideal (x0,x1, l0, l1) in R has Hilbert series

HR/(x0,x1,l0,l1)
(t) = 1+(n−3)t

and any ideal P containing this ideal has the property that P : (�) =mR, where � is a linear

form not contained in P.

Proof. We begin by observing that our assumption m + 1 ≤ n ≤ 2(m − 1) and

Proposition 3.5 yield regS(S/J) = 2. Thus, by Lemma 4.2

HS/J(t) =
(n+1−4k)t3+(6k−2n−1)t2+(n−1)t+1

(1− t)2
.

Now, Li : (x0) = Li for i= k+1, . . . ,2k, since x0 /∈ Li. Thus,

J : (x0) =

(
2k⋂
i=1

Li

)
: (x0) =

2k⋂
i=1

(Li : (x0)) =
2k⋂

i=k+1

Li = I.
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So, HS/(J:(x0))(t) =HS/I(t). Using the short exact sequence

0→ S/(J : (x0))(−1)→ S/J → S/(J +(x0))→ 0,

Equation (4), and the additivity of the Hilbert series yields

HS/(J+(x0))(t) =HS/J(t)− tHS/(J:(x0))(t)

=HS/J(t)− tHS/I(t)

= (1+n−4k)t3+(6k−2n−1)t2+(n−1)t+1
(1−t)2 − t

(
(1−k)t2+2(k−1)t+1

(1−t)2

)
=

(n−3k)t3+(4k−2n+1)t2+(n−2)t+1

(1− t)2
.

Using the short exact sequence

0→ S/((J +(x0)) : (x1))(−1)→ S/(J +(x0))→ S/(J +(x0,x1))→ 0,

Equation (5), the previous Hilbert series, and the additivity of the Hilbert series yields

HS/(J+(x0,x1))(t) =HS/(J+(x0))(t)− tHS/(J+(x0)):(x1)(t)

= (n−3k)t3+(4k−2n+1)t2+(n−2)t+1
(1−t)2 − t

(
(k−1)t+1

1−t

)
=

(n−2k−1)t3+(3k−2n+3)t2+(n−3)t+1

(1− t)2
.

Replacing x0 and x1 with l0 and l1 demonstrates that

HS/(J+(x0,x1))(t) =HS/(J+(l0,l1))(t).

Thus, using the short exact sequence

0→R/((x0,x1)∩ (l0, l1))→R/(x0,x1)⊕R/(l0, l1)→R/(x0,x1, l0, l1)→ 0,

and the additivity of the Hilbert series yields

HR/(x0,x1,l0,l1)
(t) =HR/(x0,x1)(t)+HR/(l0,l1)

(t)−HR(t)

= 2
(

(n−2k−1)t3+(3k−2n+3)t2+(n−3)t+1
(1−t)2

)
− (1+n−4k)t3+(6k−2n−1)t2+(n−1)t+1

(1−t)2

=
(n−3)t3+(7−2n)t2+(n−5)t+1

(1− t)2

= 1+(n−3)t.

So, R2 ⊂ (x0,x1, l0, l1). This means that any ideal P ⊂R containing the ideal (x0,x1, l0, l1)

has the property that P : (�) =mR, where � is a linear form not contained in P.

Claim 4.5. For i= 1, . . . ,n−2k, we have the two Hilbert series

HR/(x0,x1,x2,...,xi)(t) =HR/(l0,l1,l2,...,li)
(t)

= (n−2k−i)t3+(3k−2n+2i+1)t2+(n−(i+2))t+1
(1−t)2 ,

and the two equalities J +(x0, . . . ,xn−2k) =K, and J +(l0, . . . , ln−2k) = I.
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Proof. Adding the linear forms x2, . . . ,xi to the ideal (x0,x1, l0, l1) yields

HR/(x0,x1,l0,l1,x2,...,xi)
(t) =HR/(x0,x1,l0,l1,l2,...,li)

(t) = 1+(n− (i+2))t

for i= 2, . . . ,n−2k. Using the short exact sequence

0→R/((x0,x1,x2)∩ (l0, l1))→R/(x0,x1,x2)⊕R/(l0, l1)→R/(x0,x1,x2, l0, l1)→ 0

and the additivity of the Hilbert series gives

HR/(x0,x1,x2)(t) =HR/(x0,x1,l0,l1,x2)
(t)+HR(t)−HR/(l0,l1)

(t)

= 1+(n−4)t+ (1+n−4k)t3+(6k−2n−1)t2+(n−1)t+1
(1−t)2

− (n−2k−1)t3+(3k−2n+3)t2+(n−3)t+1
(1−t)2

= 1+(n−4)t+
(2−2k)t3+(3k−4)t2+2t

(1− t)2

=
(n−2k−2)t3+(3k−2n+5)t2+(n−4)t+1

(1− t)2
.

