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Abstract
In this paper, we prove a stronger form of the Bogomolov–Gieseker (BG) inequality for stable sheaves on two classes
of Calabi–Yau threefolds, namely, weighted hypersurfaces inside the weighted projective spaces P(1, 1, 1, 1, 2) and
P(1, 1, 1, 1, 4). Using the stronger BG inequality as a main technical tool, we construct open subsets in the spaces
of Bridgeland stability conditions on these Calabi–Yau threefolds.
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1. Introduction

1.1. Motivation and Results

Since Bridgeland [Bri07] defined the notion of stability conditions on derived categories, its construction
on a given threefold has been an important open problem. It turned out that, to solve this problem, we
need a Bogomolov–Gieseker (BG) type inequality, involving the third Chern character, for certain stable
objects in the derived category [BMS16, BMT14, BMSZ17]. There are several classes of threefolds on
which we know the existence of Bridgeland stability conditions [BMS16, BMT14, BMSZ17, Kos17,
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Figure 1. Strong BG inequality on double/triple cover CY3s.

Kos20, Li19a, Li19b, Liu21a, Liu21b, MP16a, MP16b, Macr14, Piy17, Sch14]. For K-trivial threefolds,
the only known cases are the quintic threefolds [Li19a], abelian threefolds and their étale quotients
[BMS16, MP16a, MP16b].

Among them, Li [Li19a] recently treated quintic threefolds, which is one of the most important cases
for mirror symmetry. The crucial step in his arguments is to establish the improvement of the classical
BG inequality for torsion free slope stable sheaves. Recall that a version of the classical BG inequality
is the inequality

𝐻 ch2(𝐸)
𝐻3 ch0 (𝐸)

≤ 1
2

(
𝐻2 ch1(𝐸)
𝐻3 ch0(𝐸)

)2

, (1)

where E is a slope stable sheaf with respect to an ample divisor H. For del Pezzo and K3 surfaces, we
can easily get the inequality stronger than equation (1), simply by using the Serre duality. In contrast,
such an improvement of the BG inequality on Calabi–Yau threefolds is highly nontrivial.

When the first draft of this paper was submitted, the arguments in [Li19a] have been applied only for
quintic threefolds. Very recently, Liu [Liu21a] treated Calabi–Yau complete intersections of quadratic
and quartic hypersurfaces in P5 via a similar method. The goal of the present paper is to extend it to
two other examples of Calabi–Yau threefolds, namely, general weighted hypersurfaces in the weighted
projective spaces P(1, 1, 1, 1, 2) and P(1, 1, 1, 1, 4). We call them as triple/double cover CY3 since they
have finite morphisms to P3 of degree 3, 2, respectively. The following is our main result:

Theorem 1.1 (Theorems 4.1, 5.4). Let X be a double or triple cover CY3, H the primitive ample divisor
and E a slope stable sheaf with slope 𝜇 ∈ [−1, 1]. Then the inequality

𝐻 ch2(𝐸)
𝐻3 ch0 (𝐸)

≤ Ξ

(����𝐻2 ch1 (𝐸)
𝐻3 ch0 (𝐸)

����) (2)

holds. Here, the function Ξ is defined as follows.

Ξ(𝑡) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡2 − 𝑡 (𝑡 ∈ [0, 1/4])
3𝑡/4 − 3/8 (𝑡 ∈ [1/4, 1/2])
𝑡/4 − 1/8 (𝑡 ∈ [1/2, 3/4])
𝑡2 − 1/2 (𝑡 ∈ [3/4, 1]).
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See Figure 1 for the graph of the functionΞ. Using this stronger BG inequality, we prove the following
BG type inequality (involving ch3) for 𝜈𝛽,𝛼-stable objects, which are certain two term complexes in the
derived category. For the precise definition of 𝜈𝛽,𝛼-stability, see Section 2.

