IMAGES OF HIGHER-ORDER DIFFERENTIAL OPERATORS OF POLYNOMIAL ALGEBRAS

DAYAN LIU and XIAOSONG SUN ${ }^{\boxtimes}$

(Received 3 February 2017; accepted 22 March 2017; first published online 9 June 2017)

Abstract

We investigate images of higher-order differential operators of polynomial algebras over a field k. We show that, when char $k>0$, the image of the set of differential operators $\left\{\xi_{i}-\tau_{i} \mid i=1,2, \ldots, n\right\}$ of the polynomial algebra $k\left[\xi_{1}, \ldots, \xi_{n}, z_{1}, \ldots, z_{n}\right]$ is a Mathieu subspace, where $\tau_{i} \in k\left[\partial_{z_{1}}, \ldots, \partial_{z_{n}}\right]$ for $i=1,2, \ldots, n$. We also show that, when char $k=0$, the same conclusion holds for $n=1$. The problem concerning images of differential operators arose from the study of the Jacobian conjecture.

2010 Mathematics subject classification: primary 13N10; secondary 14R15.
Keywords and phrases: image conjecture, differential operators, Mathieu subspaces, Jacobian conjecture.

1. Introduction

Throughout the paper, k denotes a field. The Jacobian conjecture, a long-standing open problem in affine algebraic geometry, asserts that, when char $k=0$, a polynomial map $F: k^{n} \rightarrow k^{n}$ is invertible if its Jacobian determinant is a nonzero constant (see [2, 3]).

The study of images of differential operators of polynomial algebras is closely related to the Jacobian conjecture. On the one hand, van den Essen et al. [5] showed that the two-dimensional Jacobian conjecture is equivalent to saying that the image, $\operatorname{Im} \delta$, of every k-derivation δ of the polynomial algebra $k[x, y]$ with $1 \in \operatorname{Im} \delta$ and divergence zero, is equal to $k[x, y]$. On the other hand, Zhao [9] showed that if the following image conjecture $\operatorname{IC}(n)$ (or its special case $\operatorname{SIC}(n)$) holds for all $n \geq 1$, then the Jacobian conjecture has an affirmative answer for all $n \geq 1$.

Image conjecture $(\operatorname{IC}(n))$. Let $A[z]=A\left[z_{1}, \ldots, z_{n}\right]$ be the polynomial algebra in n variables over a commutative k-algebra A. Let $a_{1}, a_{2}, \ldots, a_{n} \in A$ be a regular sequence of A and let D be the set of differential operators

$$
a_{1}-\partial_{z_{1}}, a_{2}-\partial_{z_{2}}, \ldots, a_{n}-\partial_{z_{n}} .
$$

Then $\operatorname{Im} D:=\sum_{i=1}^{n}\left(a_{i}-\partial_{z_{i}}\right) A[z]$ is a Mathieu subspace of $A[z]$.

[^0]Recall that $a_{1}, a_{2}, \ldots, a_{n} \in A$ is a regular sequence if the ideal $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is not equal to A and each a_{i} is a nonzero divisor of $A /\left(a_{1}, a_{2}, \ldots, a_{i-1}\right)$. A subspace M of a commutative k-algebra B is a Mathieu subspace if the following property holds. If $f \in B$ is such that $f^{m} \in M$ for all $m \geq 1$, then, for every $g \in B$, there exists a positive integer m_{g} such that $g f^{m} \in M$ for all $m \geq m_{g}$. Mathieu subspaces are a natural generalisation of ideals and named after a conjecture of Mathieu in [8]. They were first proposed by Zhao in [10] and further studied in [7, 11].
Remark 1.1. The image conjecture here is taken from [4, 6]. The original version in [9] is a little more general. It asserts that when char $k=0$, the same conclusion holds for n commuting differential operators of order one with constant leading coefficients, that is, differential operators of the form $\partial_{z_{i}}(q)-\partial_{z_{i}}, i=1,2, \ldots, n$, where $q \in A[z]$.

Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ be n new variables. Taking $A=k[\xi]=k\left[\xi_{1}, \ldots, \xi_{n}\right]$ and $a_{i}=\xi_{i}$ in $\operatorname{IC}(n)$ gives the so-called special image conjecture.