Replacing (x0,x1,x2) with (x0,x1,x2,x3) in the above short exact sequence and using the

additivity of the Hilbert series yields

HR/(x0,x1,x2,x3)(t) =HR/(x0,x1,l0,l1,x2,x3)
(t)+HR(t)−HR/(l0,l1)

(t)

= 1+(n−5)t+ (1+n−4k)t3+(6k−2n−1)t2+(n−1)t+1
(1−t)2

− (n−2k−1)t3+(3k−2n+3)t2+(n−3)t+1
(1−t)2

= 1+(n−5)t+
(2−2k)t3+(3k−4)t2+2t

(1− t)2

=
(n−2k−3)t3+(3k−2n+7)t2+(n−5)t+1

(1− t)2

By induction,

HR/(x0,x1,x2,...,xi)(t) =
(n−2k−i)t3+(3k−2n+2i+1)t2+(n−(i+2))t+1

(1−t)2 (7)

for i= 2, . . . ,n−2k. Setting i= n−2k, we obtain the Hilbert series

HR/(x0,...,xn−2k)(t) =HR/(x0,x1,l0,l1,x2,...,xn−2k)
(t)

+HR(t)−HR/(l0,l1)
(t)

= 1+(2k−2)t+ (1+n−4k)t3+(6k−2n−1)t2+(n−1)t+1
(1−t)2

− (n−2k−1)t3+(3k−2n+3)t2+(n−3)t+1
(1−t)2

= 1+(2k−2)t+
(2−2k)t3+(3k−4)t2+2t

(1− t)2

=
(1−k)t2+2(k−1)t+1

(1− t)2
.

Interchanging each xi with li gives us the other desired Hilbert series.
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The Hilbert series in Equation (7) is the same as in Equation (6). Furthermore, J +

(x0, . . . ,xn−2k) ⊆ K. So, we have that J +(x0, . . . ,xn−2k) = K and interchanging each xi

with li gives us the other equality.

Claim 4.6. We have the equalities

(l0, . . . , ln−2k,x0) : (zn−2k+2) =mR,

(x0, . . . ,xn−2k, l0) : (yn−2k+2) =mR,

and

(l0, . . . , ln−2k,x0, zn−2k+2, . . . , zi) : (zi+1) =mR,

(x0, . . . ,xn−2k, l0,yn−2k+2, . . . ,yi) : (yi+1) =mR,

for i= n−2k+2, . . . ,n−k. Furthermore,

(x0) : (x1) = (l0, . . . , ln−2k,x0, zn−2k+2, . . . , zn−k)

and

(l0) : (l1) = (x0, . . . ,xn−2k, l0,yn−2k+2, . . . ,yn−k).

Proof. We begin by observing

(l0, l1,x0,x1)⊆ (l0, l1,x0, l2, . . . , ln−2k) : (zn−2k+2).

So by Claim 4.4, we conclude that

HR/((l0,l1,l2,··· ,ln−2k,x0):(zn−2k+2))
(t) = 1+αt,

where α ∈ {0,1, . . . ,n−3}. Using the short exact sequence

0→R/((x0, l0, . . . , ln−2k) : (zn−2k+2))(−1)→R/(x0, l0, . . . , ln−2k) (8)

→R/(x0, l0, . . . , ln−2k, zn−2k+2)→ 0,

Claim 4.5, and that the fact that x0 is a nonzerodivisor on S/I, we obtain

HR/(x0,l0,...,ln−2k,zn−2k+2)
(t) =HR/(x0,l0,...,ln−2k)

(t)

− tHR/(x0,l0,...,ln−2k):(zn−2k+2)
(t)

=
(1−k)t2+2(k−1)t+1

(1− t)
− t(1+αt)

=
αt3+(2−α−k)t2+(2k−3)t+1

(1− t)

= 1+(2k−2)t+(k−α)t2+

∞∑
j=3

ktj .

We also have the containment

(l0, . . . , ln−2k,x0, zn−2k+2)⊆ (l0, . . . , ln−2k,x0) : (x1).

Using Claim 4.5, we obtain the equality

(J +(l0, . . . , ln−2k,x0)) : (x1) = (I+(x0)) : (x1),
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which has Hilbert series computed in Equation (5). Hence,

HR/((l0,l1,l2,...,ln−2k,x0):(x1))
(t) =

(k−1)t+1

1− t
= 1+

∞∑
j=1

ktj .