Theorem 1.2 (Theorem 2.3, Corollary 6.4). Let X be a double or triple cover CY3, take real numbers
𝛼, 𝛽 ∈ R with 𝛼 > 1

2 𝛽
2 + 1

2 (𝛽− �𝛽�)(�𝛽� +1− 𝛽). Let E be a 𝜈𝛽,𝛼-semistable object. Then the inequality

𝑄Γ
𝛼,𝛽 (𝐸) ≥ 0

holds. Here, we put Γ := 2
9𝐻

2 (resp. 1
3𝐻

2) when X is a triple (resp. double) cover CY3, and the quadratic
form 𝑄Γ

𝛼,𝛽 is defined as follows:

𝑄Γ
𝛼,𝛽 (𝐸) := (2𝛼 − 𝛽2)

(
Δ𝐻 (𝐸) + 3

Γ.𝐻

𝐻3

(
𝐻3 ch𝛽0 (𝐸)

)2
)

+ 2
(
𝐻 ch𝛽2 (𝐸)

) (
2𝐻 ch𝛽2 (𝐸) − 3Γ.𝐻 ch𝛽0 (𝐸)

)
− 6

(
𝐻2 ch𝛽1 (𝐸)

) (
ch𝛽3 (𝐸) − Γ ch𝛽1 (𝐸)

)
.

The above theorem enables us to construct an open subset in the space of Bridgeland stability
conditions [BMS16, BMT14, BMSZ17]. For real numbers 𝛼, 𝛽, 𝑎, 𝑏, we define a group homomorphism
𝑍𝑎,𝑏
𝛽,𝛼 : 𝐾 (𝑋) → C as

𝑍𝑎,𝑏
𝛽,𝛼 := − ch𝛽3 +𝑏𝐻 ch𝛽2 +𝑎𝐻2 ch𝛽1 +𝑖

(
𝐻 ch𝛽2 −1

2
𝛼2𝐻3 ch𝛽0

)
.

We denote by A𝛽,𝛼 the double-tilted heart defined in [BMT14].

Theorem 1.3 (Theorem 7.2). We have a continuous family
(
𝑍𝑎,𝑏
𝛽,𝛼,A𝛽,𝛼

)
of stability conditions

parametrized by real numbers 𝛼, 𝛽, 𝑎, 𝑏 satisfying

𝛼 > 0, 𝛼2 +
(
𝛽 − �𝛽� − 1

2

)2
>

1
4
, 𝑎 >

1
6
𝛼2 + 1

2
|𝑏 |𝛼 + 𝛾,

where we put 𝛾 := 2/9 (resp. 1/3) when X is a triple (resp. double) cover CY3. Acting by the group
G̃L+(2;R), it forms an open subset in the space of stability conditions.

1.2. Strategy of the proof

In this subsection, we briefly explain how to prove Theorem 1.1. Let us first recall the arguments in
[Li19a] for a quintic threefold 𝑋5 ⊂ P4. We consider (2, 2, 5), (2, 5), (2, 2) complete intersections

𝐶2,2,5 ⊂ 𝑇2,5 ⊂ 𝑋5, 𝐶2,2,5 ⊂ 𝑆2,2.

The stronger BG inequality on 𝑋5 is proved in the following way:

1. First, we reduce the problem to proving the same inequality for stable sheaves on the surface𝑇2,5 ⊂ 𝑋5
by using the restriction technique.

2. Again using the restriction, the problem is further reduced to establishing a stronger Clifford type
bounds on global sections for stable vector bundles on the curve 𝐶2,2,5 ⊂ 𝑇2,5.