Special image conjecture ($\operatorname{SIC}(n)$). Let $k[\xi, z]=k\left[\xi_{1}, \ldots, \xi_{n}, z_{1}, \ldots, z_{n}\right]$ be the polynomial algebra in $2 n$ variables over k and let

$$
D=\left\{\xi_{1}-\partial_{z_{1}}, \xi_{2}-\partial_{z_{2}}, \ldots, \xi_{n}-\partial_{z_{n}}\right\} .
$$

Then $\operatorname{Im} D:=\sum_{i=1}^{n}\left(\xi_{i}-\partial_{z_{i}}\right) k[\xi, z]$ is a Mathieu subspace of $k[\xi, z]$.
Several special cases of $\operatorname{IC}(n)$ have been proved: if char $k>0$, then $\operatorname{IC}(n)$ holds for all $n \geq 1$ [6, Theorem 2.2]; if char $k=0$ and $A a_{1}$ is a radical ideal, then IC(1) holds [6, Theorem 2.8]; and if char $k=0$ and A is a UFD, then IC(1) holds [7, Theorem 5.1]. In particular, $\operatorname{SIC}(n)$ holds for all $n \geq 1$ when char $k>0$ and holds for $n=1$ when char $k=0$.

Images of differential operators (including derivations) of polynomial algebras are far from being well understood and only a few results are known. The IC (n) involves differential operators of order one. The purpose of this paper is to investigate images of higher-order differential operators. More precisely, we propose the following conjecture.

Higher order image conjecture (HIC(n)). Let $k[\xi, z]:=k\left[\xi_{1}, \ldots, \xi_{n}, z_{1}, \ldots, z_{n}\right]$ be the polynomial algebra in $2 n$ variables over k and let

$$
D=\left\{\xi_{1}-\tau_{1}, \xi_{2}-\tau_{2}, \ldots, \xi_{n}-\tau_{n}\right\}
$$

where $\tau_{i} \in k\left[\partial_{z_{1}}, \ldots, \partial_{z_{n}}\right]$ for $i=1,2, \ldots, n$. Then $\operatorname{Im} D:=\sum_{i=1}^{n}\left(\xi_{i}-\tau_{i}\right) k[\xi, z]$ is a Mathieu subspace of $k[\xi, z]$.

Our original idea was to find counterexamples to $\mathrm{HIC}(n)$ so as to understand the case of order one better. However, it seems that the higher-order case behaves similarly to the case of order one. In fact, we show in Section 2 that $\operatorname{HIC}(n)$ holds for all $n \geq 1$ when char $k>0$ and it holds for $n=1$ when char $k=0$. The theory of \mathfrak{D}-modules plays an important role in our proof. This method was proposed in [4] to deal with the case of order one and characteristic zero, and we develop it to deal with higher order and arbitrary characteristic.

2. Main results

We begin with the basic properties of Weyl algebras and \mathfrak{D}-modules. The Weyl algebra of rank n over k, denoted by $A_{n}(k)$, is the algebra of differential operators (with polynomial coefficients) on the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$. When char $k=0$, $A_{n}(k)$ is isomorphic to the associative k-algebra $k\left[\partial_{1}, \ldots, \partial_{n}, t_{1}, \ldots, t_{n}\right]$ generated by free generators $\partial_{1}, \ldots, \partial_{n}, t_{1}, \ldots, t_{n}$ with relations

$$
\begin{equation*}
\partial_{i} \partial_{j}=\partial_{j} \partial_{i}, \quad t_{i} t_{j}=t_{j} t_{i}, \quad \partial_{i} t_{j}-t_{j} \partial_{i}=\delta_{i j}, \quad 1 \leq i, j \leq n . \tag{2.1}
\end{equation*}
$$

When char $k=p>0$, the relations $\partial_{i}^{p}=0,1 \leq i \leq n$, should be added to (2.1). A \mathfrak{D}-module means a (left) $A_{n}(k)$-module.

The following result is well known (see, for example, [4, Proposition 3.2]). For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, we write $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$ and $t^{\alpha}=t_{1}^{\alpha_{1}} t_{2}^{\alpha_{2}} \cdots t_{n}^{\alpha_{n}}$.