Comparing coefficients of t2 yields k ≤ k−α, and so α = 0, proving the first equality. We

immediately have the equality

(l0, . . . , ln−2k,x0, zn−2k+2, . . . , zi) : (zi+1) =mR, (9)

for each i= n−2k+2, . . . ,n−k.

Notice that setting α= 0, yields

HR/(l0,...,ln−2k,x0,zn−2k+2)
(t) =

(2−k)t2+(2k−3)t+1

(1− t)
.

Denote Vi and V ′
i to be the ideals

Vi = (l0, . . . , ln−2k,x0, zn−2k+2, . . . , zi)

and

V ′
i = (x0, . . . ,xn−2k, l0,yn−2k+2, . . . ,yi)

for i = n− 2k+2, . . . ,n− k. Replacing the ideals in Equation (8) with the three ideals

Vn−2k+3,Vn−2k+2, and Vn−2k+2 : (zn−2k+3), and using the additivity of the Hilbert series

yields

HR/Vn−2k+3
(t) =HR/Vn−2k+2

(t)− tHR/Vn−2k+2:(zn−2k+3)(t)

=
(2−k)t2+(2k−3)t+1

(1− t)
− t

=
(3−k)t2+(2k−4)t+1

(1− t)
.

Continuing in this fashion gives

HR/Vn−k
(t) =

(k−1)t+1

(1− t)
.

So, both (x0) : (x1) and Vn−k have the same Hilbert series. Furthermore, Vn−k ⊆ (x0) : (x1).

So these ideals are in fact equal. Interchanging x0 and x1 with l0 and l1 yields the remaining

equality.

Claim 4.7. We have the equalities

(0R) : (x0) = (l0, . . . , ln−2k)

and

(0R) : (l0) = (x0, . . . ,xn−2k).
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Proof. The two equalities follow immediately since (0R) : (x0)⊆ (l0, . . . , ln−2k) and (0R) :

(l0)⊆ (x0, . . . ,xn−2k) and all four ideals have the same Hilbert series by Claim 4.5.

Claim 4.8. We have the equality

(x0,x1,x2, . . . ,xi) : (xi+1) =mR,

for i= 2, . . . ,n−2k−1.

Proof. Using the short exact sequence

0→R/((x0, . . . ,xi) : (xi+1))(−1)→R/(x0, . . . ,xi)→R/(x0, . . . ,xi,xi+1)→ 0,

and the Hilbert series from Equation (7), we get

HR/((x0,...,xi):(xi+1))(t) =
1

t

(
HR/(x0,...,xi)(t)−HR/(x0,...,xi,xi+1)(t)

)

=
1

t

(
(n−2k−i)t3+(3k−2n+2i+1)t2+(n−(i+2))t+1

(1−t)2

− (n−2k−i−1)t3+(3k−2n+2i+3)t2+(n−(i+3))t+1
(1−t)2

)
=

t2−2t+1

(1− t)2

= 1,

proving the claim.

Claim 4.9. We have the four equalities

(x0, . . . ,xn−2k) : (l0) = (x0, . . . ,xn−2k),

(l0, . . . , ln−2k) : (x0) = (l0, . . . , ln−2k),

V ′
n−k : (l1) = V ′

n−k,

Vn−k : (x1) = Vn−k.

Proof. The equality

(x0, . . . ,xn−2k) : (l0) = (x0, . . . ,xn−2k)

follows from the genericity of l0. We now aim to show the equality

Vn−k : (x1) = Vn−k.

We always have the containment Vn−k ⊆ Vn−k : (x1) and by Claim 4.6, we have already

determined HR/Vn−k
(t). So, we must only determine HR/(Vn−k:(x1))(t). We aim to use the

additivity of the Hilbert series along the short exact sequence

0→R/(Vn−k : (x1))(−1)→R/Vn−k →R/(Vn−k+(x1))→ 0, (10)
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but we first must determine HR/(Vn−k+(x1))(t). By Claim 4.4, adding the linear forms

l2, . . . , ln−2k, zn−2k+2, . . . , zn−k to the ideal (x0,x1, l0, l1) yields the Hilbert series

HR/(Vn−k+(x1)))(t) = 1+(k−1)t.

Using Claim 4.6 and the additivity of the Hilbert series along the short exact sequence (10)

yields

HR/(Vn−k:(x1))(t) =
1

t

(
HR/Vn−k

(t)−HR/(Vn−k+(x1))(t)

)

=
1

t

(
(k−1)t+1

(1− t)
− (1+(k−1)t)

)
=

(k−1)t+1

(1− t)
.