3. Regard the stable vector bundle on 𝐶2,2,5 as a torsion sheaf on the surface 𝑆2,2 via the inclusion
𝐶2,2,5 ⊂ 𝑆2,2. Then a wall-crossing argument in the space of Bridgeland stability conditions on
the surface 𝑆2,2 gives the desired Clifford type bounds. The argument in this step first appeared in
[Fey20].
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In step (3), the crucial fact is that the surface 𝑆2,2 is del Pezzo, on which a stronger BG inequality holds.
For double/triple cover CY3s, the situation is quite similar. In fact, we have smooth complete

intersection varieties

𝐶2,2,6 ⊂ 𝑇2,6 ⊂ 𝑋6, 𝐶2,2,6 ⊂ 𝑆2,2 in P(1, 1, 1, 1, 2),
𝐶2,4,8 ⊂ 𝑇2,8 ⊂ 𝑋8, 𝐶2,4,8 ⊂ 𝑆2,4 in P(1, 1, 1, 1, 4),

where both of the surfaces 𝑆2,2 ⊂ P(1, 1, 1, 1, 2) and 𝑆2,4 ⊂ P(1, 1, 1, 1, 4) are isomorphic to the quadric
surface P1 ×P1, which is del Pezzo. Note that we consider (2, 4) complete intersection in P(1, 1, 1, 1, 4)
instead of (2, 2), to avoid the singularity.

Hence, we are able to apply the methods in [Li19a] to our cases. At this moment, we do not know the
way to treat these examples uniformly, so the author believes it is still worth writing down the complete
proofs. In fact, it turns out that, in our cases, we need the modified term Γ in Theorem 1.2, unlike the
quintic case.

1.3. Open problems

1. In Theorem 1.2, we expect we can take Γ = 0. For this, we need a further improvement of
Theorem 1.1.

2. Stability conditions we construct in this paper are said to be ‘near the large volume limit’ in physics.
For weighted hypersurfaces, we expect the existence of another kind of stability conditions, called
Gepner type. Mathematically, it is the stability condition invariant under the certain autoequivalence
of the derived category. See [Tod14, Tod17] for discussions on the construction of Gepner type
stability conditions. To construct the heart corresponding to the Gepner type stability condition, the
first task is to prove a stronger form of the BG inequality for stable sheaves with a specific slope
equal −1/2. Unfortunately, Theorem 1.1 is not enough for this purpose.

3. One might ask whether we can treat other Calabi–Yau weighted hypersurfaces inside
P(𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) with more general weights (𝑎𝑖). Unfortunately, quintic and double/triple cover
CY3s are the only cases where P(𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) contains a smooth Calabi–Yau hypersurface and
a smooth del Pezzo (or K3) complete intersection surface at the same time. Indeed, it happens pre-
cisely when the weighted P4 has only isolated singularities and its canonical line bundle can be
written as 𝐿⊗𝑚, where L is a free line bundle and 𝑚 ≥ 2. These conditions are equivalent to the
following numerical conditions.
◦ For any i with 𝑎𝑖 > 1 and for any 𝑗 ≠ 𝑖, 𝑎𝑖 does not divide 𝑎 𝑗 ,
◦ ∑

𝑎𝑖 = 𝑚 · lcm(𝑎𝑖).
An easy but lengthy calculation show that there are only three solutions. If we allow smooth

Deligne–Mumford stacks, i.e., if we allow the weighted P4 to have nonisolated singularities, there
are several other solutions.

1.4. Plan of the paper

The paper is organized as follows. In Section 2, we recall about the notion of tilt stability in the derived
category and about the BG type inequality conjecture. Sections 3 and 4 are devoted to proving Theorem
1.1 for a triple cover CY3. The key ingredient is the stronger Clifford type bound proved in Section 3.
In Section 5, we treat the case of a double cover CY3. In Section 6, we prove Theorem 1.2. Finally, in
Section 7, we prove Theorem 1.3.

Notation and Convention. In this paper, we always work over the complex number field C. We will use
the following notations.