Proposition 2.1. Let $A_{n}(k)=k\left[\partial_{1}, \ldots, \partial_{n}, t_{1}, \ldots, t_{n}\right]$. Let M be an $A_{n}(k)$-module and $f \in M$. Suppose that each ∂_{i} is nilpotent on f, that is, there exists some positive integer m_{i} such that $\partial_{i}^{m_{i}} f=0$. Then f can be written uniquely as

$$
f=\sum_{\alpha} t^{\alpha} f_{\alpha}, \quad f_{\alpha} \in \bigcap_{i=1}^{n} \operatorname{Ann} \partial_{i} \quad\left(\text { with } \alpha_{i}<p \text { if } \operatorname{char} k=p>0\right) .
$$

Now we consider the image of the set of differential operators

$$
D=\left\{\xi_{1}-\tau_{1}, \xi_{2}-\tau_{2}, \ldots, \xi_{n}-\tau_{n}\right\},
$$

on the polynomial algebra $k[\xi, z]=k\left[\xi_{1}, \ldots, \xi_{n}, z_{1}, \ldots, z_{n}\right]$, where $\tau_{i} \in k\left[\partial_{z_{1}}, \ldots, \partial_{z_{n}}\right]$ for $i=1,2, \ldots, n$. Let c_{i} be the constant term of τ_{i}. We always assume that $c_{i}=0$ (by the coordinate transformation $\xi_{i}^{\prime}=\xi_{i}-c_{i}$), which ensures that $\tau_{i}^{p}=0$ if $\operatorname{char} k=p>0$.

When char $k=0$ and $\tau_{i}=\partial_{z_{i}}$, Zhao [9] constructed a linear map $l: k[\xi, z] \rightarrow k[z]$ with $l\left(\xi^{\alpha} z^{\beta}\right)=\partial_{z}^{\alpha}\left(z^{\beta}\right)$, where we use the notation $\partial_{z}^{\alpha}=\partial_{z_{1}}^{\alpha_{1}} \partial_{z_{2}}^{\alpha_{2}} \cdots \partial_{z_{n}}^{\alpha_{n}}$, and showed that $\sum_{i=1}^{n} \operatorname{Im}\left(\xi_{i}-\partial_{z_{i}}\right)=$ ker l. We will show that a similar result holds for higher-order differential operators in arbitrary characteristic.

Defintion 2.2. For $D=\left\{\xi_{1}-\tau_{1}, \xi_{2}-\tau_{2}, \ldots, \xi_{n}-\tau_{n}\right\}$, where $\tau_{i} \in k\left[\partial_{z_{1}}, \ldots, \partial_{z_{n}}\right]$ for $i=1,2, \ldots, n$, define $L: k[\xi, z] \rightarrow k[z]$ to be the k-linear map such that

$$
L\left(\xi^{\alpha} z^{\beta}\right)=\left(\tau_{1}^{\alpha_{1}} \tau_{2}^{\alpha_{2}} \cdots \tau_{n}^{\alpha_{n}}\right)\left(z^{\beta}\right)
$$

Proposition 2.3. With the notation of Definition 2.2, $\operatorname{Im} D=\operatorname{ker} L$.
Proof. Let $f \in \operatorname{Im} D$. Then $f=\sum_{i=1}^{n}\left(\xi_{i}-\tau_{i}\right) f_{i}$ for some $f_{i} \in k[\xi, z]$. By the definition of L and since $\tau_{i} \in k\left[\partial_{z_{1}}, \ldots, \partial_{z_{n}}\right]$, we know that $L\left(\xi_{i} f_{i}\right)=\tau_{i}\left(L\left(f_{i}\right)\right)$ and $L\left(\tau_{i}\left(f_{i}\right)\right)=$ $\tau_{i}\left(L\left(f_{i}\right)\right)$. Thus

$$
L(f)=\sum_{i=1}^{n}\left(L\left(\xi_{i} f_{i}\right)-L\left(\tau_{i}\left(f_{i}\right)\right)\right)=\sum_{i=1}^{n} \tau_{i}\left(L\left(f_{i}\right)\right)-\tau_{i}\left(L\left(f_{i}\right)\right)=0 .
$$

So $\operatorname{Im} D \subseteq \operatorname{ker} L$.