Interchanging x0 and x1 with l0 and l1, proves the other two equalities.

Below is a list of calculated colons with the corresponding justification.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0) : (x0) = (l0, . . . , ln−2k), (0) : (l0) = (x0, . . . ,xn−2k), 4.7

(x0) : (x1) = (l0, . . . , ln−2k,x0, zn−2k+2, . . . , zn−k), 4.6

(l0) : (l1) = (x0, . . . ,xn−2k, l0,yn−2k+2, . . . ,yn−k), 4.6

(x0,x1,x2, . . . ,xi) : (xi+1) =mR, i= 2, . . . ,n−2k−1, 4.8

(l0, l1, l2, . . . , li) : (li+1) =mR, i= 2, . . . ,n−2k−1, 4.8

(x0,x1,x2, . . . ,xn−2k) : (l0) = (l0, . . . , ln−2k), 4.9

(l0, l1, l2, . . . , ln−2k) : (x0) = (x0, . . . ,xn−2k), 4.9

(x0, . . . ,xn−2k, l0) : (yn−2k+2) =mR, 4.6

(l0, . . . , ln−2k,x0) : (zn−2k+2) =mR, 4.6

V ′
i : (yi+1) =mR, Vi : (zi+1) =mR, i= n−2k+2, . . . ,n−k−1, 4.6

V ′
n−k : (l1) = V ′

n−k, Vn−k : (x1) = Vn−k, 4.9

(V ′
n−k+(l1)) : (un−k+1) =mR, (Vn−k+(x1)) : (wn−k+1) =mR, 4.4

(V ′
n−k+(l1,un−k+1, . . . ,ui)) : (ui+1) =mR, i= n−k+1, . . . ,n−1, 4.4

(Vn−k+(x1,wn−k+1, . . . ,wi)) : (wi+1) =mR, i= n−k+1, . . . ,n−1. 4.4

This completes the proof of Theorem 4.3.

There is at least one example of a coordinate ring with the Koszul property which is

not covered by our previous theorem. Let M be a generic collection of five lines in P6. By

Remark 2.8 and a change of basis, we may assume the defining ideals for our five lines have

the following form:

L1 = (x0,x3,x4,x5,x6), L2 = (x0,x1,x4,x5,x2+ax3+x6),

L3 = (x0,x1,x2,x6,x3+ bx4+x5), L4 = (x1,x2,x3,x5,x0+x4+x6),

L5 = (x2,x3,x4,x6,x0+x1+x5),
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where a,b ∈ C are algebraically independent over Q. Some further explanation is needed

why we may assume our five lines have this form.

By Remark 2.8, the intersection of any triple of the defining ideals of our five lines

contains a single linear form in a minimal generating set. Furthermore, the intersection of

any pair of defining ideals for our five contains three linear forms in a minimal generating

set. Thus, after a change of basis, we may assume

L1 = (x0,x3,x4,x5,x6), L2 = (x0,x1,x4,x5, l0),

L3 = (x0,x1,x2,x6, l1), L4 = (x1,x2,x3,x5, l2),

L5 = (x2,x3,x4,x6, l3).

where the linear forms l0, . . . , l3 have the form

l0 = c0,2x2+ c0,3x3+ c0,6x6, l1 = c1,3x3+ c1,4x4+ c1,5x5,

l2 = c2,0x0+ c2,4x4+ c2,6x6, l3 = c3,0x0+ c3,1x1+ c3,5x5.

It is of no loss to assume these are all monic in certain indeterminates. That is they have

the form

l0 = c0,2x2+ c0,3x3+x6, l1 = x3+ c1,4x4+ c1,5x5,

l2 = x0+ c2,4x4+ c2,6x6, l3 = c3,0x0+ c3,1x1+x5.

Through a change of basis, we may reduce the coefficient on x5 in l1 to 1, and then normalize

l3 to be monic in x5; then through another change of basis, we may reduce the coefficient

on x0 in l3 to 1, and then normalize l2 to be monic in x0; then through another change of

basis, we may reduce the coefficient on x6 in l2 to 1, and then normalize l0 to be monic in

x6; then through another change of basis, we may reduce the coefficient on x2 in l0 to 1;

then through another change of basis, we may reduce the coefficient on x4 in l2 to 1; then

through another change of basis, we may reduce the coefficient on x1 in l3 to 1. Ultimately,

we obtain

l0 = x2+ c0,3x3+x6, l1 = x3+ c1,4x4+x5,

l2 = x0+x4+x6, l3 = x0+x1+x5.

Note the order in which we make these reductions is important.