◦ For an ample divisor H and a real number 𝛽 ∈ R, we denote by ch𝛽 = (ch𝛽0 , · · · , ch𝛽𝑛 ) := 𝑒−𝛽𝐻 ch,
the 𝛽-twisted Chern character.
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◦ hom(𝐸, 𝐹) := dim Hom(𝐸, 𝐹), and ext𝑖 (𝐸, 𝐹) := dim Ext𝑖 (𝐸, 𝐹) for objects 𝐸, 𝐹 in the derived
category, and an integer i.

2. Preliminaries

2.1. BG type inequality conjecture

In this subsection, we recall the notion of tilt stability, and the BG type inequality conjecture. We mainly
follow the notations in the paper [Li19a]. Let X be a smooth projective variety of dimension 𝑛 ≥ 2, H an
ample divisor. We take real numbers 𝛼, 𝛽 ∈ R with 𝛼 > 1

2 𝛽
2. We define a slope function 𝜇𝐻 as follows:

𝜇𝐻 :=
𝐻𝑛−1 ch1
𝐻𝑛 ch0

: Coh(𝑋) → R ∪ {+∞}.

We have the notion of 𝜇𝐻 -stability on Coh(𝑋) and the corresponding torsion pair on Coh(𝑋):

T𝛽 := 〈𝑇 ∈ Coh(𝑋) : 𝑇 is 𝜇𝐻 -semistable with 𝜇𝐻 (𝑇) > 𝛽〉,
F𝛽 := 〈𝐹 ∈ Coh(𝑋) : 𝐹 is 𝜇𝐻 -semistable with 𝜇𝐻 (𝐹) ≤ 𝛽〉.

Here, 〈𝑆〉 denotes the extension closure of a set 𝑆 ⊂ Coh(𝑋) of objects in the category Coh(𝑋). By
the general theory of torsion pairs [HRS96], we obtain the new abelian category

Coh𝛽 (𝑋) :=
〈
F𝛽 [1], T𝛽

〉
⊂ 𝐷𝑏 (𝑋),

which is the heart of a bounded t-structure on 𝐷𝑏 (𝑋). On the heart Coh𝛽 (𝑋), we define the following
slope function:

𝜈𝛽,𝛼 :=
𝐻𝑛−2 ch2 −𝛼𝐻𝑛 ch0

𝐻𝑛−1 ch1 −𝛽𝐻𝑛 ch0
: Coh𝛽 (𝑋) → R ∪ {+∞}.

Then as similar to the 𝜇𝐻 -stability on Coh(𝑋), we can define the notion of 𝜈𝛽,𝛼-stability on Coh𝛽 (𝑋).
We also call 𝜈𝛼,𝛽-stability as tilt-stability.

Definition 2.1. Let 𝐸 ∈ Coh0 (𝑋) be an object.

1. We define the Brill–Noether (BN) slope of E as

𝜈𝐵𝑁 (𝐸) :=
𝐻𝑛−2 ch2(𝐸)
𝐻𝑛−1 ch1(𝐸)

∈ R ∪ {+∞}.

2. We say the object E is Brill–Noether (BN) (semi)stable if it is 𝜈0,𝛼-(semi)stable for every sufficiently
small real number 0 < 𝛼 � 1.

We refer [Li19a, Section 2] for the basic properties of tilt stability and BN stability. Let us define the
discriminant of an object 𝐸 ∈ 𝐷𝑏 (𝑋) as

Δ𝐻 (𝐸) := (𝐻𝑛−1 ch1 (𝐸))2 − 2𝐻𝑛 ch0 (𝐸)𝐻𝑛−2 ch2(𝐸).

The following is the main question we investigate in this paper.