For the converse, set $A_{2 n}(k)=k\left[\partial_{\xi_{1}}, \ldots, \partial_{\xi_{n}}, \partial_{z_{1}}, \ldots, \partial_{z_{n}}, \xi_{1}, \ldots, \xi_{n}, z_{1}, \ldots, z_{n}\right]$. Note that $k[\xi, z]$ has a natural $A_{2 n}(k)$-module structure. Define a k-algebra morphism

$$
\rho: A_{n}(k)=k\left[\partial_{1}, \ldots, \partial_{n}, t_{1}, \ldots, t_{n}\right] \rightarrow A_{2 n}(k)
$$

by $\rho\left(\partial_{i}\right)=\partial_{\xi_{i}}, \rho\left(t_{i}\right)=\xi_{i}-\tau_{i}$. The definition is reasonable, since

$$
\left\{\begin{array}{l}
\partial_{\xi_{i}} \partial_{\xi_{j}}=\partial_{\xi_{j}} \partial_{\xi_{i}}, \\
\left(\xi_{i}-\tau_{i}\right)\left(\xi_{j}-\tau_{j}\right)=\left(\xi_{j}-\tau_{j}\right)\left(\xi_{i}-\tau_{i}\right), \\
\partial_{\xi_{i}}\left(\xi_{j}-\tau_{j}\right)-\left(\xi_{j}-\tau_{j}\right) \partial_{\xi_{i}}=\delta_{i j}, \\
\partial_{\xi_{i}}^{p}=0 \quad(\text { when char } k=p>0)
\end{array}\right.
$$

Thus $k[\xi, z]$ has an $A_{n}(k)$-module structure defined by

$$
\left\{\begin{array}{l}
t_{i} f=\left(\xi_{i}-\tau_{i}\right) f, \\
\partial_{i} f=\partial_{\xi_{i}}(f)
\end{array}\right.
$$

For any $f \in k[\xi, z]$, since ∂_{i} is nilpotent on f by Proposition $2.1, f$ can be written as

$$
f=\sum_{\alpha} t^{\alpha} f_{\alpha}, \quad f_{\alpha} \in \bigcap_{i=1}^{n} \operatorname{Ann} \partial_{i}
$$

and thus

$$
f=f_{0}+\sum_{\alpha \neq 0}\left(\xi_{1}-\tau_{1}\right)^{\alpha_{1}} \cdots\left(\xi_{n}-\tau_{n}\right)^{\alpha_{n}} f_{\alpha}, \quad f_{0} \in \bigcap_{i=1}^{n} \operatorname{Ann} \partial_{i} .
$$

When char $k=0, \bigcap_{i=1}^{n} \operatorname{Ann} \partial_{i}=\bigcap_{i=1}^{n} \operatorname{ker} \partial_{\xi_{i}}=k[z]$, so $f_{0} \in k[z]$. When char $k=p$,

$$
\bigcap_{i=1}^{n} \operatorname{Ann} \partial_{i}=\bigcap_{i=1}^{n} \operatorname{ker} \partial_{\xi_{i}}=k\left[z, \xi_{1}^{p}, \ldots, \xi_{n}^{p}\right],
$$

and thus

$$
f_{0}=g_{0}+\sum_{\beta \neq 0}\left(\xi_{1}^{p}\right)^{\beta_{1}} \cdots\left(\xi_{n}^{p}\right)^{\beta_{n}} h_{\beta}(z)=g_{0}+\sum_{\beta \neq 0}\left(\xi_{1}-\tau_{1}\right)^{p \beta_{1}} \cdots\left(\xi_{n}-\tau_{n}\right)^{p \beta_{n}} h_{\beta}(z)
$$

where $g_{0} \in k[z]$.
In conclusion, f can be written as $f=g+h$, where $g \in k[z]$ and $h \in \operatorname{Im} D \subseteq \operatorname{ker} L$. So $L(f)=L(g)+L(h)=g+0=g$. If $f \in \operatorname{ker} L$, then $g=L(f)=0$ and consequently $f=g+h=h \in \operatorname{Im} D$. It follows that $\operatorname{ker} L \subseteq \operatorname{Im} D$. Therefore, $\operatorname{ker} L=\operatorname{Im} D$.