Proposition 4.10. Let M be a generic collection of five lines in P6, and let R be the

coordinate ring. Then R is Koszul.

Proof. After a change of basis, we may represent the defining ideal for our five lines as

above. Below is a Koszul filtration
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F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0R),(x0),(x2),(x0,x4),(x0,x1),(x2,x3),(x0,x6),(x0,x2,x3),

(x2,x3,x0+x1+x4+x5+x6),(x0,x4,x5),(x0,x1,x2),

(x0,x3,x4),(x0,x1,x4),(x0,x2,x4),(x0,x2,x6),(x0,x1,x5),

(x0,x1,x2,x3+ bx4+x5+ bx6),(x0,x1,x2,x3+ bx4+x5+
1
ax6),

(x0,x3,x4,x6),(x0,x1,x4,x5),(x0,x1,x4,x2+ax3+ax5+x6),

(x0,x2,x4,x6),(x0,x1,x2,x6),(x0,x2,x3,x6),(x0,x1,x5,x6),

(x0,x1,x2,x5),(x0,x4,x5,x6),(x0,x1,x5,x2+ax3+x4+x6),

(x0,x1,x2,x5,x3+ bx4+ bx6),(x0,x2,x4,x6,x1+x3+x5),

(x0,x2,x3,x6,x4+
1
bx5),(x0,x3,x4,x5,x6),

(x0,x1,x2,x6,x3+ bx4+x5),(x0,x1,x2,x4,x5),

(x0,x2,x3,x4,x6),(x0,x1,x2,x3,x5),

(x0,x1,x2,x5,x3+
1
ax4+

1
ax6),(x0,x1,x2,x5,x3+ bx4+

1
ax6),

(x0,x1,x3,x4,x5),(x0,x1,x2,x6,x3+ bx4),

(x0,x1,x4,x5,x2+ax3+x6),(x0,x1,x5,x6,x3+ bx4),

(x0,x1,x4,x5,x6),(x0,x1,x2,x5,x6),(x0,x1,x2,x4,x6),

(x0,x1,x2,x6,x3+ bx4+x5),(x0,x1,x2,x4,x5,x3+
1
ax6),

(x0,x1,x2,x3,x5,x4+x6),(x0,x1,x3,x4,x5,x2+x6),

(x0,x1,x3,x4,x5,x6),(x0,x2,x3,x4,x5,x6),

(x0,x2,x3,x4,x6,x1+x5),(x0,x1,x2,x3,x6,x4+
1
bx5),

(x0,x1,x4,x5,x6,x2+ax3+x6),(x0,x1,x2,x5,x6,x3+ bx4),

(x0,x1,x2,x4,x6,x3+x5),mR.

The calculated colons are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0R) : (x0) = (x2,x3,x0+x1+x4+x5+x6),

(0R) : (x2) = (x0,x4,x5),

(x0) : (x4) = (x0,x1,x2,x3+ bx4+x5+ bx6),

(x0) : (x1) = (x0,x3,x4,x6),

(x2) : (x3) = (x0,x1,x2,x3+ bx4+x5+
1
ax6),

(x0) : (x6) = (x0,x1,x5,x2+ax3+x4+x6),

(x2,x3) : (x0) = (x2,x3,x0+x1+x4+x5+x6),

(x2,x3) : (x0+x1+x4+x5+x6) = (x0,x2,x3,x6,x4+
1
bx5),

(x0,x4) : (x5) = (x0,x2,x4,x6,x1+x3+x5),

(x0,x1) : (x2) = (x0,x1,x4,x5)(x0,x4) : (x3) = (x0,x1,x4,x2+ax3+ax5+x6),

(x0,x1) : (x4) = (x0,x1,x2,x3+ bx4+x5+ bx6),

(x0,x4) : (x2) = (x0,x4,x5),

(x0,x6) : (x2) = (x0,x4,x5,x6)(x0,x1) : (x5) = (x0,x1,x2,x6,x3+ bx4+x5),

(x0,x1,x2) : (x3+ bx4+x5+ bx6) = (x0,x1,x2,x4,x5,x3+
1
ax6),

(x0,x1,x2) : (x3+ bx4+x5+
1
ax6) = (x0,x1,x2,x3,x5,x4+x6),
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x0,x3,x4) : (x6) = (x0,x1,x3,x4,x5,x2+x6),