Question 2.2 [BMS16, BMT14, BMSZ17]. Assume that 𝑛 = dim 𝑋 = 3. Find a 1-cycle Γ ∈ 𝐴1(𝑋)R
satisfying Γ.𝐻 ≥ 0, and the following property: Let E be a 𝜈𝛽,𝛼-semistable object. Then the inequality

𝑄Γ
𝛼,𝛽 (𝐸) ≥ 0
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holds. Here, the quadratic form 𝑄Γ
𝛼,𝛽 is defined as follows:

𝑄Γ
𝛼,𝛽 (𝐸) := (2𝛼 − 𝛽2)

(
Δ𝐻 (𝐸) + 3

Γ.𝐻

𝐻3

(
𝐻3 ch𝛽0 (𝐸)

)2
)

+ 2
(
𝐻 ch𝛽2 (𝐸)

) (
2𝐻 ch𝛽2 (𝐸) − 3Γ.𝐻 ch𝛽0 (𝐸)

)
− 6

(
𝐻2 ch𝛽1 (𝐸)

) (
ch𝛽3 (𝐸) − Γ ch𝛽1 (𝐸)

)
.

The conjectural inequality above is called the Bogomolov–Gieseker (BG) type inequality conjecture,
proposed in [BMS16, BMT14] with Γ = 0. It is known that the BG type inequality conjecture with
Γ = 0 fails for some classes of threefolds, such as the blow-up of P3 at a point (cf. [Kos17, MS19,
Sch17]). The question with the modified term Γ appeared in [BMSZ17] and proved affirmatively for all
Fano threefolds.

The following reduction of Question 2.2 plays an important role in this paper.

Theorem 2.3 (cf. [Li19a, Theorem 3.2]). Assume that 𝑛 = dim 𝑋 = 3. Let Γ be a 1-cycle with Γ.𝐻 ≥ 0.
Suppose that for every BN stable object with 𝜈𝐵𝑁 (𝐸) ∈ [0, 1/2], the inequality 𝑄Γ

0,0 (𝐸) ≥ 0 holds.
Then the inequality in Question 2.2 holds for any choice of real numbers 𝛼, 𝛽 ∈ R with 𝛼 >

1
2 𝛽

2 + 1
2 (𝛽 − �𝛽�)(�𝛽� + 1 − 𝛽).

Proof. Exactly the same arguments as in [Li19a, Theorem 3.2] work since the following statements are
true.

◦ Let (𝛽′, 𝛼′) ∈ R2 be a point on the line through 𝑝𝐻 (𝐸) and (𝛽, 𝛼) with 𝛼′ > 1
2 𝛽

′2. Then
𝑄Γ

𝛼,𝛽 (𝐸) < 0 implies 𝑄Γ
𝛼′,𝛽′ (𝐸) < 0. Here, we define a point 𝑝𝐻 (𝐸) ∈ R2 as

𝑝𝐻 (𝐸) :=
(
𝐻2 ch1 (𝐸)
𝐻3 ch0 (𝐸)

,
𝐻 ch2(𝐸)
𝐻3 ch0(𝐸)

)
.

◦ The quadratic form 𝑄Γ
𝛼,𝛽 is seminegative definite on the kernel of

𝑍 𝛼,𝛽 := 𝐻2 ch𝛽1 +𝑖(𝐻 ch2 −𝛼𝐻3 ch0). �

2.2. Star-shaped functions and the BG type inequalities

In this subsection, we explain the wall-crossing technique used to obtain the (stronger) BG inequality for
tilt-stable objects. This idea will also appear in the proof of the BG type inequality conjecture involving
ch3. As in the previous subsection, we denote by X a smooth projective variety of dimension n, and H
an ample divisor on X. We use the following notion.

Definition 2.4. A function 𝑓 : R→ R is called star-shaped if the following condition holds: For all real
numbers 𝛼, 𝛽 ∈ R with 𝛼 > 0, the line segment connecting the points (𝛽, 𝑓 (𝛽)) and (0, 𝛼) is above the
graph of f.

Recall that for an object 𝐸 ∈ 𝐷𝑏 (𝑋) with ch0 (𝐸) ≠ 0, we define

𝑝𝐻 (𝐸) :=
(
𝐻𝑛−1 ch1(𝐸)
𝐻𝑛 ch0(𝐸)

,
𝐻𝑛−2 ch2 (𝐸)
𝐻𝑛 ch0 (𝐸)

)
.