In what follows, for $f \in k[\xi, z]$, we denote by f_{i} the homogeneous part of f with degree i in z. If $\operatorname{deg}_{z} f=d$, then $f=f_{0}+f_{1}+\cdots+f_{d}$, where $f_{i}=\sum_{|\alpha|=i} c_{\alpha} z^{\alpha}, c_{\alpha} \in k[\xi]$.
Lemma 2.4. Let $g=\sum_{\alpha} c_{\alpha} z^{\alpha} \in \operatorname{Im} D$, where $c_{\alpha} \in k[\xi]$, and let $\operatorname{deg}_{z} g=d$. Then $c_{\alpha} \in I$ for all α with $|\alpha|=d$, where $I=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is the ideal of $k[\xi]$ generated by ξ_{1}, \ldots, ξ_{n}.

Proof. By Lemma 2.3, $g \in \operatorname{ker} L$, that is, $L(g)=0$. Since $g=\sum_{|\alpha|=d} c_{\alpha} z^{\alpha}+\sum_{|\alpha|<d} c_{\alpha} z^{\alpha}$, we know that $0=L(g)=\sum_{|\alpha|=d} c_{\alpha}(0) z^{\alpha}+$ lower order terms, and thus $c_{\alpha}(0)=0$, that is, $c_{\alpha} \in I$ when $|\alpha|=d$.

Theorem 2.5. Suppose that char $k=p>0$. Then $\operatorname{HIC}(n)$ holds for all $n \geq 1$, that is, $\operatorname{Im} D:=\sum_{i=1}^{n}\left(\xi_{i}-\tau_{i}\right) k[\xi, z]$ is a Mathieu subspace of $k[\xi, z]$.
Proof. Since $\xi_{i}^{p} h=\left(\xi_{i}-\tau_{i}\right)^{p} h$ for any $h \in k[\xi, z]$, It follows that $I^{p} k[\xi, z] \subseteq \operatorname{Im} D$, where we write $I=\left(\xi_{1}, \ldots, \xi_{n}\right)$ for the ideal of $k[\xi]$ generated by ξ_{1}, \ldots, ξ_{n}.

Let $f=\sum_{\alpha} c_{\alpha} z^{\alpha} \in k[\xi, z]$ be such that $f^{p} \in \operatorname{Im} D$, where $c_{\alpha} \in k[\xi]$.
Claim. $c_{\alpha} \in I$ for all α.
Suppose the claim is true. Then $f^{p}=\left(\sum_{\alpha} c_{\alpha} z^{\alpha}\right)^{p}=\sum_{\alpha} c_{\alpha}^{p} z^{\alpha p} \in I^{p} k[\xi, z]$. Thus, for any $g \in k[\xi, z]$, we have $g f^{m}=f^{p}\left(g f^{m-p}\right) \in I^{p} k[\xi, z] \subseteq \operatorname{Im} D$ for all $m \geq p$. It follows that $\operatorname{Im} D$ is a Mathieu subspace. It now remains to prove the claim.

Write $f=f_{0}+f_{1}+\cdots+f_{d}$, where $f_{i}=\sum_{|\alpha|=i} c_{\alpha} z^{\alpha}$. Since

$$
f^{p}=f_{0}^{p}+f_{1}^{p}+\cdots+f_{d}^{p} \in \operatorname{Im} D
$$

by Lemma 2.4, all coefficients of $f_{d}^{p}=\left(\sum_{|\alpha|=d} c_{\alpha} z^{\alpha}\right)^{p}=\sum_{|\alpha|=d} c_{\alpha}^{p} z^{\alpha p}$ belong to I, that is, $c_{\alpha}^{p} \in I$ and so $c_{\alpha} \in I$ for all $|\alpha|=d$. It follows that $c_{\alpha}^{p} \in I^{p}$. So $f_{d}^{p} \in I^{p} k[\xi, z] \subseteq \operatorname{Im} D$. Then $\left(f_{0}+f_{1}+\cdots+f_{d-1}\right)^{p}=f^{p}-f_{d}^{p} \in \operatorname{Im} D$. The claim follows by induction on $d=\operatorname{deg} f$.

Theorem 2.6. Suppose char $k=0$. Then $\mathrm{HIC}(1)$ holds, that is, on the polynomial ring $k[\xi, z]$ in two variables, $\operatorname{Im}(\xi-\tau)$ is a Mathieu subspace, for $\tau \in k\left[\partial_{z}\right]$.