(x0,x1,x4) : (x5) = (x0,x1,x2,x4,x6,x3+x5),

(x0,x1,x4) : (x2+ax3+ax5+x6) = (x0,x1,x3,x4,x5,x6),

(x0,x2,x4) : (x6) = (x0,x1,x2,x4,x5,x3+
1
ax6),

(x0,x1,x2) : (x6) = (x0,x1,x2,x5,x3+
1
ax4+

1
ax6),

(x0,x2,x3) : (x6) = (x0,x1,x2,x3,x5,x4+x6),

(x0,x1,x5) : (x6) = (x0,x1,x5,x2+ax3+x4+x6),

(x0,x1,x2) : (x5) = (x0,x1,x2,x6,x3+ bx4+x5),

(x0,x4,x5) : (x6) = (x0,x1,x4,x5,x2+ax3+x6),

(x0,x1,x5) : (x2+ax3+x4+x6) = (x0,x1,x5,x6,x3+ bx4),

(x0,x1,x2,x5) : (x3+ bx4+ bx6) = (x0,x1,x2,x4,x5,x3+
1
ax6),

(x0,x2,x4,x6) : (x1+x3+x5) = (x0,x2,x3,x4,x5,x6),

(x0,x2,x3,x6) : (x4+
1
bx5) = (x0,x2,x3,x4,x6,x1+x5),

(x0,x3,x4,x6) : (x5) = (x0,x2,x3,x4,x6,x1+x5),

(x0,x1,x2,x6) : (x3+ bx4+x5) =mR,

(x0,x1,x2,x5) : (x4) = (x0,x1,x2,x5,x3+ bx4+ bx6),

(x0,x2,x3,x6) : (x4) = (x0,x1,x2,x3,x6,x4+
1
bx5),

(x0,x1,x2,x5) : (x3) = (x0,x1,x2,x5,x3+ bx4+
1
ax6),

(x0,x1,x2,x5) : (x3+
1
ax4+

1
ax6) = (x0,x1,x2,x5,x6,x3+ bx4),

(x0,x1,x2,x5) : (x3+ bx4+
1
ax6) = (x0,x1,x2,x3,x5,x4+x6),

(x0,x1,x4,x5) : (x3) = (x0,x1,x4,x5,x2+ax3+x6),

(x0,x1,x2,x6) : (x3+ bx4) = (x0,x1,x2,x6,x3+ bx4+x5),

(x0,x1,x4,x5) : (x2+ax3+x6) = (x0,x1,x3,x4,x5,x6),

(x0,x1,x5,x6) : (x3+ bx4) = (x0,x1,x4,x5,x6,x2+ax3),

(x0,x1,x4,x5) : (x6) = (x0,x1,x4,x5,x2+ax3+x6),

(x0,x1,x2,x5) : (x6) = (x0,x1,x2,x5,x3+
1
ax4+

1
ax6),

(x0,x1,x2,x6) : (x4) = (x0,x1,x2,x6,x3+ bx4+x5),

(x0,x1,x2,x6) : (x3+ bx4+x5) =mR,

(x0,x1,x2,x4,x5) : (x3+
1
ax6) =mR,

(x0,x1,x2,x3,x5) : (x4+x6) =mR,

(x0,x1,x3,x4,x5) : (x2+x6) = (x0,x1,x3,x4,x5,x6),

(x0,x3,x4,x5,x6) : (x1) = (x0,x3,x4,x5,x6),

(x0,x3,x4,x5,x6) : (x2) = (x0,x3,x4,x5,x6),

(x0,x2,x3,x4,x6) : (x1+x5) = (x0,x2,x3,x4,x5,x6),

(x0,x2,x3,x6,x4+
1
bx5) : (x1) = (x0,x2,x3,x4,x5,x6),

(x0,x1,x4,x5,x2+ax3+x6) : (x6) = (x0,x1,x4,x5,x2+ax3+x6),

(x0,x1,x5,x6,x3+ bx4) : (x2) = (x0,x1,x3,x4,x5,x6),
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(x0,x1,x2,x4,x6) : (x3+x5) =mR,

(x0,x1,x3,x4,x5,x6) : (x2) = (x0,x1,x3,x4,x5,x6).

Note that |F| = |57|. Every colon is a non-trivial calculation and requires significant

effort; the interested reader may find a link to code verifying the filtration at the author’s

website (https://www.joshuaandrewrice.com).

§5. Hilbert function obstruction to the Koszul property

In this section, we determine when the coordinate ring of a generic collection of lines is

not Koszul. But first, we need a theorem from Complex Analysis.

Theorem 5.1. (Vivanti–Pringsheim [21, Chap. 8, §1]). Let the power series f(z) =∑
avz

v have positive finite radius of convergence r and suppose that all but finitely many

of its coefficients av are real and nonnegative. Then z = r is a singular point of f(z).