We have the following result:
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Proposition 2.5 (cf. [BMS16, Li19b]). Let 𝑓 : R→ R be a star-shaped function. Assume that, for every
𝜇𝐻 -semistable torsion free sheaf E, the inequality

𝐻𝑛−2 ch2 (𝐸)
𝐻𝑛 ch0 (𝐸)

≤ 𝑓

(
𝐻𝑛−1 ch1 (𝐸)
𝐻𝑛 ch0 (𝐸)

)
holds. Then for every 𝛼 > 0 and a 𝜈0,𝛼-semistable object E with ch0(𝐸) ≠ 0, its Chern character
satisfies the same inequality.

Proof. Assume for a contradiction that there exists a tilt-semistable object E violating the required
inequality. By [BMS16, Theorem 3.5], the object E satisfies the usual BG inequality Δ𝐻 (𝐸) ≥ 0.
Hence, we may assume that it has the minimum discriminant Δ𝐻 (𝐸) among all tilt-semistable objects
violating the inequality.

Assume that E becomes strictly 𝜈0,𝛼0 -semistable for some 𝛼0 > 0. Then there exists a Jordan–Hölder
factor F of E such that 𝑝𝐻 (𝐹) is on the line segment connecting 𝑝𝐻 (𝐸) and (0, 𝛼0). Since the function
f is star-shaped, the object F also violates the required inequality. Moreover, by [BMS16, Corollary
3.10] we have Δ𝐻 (𝐹) < Δ𝐻 (𝐸), which contradicts the minimality assumption on the discriminant.

Now we can assume that E is 𝜈0,𝛼-semistable for all 𝛼 � 0. Hence, by [BMS16, Lemma 2.7], the
object E satisfies one of the following conditions:

1. 𝐸 ∈ Coh(𝑋) and it is 𝜇𝐻 -semistable with ch0 (𝐸) > 0.
2. H−1(𝐸) is 𝜇𝐻 -semistable, and dim SuppH0(𝐸) ≤ 𝑛 − 2.

In both cases, we get the contradiction by our assumption that 𝜇𝐻 -semistable torsion free sheaves satisfy
the desired inequality. �

2.3. Triple cover CY3

Let us consider a general hypersurface

𝑋 := 𝑋6 ⊂ 𝑃 := P(1, 1, 1, 1, 2)

of degree 6 inside the weighted projective space. Then X is a smooth projective Calabi–Yau threefold,
which we call triple cover CY3. We will use general (2, 2, 6), (2, 6), (2, 2)-complete intersections

𝐶2,2,6 ⊂ 𝑇2,6 ⊂ 𝑋6, 𝐶2,2,6 ⊂ 𝑆2,2

in P. Since the line bundle O𝑃 (2) is free, they are smooth. The following are some of the numerical
invariants of 𝐶 := 𝐶2,2,6, 𝑇 := 𝑇2,6, 𝑆 := 𝑆2,2, and X.

◦ −𝐾𝑃 = 6𝐻𝑃 , 𝐻4
𝑃 = 1

2 .
◦ 𝑔(𝐶) = 25,
◦ −𝐾𝑆 = 2𝐻𝑆 , (−𝐾𝑆)2 = 8. In particular, 𝑆 � P1 × P1.
◦ 𝐶 = 3(−𝐾𝑆) as divisors in S.
◦ td𝑆 = (1, 𝐻𝑆 , 1).
◦ 𝐾𝑇 = 2𝐻𝑇 , 𝐻2

𝑇 = 6, td𝑇 = (1,−𝐻𝑇 , 11).
◦ td𝑋 = (1, 0, 7

6𝐻
2
𝑋 , 0), 𝐻

3
𝑋 = 3.