Proof. Recall that $L: k[\xi, z] \rightarrow k[z], L\left(\xi^{a} z^{b}\right)=\tau^{a}\left(z^{b}\right)$. By Proposition 2.3, we have $\operatorname{Im}(\xi-\tau)=\operatorname{ker} L$. We may assume, without loss of generality, that

$$
\tau=\partial_{z}^{r}+a_{r+1} \partial_{z}^{r+1}+\cdots+a_{d} \partial_{z}^{d}
$$

where $a_{i} \in k$. Define a linear map

$$
L_{0}: k[\xi, z] \rightarrow k[z], \quad L_{0}\left(\xi^{a} z^{b}\right)=\left(\partial_{z}^{r}\right)^{a}\left(z^{b}\right)
$$

Consider the w-degree on $k[\xi, z]$, where $w=(-r, 1)$. Then $\operatorname{deg}_{w} \xi^{a} z^{b}=b-a r$. For any $h \in k[\xi, z]$, we denote by \bar{h} the highest homogeneous part of h with respect to w-degree. Let $s=\operatorname{deg}_{w} h$. Then $h=\sum_{j-i r \leq s} c_{i j} \xi^{i} z^{j}, \bar{h}=\sum_{j-i r=s} c_{i j} \xi^{i} z^{j}$ and

$$
\begin{aligned}
L(h)=L\left(\sum_{j-i r \leq s} c_{i j} \xi^{i} z^{j}\right) & =\sum_{j-i r \leq s} c_{i j}\left(\partial_{z}^{r}+a_{r+1} \partial_{z}^{r+1}+\cdots+a_{d} \partial_{z}^{d}\right)^{i} z^{j} \\
& =\sum_{j-i r=s} c_{i j}\left(\partial_{z}^{r}\right)^{i} z^{j}+\text { lower order terms in } z \\
& =L_{0}(\bar{h})+\text { lower order terms in } z .
\end{aligned}
$$

So $\overline{L(h)}=L_{0}(\bar{h})$, where $\overline{L(h)}$ means the highest homogeneous part of $L(h) \in k[z]$ in terms of z.
Claim. If $f^{m} \in \operatorname{Im}(\xi-\tau)=\operatorname{ker} L$ for all $m \geq 1$, then $\operatorname{deg}_{w} f<0$.
Suppose that $d:=\operatorname{deg}_{w} f \geq 0$ and write $d=q r+r_{0}$, where $0 \leq r_{0}<r$. Since $L\left(\left(\xi^{q} f\right)^{m}\right)=\tau^{q m} L\left(f^{m}\right)=0$, it follows that $\left(\xi^{q} f\right)^{m} \in \operatorname{ker} L$. In addition, $\operatorname{deg}_{w} \xi^{q} f=$ $(-q r)+d=r_{0}$. Replacing f by $\xi^{q} f$, we may assume that $\operatorname{deg}_{w} f=r_{0}$ with $0 \leq r_{0}<r$.

So $\bar{f}=\sum_{j-i r=r_{0}} a_{i j} \xi^{i} z^{j}, a_{i j} \in k$. Write

$$
\bar{f}=\sum_{n_{0} \leq i \leq n_{1}} c_{i} \xi^{i} z^{i r+r_{0}} \quad \text { with } c_{i} \in k
$$

For any $m \geq 1, L_{0}\left(\bar{f}^{m}\right)=L_{0}\left(\overline{f^{m}}\right)=\overline{L\left(f^{m}\right)}=\underline{0}$.
Now we show that we may assume that $\bar{f} \in \overline{\mathbb{Q}}[\xi, z]$, that is, all the c_{i} belong to $\overline{\mathbb{Q}}$. Since $L_{0}\left(\xi^{a} z^{a r+b}\right)=\left(\partial_{z}^{r}\right)^{a}\left(z^{a r+b}\right)=((a r+b)!/ b!) z^{b}$,