Theorem 5.2. Let M be a generic collection of m lines in Pn with n≥ 2, and let R be

the coordinate ring of M. If

m>
1

72

(
3(n2+10n+13)+

√
3(n−1)3(3n+5)

)
,

then R is not Koszul.

Proof. We prove the claim by contradiction. Suppose that regS(R) = α. Note that by

Theorem 3.5, α is the smallest nonnegative integer such that
(
n+α
α

)
≥m(α+1). We have

four cases: α= 0,α= 1,α= 2, or α≥ 3.

1. Suppose that α= 0. Then

1<
1

72

(
3(n2+10n+13)+

√
3(n−1)3(3n+5)

)
<m≤ 1,

a contradiction.

2. If α= 1, then 2m≤ n+1, and hence

m≤ n+1

2
<

1

72

(
3(n2+10n+13)+

√
3(n−1)3(3n+5)

)
<m,

a contradiction.

3. Now assume that α= 2 and that R is Koszul. By Lemma 4.2, the Hilbert series for R is

HR(t) =
(n+1−2m)t3+(3m−2n−1)t2+(n−1)t+1

(1− t)2
.

Thus, by Equation (2),

PR
C (t) =

1

HR(−t)
= (1+t)2

(2m−n−1)t3+(3m−2n−1)t2+(1−n)t+1 .

Denote

p(t) = 1+(1−n)t+(3m−2n−1)t2+(2m−n−1)t3

https://doi.org/10.1017/nmj.2022.42 Published online by Cambridge University Press

https://www.joshuaandrewrice.com
https://doi.org/10.1017/nmj.2022.42


GENERIC LINES IN PROJECTIVE SPACE AND THE KOSZUL PROPERTY 601

and note the leading coefficient is positive, since n+1< 2m. By the Intermediate Value

Theorem p(t) has a negative zero, since p(0) = 1 and

p(−3) =−27m+12n+16< 0,

since n+1< 2m and 1<m. So, the radius of convergence r of PR
C
(t) is finite and all the

coefficients are positive. So, by Theorem 5.1, r must occur as a singular point of PR
C
(t);

meaning that p(t) must have three real roots and one of them must be positive. Recall

that if the discriminant of a cubic polynomial with real coefficients is negative, then

the polynomial has two non-real complex roots. Thus, the discriminant of p(t) must be

nonnegative. The discriminant of p(t) is

Δ =−m(108m2−9m(n2+10n+13)+4(n+2)3).

We view the discriminate as a continuous function of m. Now, note that the leading

term of Δ is negative. Applying the quadratic formula to the quadratic term above and

only considering the larger root of the two yields the following:

m=
9(n2+10n+13)+

√
92(n2+10n+13)2−4(108)(4)(n+2)3

2(108)

=
3(n2+10n+13)+

√
9n4−12n3−18n2+36n−15

72

=
3(n2+10n+13)+

√
3(n−1)3(3n+5)

72
.

Since, we have a unique positive root in the quadratic term and m > 0, we may

conclude that

m≤ 1

72

(
3(n2+10n+13)+

√
3(n−1)3(3n+5)

)
,

a contradiction.

4. Suppose that α ≥ 3 and R is Koszul. By Theorem 3.4, the defining ideal of R contains

a form of degree α in a minimal generating set, where α≥ 3. Thus, R is not quadratic,

a contradiction.

Hence, R is not Koszul.

We have at least one exceptional example of a coordinate ring of a generic collection of

lines that is not Koszul that the previous theorem does not handle.

Proposition 5.3. Let M be a collection of three lines in general linear position in P4,

and let R be the coordinate ring of M. The defining ideal J for R has a cubic in a minimal

generating set. Hence, R is not Koszul.

Proof. By Remark 2.8 and a change of basis, we may assume the defining ideals for our

three lines have the form

L1 = (x0,x1,x3), L2 = (x0,x2,x4), L3 = (x1,x2, l),
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where l = x3 + x4. Let J be the defining ideal for R and notice that K = L1 ∩ L2 =

(x0,x1x2,x1x4,x3x2,x3x4).

We have the following ring isomorphism:

S/(K+L3) = C[x0,x1,x2,x3,x4]/(x0,x1,x2, l,x3x4)

∼= C[x3,x4]/(l,x3x4)

∼= C[w]/(w2).

Hence,

HS/(K+L3)(t) =
−t2+1

1− t
= 1+ t.

Therefore, by Proposition 2.2, the regS(S/(K+L3)) = 1.

One checks that the regS(S/K) = 1. Using the short exact sequence

0→ S/J → S/K⊕S/L3 → S/(K+L3)→ 0

and Proposition 2.2 yields reg(S/J) ≤ 2. So J is generated by forms of degree at most 3.