All the computations are straightforward. For example, to compute td𝑋,2, it is enough to compute
𝜒(O𝑋 (1)), which can be calculated using the exact sequence

0 → O𝑃 (−5) → O𝑃 (1) → O𝑋 (1) → 0.
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3. Clifford type theorem

Recall from the last subsection that we denote by

𝐶 = 𝐶2,2,6 ⊂ 𝑆 = 𝑆2,2 ⊂ 𝑃 = P(1, 1, 1, 1, 2)

the weighted complete intersections. We have 𝑆 � P1 × P1 and 𝐶 ∈ |O𝑆 (6, 6) |. In this section, we will
prove the following proposition:

Proposition 3.1. Let F be a slope stable vector bundle on C of rank r, slope 𝜇. Put 𝑡 := 𝜇/12. Assume
that 𝑡 ∈ [0, 1/2] ∪ [3/2, 2]. The following inequalities hold:

1. When 𝑡 ∈ [0, 1/6), we have ℎ0 (𝐹)/𝑟 ≤ 12𝑡+24
25 .

2. When 𝑡 ∈ [1/6, 1/4), we have ℎ0 (𝐹)/𝑟 ≤ max
{ 8𝑡+8

9 , 10
19 𝑡 +

145
152

}
.

3. When 𝑡 ∈ [1/4, 1/2], we have ℎ0 (𝐹)/𝑟 ≤ max
{
4𝑡, 33

38 𝑡 +
69
76
}
.

4. When 𝑡 ∈ [3/2, 11/6], we have ℎ0 (𝐹)/𝑟 ≤ max
{
4𝑡, 231

32 𝑡 −
375
64

}
.

5. When 𝑡 ∈ (11/6,
√

14/2], we have ℎ0 (𝐹)/𝑟 ≤ 233𝑡−191
32 .

6. When 𝑡 ∈ [
√

14/2, 23/12], we have ℎ0 (𝐹)/𝑟 ≤ 192𝑡−168
25 .

7. When 𝑡 ∈ [23/12, 2], we have ℎ0 (𝐹)/𝑟 ≤ 12𝑡 − 15.

Figure 2 below indicates how the inequalities in Proposition 3.1 look like.

Remark 3.2. The parameter 𝑡 = 𝜇/12 naturally appears as the BN slope of the sheaf 𝜄∗𝐹, where
𝜄 : 𝐶 ↩→ 𝑆 is an embedding. Indeed, we have 𝜈𝐵𝑁 (𝜄∗𝐹) = 𝑡 − 3, as we will see in the proof of Lemma
3.7 below.

It is also compatible with the slope function on T in the following sense. For a vector bundle F on T,
we have 𝑡 (𝐹 |𝐶 ) = 𝜇𝐻𝑇 (𝐹).

Our strategy of the proof of Proposition 3.1 is to use Bridgeland stability conditions on the surface
S, with the following three steps.

1. Regard F as a torsion sheaf 𝜄∗𝐹 ∈ Coh(𝑆), which is 𝜈0,𝛼-stable for 𝛼 � 0.
2. Estimate the first possible wall for 𝜄∗𝐹 on the line 𝛽 = 0 in (𝛼, 𝛽) plane, using the stronger form of

the BG inequality on S.
3. Bound global sections of BN-stable objects on S.

0
𝑡

ℎ0 (𝐹)/𝑟

24
25

1
6

1
4

1
2

2

3
2

𝑡

ℎ0 (𝐹)/𝑟

6 11
6

√
14
2

23
12

2

9

Figure 2. The strong Clifford type bounds on C.
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Figure 3. The strong BG inequality Υ (red curve) on the quadric surface. Blue lines show the modified
curve Υ̃.

We define a function Υ on R as

Υ(𝑥) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2𝑥

2 − 1
2 (1 − {𝑥})2 ({𝑥} ∈ (0, 1/2])

1
2𝑥

2 − 1
2 {𝑥}

2 ({𝑥} ∈ [1/2, 1))
1
2𝑥

2 ({𝑥} = 0).