$$
\begin{aligned}
0=L_{0}\left(\bar{f}^{m}\right) & =L_{0}\left(\left(\sum_{n_{0} \leq i \leq n_{1}} c_{i} \xi^{i} z^{i r+r_{0}}\right)^{m}\right) \\
& =L_{0}\left(\sum_{n_{0} \leq i_{1}, i_{2}, \ldots, i_{m} \leq n_{1}} c_{i_{1}} c_{i_{2}} \cdots c_{i_{m}} \xi^{i_{1}+\cdots+i_{m}} z^{\left(i_{1}+\cdots+i_{m}\right) r+m r_{0}}\right) \\
& =\sum_{n_{0} \leq i_{1}, i_{2}, \ldots, i_{m} \leq n_{1}} c_{i_{1}} c_{i_{2}} \cdots c_{i_{m}} \frac{\left(\left(i_{1}+\cdots+i_{m}\right) r+m r_{0}\right)!}{\left(m r_{0}\right)!} z^{m r_{0}} .
\end{aligned}
$$

Observe that $L_{0}\left(\bar{f}^{m}\right)=0$ means that $\left(c_{n_{0}}, \ldots, c_{n_{1}}\right)$ is a (nonzero) zero point of the homogeneous polynomial g_{m} in the variables $x_{n_{0}}, \ldots, x_{n_{1}}$, where

$$
g_{m}:=\sum_{n_{0} \leq i_{1}, i_{2}, \ldots, i_{m} \leq n_{1}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}} \frac{\left(\left(i_{1}+\cdots+i_{m}\right) r+m r_{0}\right)!}{\left(m r_{0}\right)!}
$$

Since all these homogeneous polynomials g_{m} are over \mathbb{Q} and have a common nonzero zero point $\left(c_{n_{0}}, \ldots, c_{n_{1}}\right)$ in k, it is well known that they must have a common nonzero zero point $\left(\bar{c}_{n_{0}}, \ldots, \bar{c}_{n_{1}}\right)$ in $\overline{\mathbb{Q}}$. Replacing $c_{n_{0}}, \ldots, c_{n_{1}}$ by $\bar{c}_{n_{0}}, \ldots, \bar{c}_{n_{1}}$, we may assume that $c_{n_{0}}, \ldots, c_{n_{1}} \in \overline{\mathbb{Q}}$, that is, $\bar{f} \in \overline{\mathbb{Q}}[\xi, z]$.

Assume, without loss of generality, that $c_{n_{0}}=1$. Then, for any prime number p,

$$
\begin{aligned}
0 & =L_{0}\left(\bar{f}^{p}\right)=L_{0}\left(\left(\xi^{n_{0}} z^{n_{0} r+r_{0}}+\sum_{n_{0}<i \leq n_{1}} c_{i} \xi^{i} z^{i r+r_{0}}\right)^{p}\right) \\
& =L_{0}\left(\xi^{n_{0} p} z^{n_{0} r p+r_{0} p}+\sum_{n_{0}<i \leq n_{1}} c_{i}^{p} \xi^{i p} z^{i r p+r_{0} p}+p \sum_{n_{0} p<j<n_{1} p} d_{j} \xi^{j} z^{j r+r_{0} p}\right) \\
& =\frac{\left(n_{0} r p+r_{0} p\right)!}{\left(r_{0} p\right)!} z^{r_{0} p}+\sum_{n_{0}<i \leq n_{1}} c_{i}^{p} \frac{\left(i r p+r_{0} p\right)!}{\left(r_{0} p\right)!} z^{r_{0} p}+p \sum_{n_{0} p<j<n_{1} p} d_{j} \frac{\left(j r+r_{0} p\right)!}{\left(r_{0} p\right)!} z^{r_{0} p},
\end{aligned}
$$

where $d_{j} \in \mathbb{Z}\left[c_{n_{0}+1}, \ldots, c_{n_{1}}\right]$. Thus

$$
1+\sum_{n_{0}<i \leq n_{1}} c_{i}^{p} \frac{\left(\operatorname{irp}+r_{0} p\right)!}{\left(n_{0} r p+r_{0} p\right)!}+p \sum_{n_{0} p<j<n_{1} p} d_{j} \frac{\left(j r+r_{0} p\right)!}{\left(n_{0} r p+r_{0} p\right)!}=0 .
$$