The previous short exact sequence, Lemma 4.2, and the additivity of the Hilbert series

along the previous short exact sequence yields

HS/J(t) =HS/K(t)+HS/L3
(t)−HS/(K+L3)(t)

=
−t2+2t+1

(1− t)2
+

1

(1− t)2
− (1+ t)

=
−t3+3t+1

(1− t)2

= 1+5t+9t2+12t3+ · · · .

Thus, J is generated by six linearly independent quadrics and possibly cubics. The cubic

x3x4l is contained in J, but is not contained in the ideal (x0x1,x0x2,x1x2,x1x4,x2x3,x0l),

since no term divides x2
3x4. Hence, there must be a cubic generator in a minimal generating

set of J. Thus, R is not Koszul.

Remark 5.4. Since Remark 2.8 says that a generic collection of lines is in general

linear position, then we may use Lemma 4.2 to show that the coordinate ring of a generic

collection of three lines in P4 has the same Hilbert series as R.

§6. Examples

Finally, it is worth observing three examples that have appeared, while studying generic

lines.

Example 6.1. There are collections of lines in general linear position that are not

generic collections. Consider the four lines in P3:

L1 = {[0 : 0 : α : β] : α,β not both zero},
L2 = {[α : β : 0 : 0] : α,β not both zero},
L3 = {[α : β :−α : β] : α,β not both zero},
L4 = {[α :−β : α : β] : α,β not both zero}.
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These lines are in general linear position since every pair spans P3. The four defining ideals

in S are

L1 = (x0,x1), L2 = (x2,x3),

L3 = (x0+x2,x1−x3), L4 = (x0−x2,x1+x3).

The coordinate ring S/J, where J =
⋂4

i=1Li, has the following Hilbert series:

HS/J(t) =
−3t4+2t3+2t2+2t+1

(1− t)2
= 1+4t+9t2+ · · · ,

whereas, by Theorem 3.4, the coordinate ring R for four generic lines in P3 has the following

Hilbert series:

HR(t) =
−2t3+3t2+2t+1

(1− t)2
= 1+4t+10t2+ · · · .

So, this is not a generic collection of lines.

Example 6.2. Consider the coordinate ring R for five generic lines in P5. The defining

ideal J for R is minimally generated by quadrics and has the following Betti table computed

via Macaulay2.

0 1 2 3 4 5

0

1

2

S/J

1 − − − − −

− 6 − − − −

− − 25 36 20 4

The ring R is not Koszul by Theorem 5.2. Furthermore, it is known that if R is Koszul

and the defining ideal is generated by g elements, then βi,2i ≤
(
g
i

)
for i ∈ {2, . . . ,g} [3, Cor.

3.2]. The previous inequality fails for i = 2. So, this ring is not Koszul for two numerical

reasons.

Example 6.3. Consider the coordinate ring R for six generic lines in P6. The defining

ideal J for R is minimally generated by quadrics and has the following Betti table computed

via Macaulay2.

0 1 2 3 4 5 6

0

1

2

S/J

1 − − − − − −

− 10 10 − − − −

− − 30 76 70 30 5
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The Algebra is not Koszul by Theorem 5.2, and does not fail the aforementioned

inequality.

Coordinate rings with defining ideals minimally generated by quadrics are not rare, but

the previous two examples are interesting since both fail for identical reasons, and one fails

for an additional numerical reason. It would be interesting to determine sufficient reasons

why certain numerical conditions fail and others do not. For example, why does βi,2i ≤
(
g
i

)
fail in one of the previous rings but not the other.

Furthermore, we would like to add that our theorems do not cover every coordinate

ring R for every generic collection of lines in Pn. For the coordinate rings, we could not

determine, there is a possibility these rings could be LG-quadratic or G-quadratic. In every

possible case computable by Macaulay2, there exists a quadratic monomial ideal whose

quotient ring gives the same Hilbert series as R. There could even be some change of basis

which gives a quadratic Gröbner basis. Furthermore, if we wanted to construct a Koszul

filtration in these coordinate rings, then Proposition 4.10 demonstrates that there is no

reason we should expect a reasonable filtration unless there is a more efficient change of

basis that went unobserved. Below is a table, without m= 1, n= 1, and n= 2, summarizing

our results:

n

m

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Yes, 4.3

Unknown

No, 4.10

Yes, 5.2

No, 5.3

.

The Koszul property for the coordinate ring of m generic lines in Pn.
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Math., Birkhäuser, Basel, 1999, 337–350.
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