Since $i>n_{0}$, we see that $\left(\operatorname{irp}+r_{0} p\right)!/\left(n_{0} r p+r_{0} p\right)$! is an integer divisible by p and, since $j>n_{0} p$, also $\left(j r+r_{0} p\right)!/\left(n_{0} r p+r_{0} p\right)$! is an integer. So $p \mid 1$ in $\mathbb{Z}\left[c_{n_{0}+1}, \ldots, c_{n_{1}}\right]$ for any prime number p. Note that $c_{n_{0}+1}, \ldots, c_{n_{1}} \in \overline{\mathbb{Q}}$, so there exists an l in \mathbb{Z} such that
$c_{n_{0}+1}, \ldots, c_{n_{1}}$ are integral in $\mathbb{Z}[1 / l]$. So $\mathbb{Z}\left[c_{n_{0}+1}, \ldots, c_{n_{1}}, 1 / l\right]$ is integral over $\mathbb{Z}[1 / l]$. When $p \nmid l, p \mathbb{Z}[1 / l]$ is a prime ideal of $\mathbb{Z}[1 / l]$. There exists a prime ideal α of $\mathbb{Z}\left[c_{n_{0}+1}, \ldots, c_{n_{1}}, 1 / l\right]$ such that $\alpha \cap \mathbb{Z}[1 / l]=p \mathbb{Z}[1 / l]$ (see, for example, [1, Theorem 5.10]). Since $p \mid 1$ in $\mathbb{Z}\left[c_{n_{0}+1}, \ldots, c_{n_{1}}\right], \alpha=\mathbb{Z}\left[c_{n_{0}+1}, \ldots, c_{n_{1}}, 1 / l\right]$, which contradicts the fact that α is a prime ideal.

This proves the claim, that is, if $f^{m} \in \operatorname{Im}(\xi-\tau)$ for all $m \geq 1$, then $\operatorname{deg}_{w} f<0$. Then, for any $g \in k[\xi, z], \operatorname{deg}_{w}\left(g f^{m}\right)=\operatorname{deg}_{w} g+m \operatorname{deg}_{w} f<0$ for all sufficiently large m, and thus $L\left(g f^{m}\right)=0$ for such m. It follows that $\operatorname{Im}(\xi-\tau)=\operatorname{ker} L$ is a Mathieu subspace of $k[\xi, z]$.

Acknowledgements

The authors are grateful to Professor van den Essen for discussions on the image conjecture and Mathieu subspaces during his visit in Jilin University.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, MA, 1969).
[2] H. Bass, E. Connel and D. Wright, 'The Jacobian conjecture: reduction of degree and formal expansion of the inverse', Bull. Amer. Math. Soc. 7 (1982), 287-330.
[3] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, 190 (Birkhäuser, Basel, 2000).
[4] A. van den Essen, 'The amazing image conjecture’, Preprint, 2010, arXiv:1006.5801.
[5] A. van den Essen, D. Wright and W. Zhao, 'Images of locally finite derivations of polynomial algebras in two variables', J. Pure Appl. Algebra 215(9) (2011), 2130-2134.
[6] A. van den Essen, D. Wright and W. Zhao, 'On the image conjecture', J. Algebra 340(1) (2011), 211-224.
[7] A. van den Essen and W. Zhao, 'Mathieu subspaces of univariate polynomial algebras', J. Pure Appl. Algebra 217(9) (2013), 1316-1324.
[8] O. Mathieu, 'Some conjectures about invariant theory and their applications', in: Algèbre non Commutative, groupes quantiques et invariants, Reims, 1995, Sémin. Congr., 2 (Soc. Math. France, Paris, 1997), 263-279.
[9] W. Zhao, 'Images of commuting differential operators of order one with constant leading coefficients', J. Algebra 324(2) (2010), 231-247.
[10] W. Zhao, 'Generalizations of the image conjecture and the Mathieu conjecture', J. Pure Appl. Algebra 214(7) (2010), 1200-1216.
[11] W. Zhao, 'Mathieu subspaces of associative algebras', J. Algebra 350(1) (2012), 245-272.

DAYAN LIU, School of Mathematics, Jilin University, Changchun 130012, China
e-mail: liudayan@jlu.edu.cn
XIAOSONG SUN, School of Mathematics, Jilin University, Changchun 130012, China e-mail: sunxs@jlu.edu.cn

[^0]: This work was supported by the NSF of China $(11401249,11371165)$ and the STDPF of Jilin Province, China (20150520051JH, 20150101001JC).
 (C) 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