Here, {𝑥} denotes the fractional part of 𝑥 ∈ R. See Figure 3 above for the shape of Υ. The following
stronger BG inequality on the quadric surface 𝑆 � P1 ×P1 is well-known. We include a proof here since
it demonstrates the technique which we will frequently use in this section.

Lemma 3.3. Let F be a slope semistable torsion free sheaf on S. Then we have an inequality

ch2(𝐹)
𝐻2 ch0(𝐹)

≤ Υ(𝜇𝐻 (𝐹)). (3)

Proof. Since we have Υ(𝑥 + 1) = Υ(𝑥) + 𝑥 + 1/2, the claim is invariant under tensoring with the line
bundle O𝑆 (𝐻). Hence, we may assume 𝜇𝐻 (𝐹) ∈ (0, 1). By the stability of F and the Serre duality, we
have

hom(O(1), 𝐹) = 0, ext2(O(1), 𝐹) = hom(𝐹,O(−1)) = 0

and hence 0 ≥ − ext1(O(1), 𝐹) = 𝜒(O(1), 𝐹). By computing the right-hand side using the Riemann–
Roch theorem, we get the inequality

ch2(𝐹)
𝐻2 ch0(𝐹)

≤ 0.

On the other hand, again by the stability of F and the Serre duality, we also have

hom(𝐹,O) = 0, ext2(𝐹,O) = hom(O, 𝐹 (−2)) = 0,

which imply the inequality 0 ≥ − ext1(𝐹,O) = 𝜒(𝐹,O). Hence, we obtain

ch2(𝐹)
𝐻2 ch0(𝐹)

≤ 𝜇𝐻 (𝐹) − 1
2
.

Taking the minimum, the inequality (3) holds. �
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Remark 3.4. In [Rud94], Rudakov proved an inequality stronger than equation (3). However, our
inequality is already optimal at 𝜇𝐻 = 1/2 (consider 𝐹 = O𝑆 (1, 0)). Because of this fact, we cannot
improve our inequality in Theorem 1.1 at 𝜇𝐻 = 1/2, even if we use the result in [Rud94].

We define a function Υ̃ : R→ R as

Υ̃(𝑥) :=

{
Υ(𝑥) (|𝑥 | ∈ [0, 1])
max

{
Υ(𝑥), 1

2 �|𝑥 |�𝑥
}

(|𝑥 | ≥ 1).

Here, �|𝑥 |� denotes the integral part of the absolute value of a real number 𝑥 ∈ R. Note that the function
Υ̃ is star-shaped and we have Υ(𝑥) ≤ Υ̃(𝑥) for all 𝑥 ∈ R; see Figure 3.

We have the following consequences of Lemma 3.3.

Lemma 3.5. The following statements hold:

1. Fix a positive real number 𝛼 > 0. Let 𝐹 ∈ Coh0 (𝑆) be a 𝜈0,𝛼-semistable object with ch0(𝐹) ≠ 0.
Then the Chern character of F satisfies the inequality

ch2(𝐹)
𝐻2 ch0(𝐹)

≤ Υ̃(𝜇𝐻 (𝐹)). (4)

2. For all real numbers 𝛽, 𝛼 ∈ R with 𝛼 > Υ(𝛽), the pair
(
𝑍𝛽,𝛼,Coh𝛽 (𝑆)

)
defines a stability condition

on 𝐷𝑏 (𝑆). Here, the group homomorphism 𝑍𝛽,𝛼 : 𝐾 (𝑆) → C is defined as

𝑍𝛽,𝛼 := − ch2 +𝛼𝐻2 ch0 +𝑖
(
𝐻 ch1 −𝛽𝐻2 ch0

)
.

Proof.

(1) The first assertion follows from Lemma 3.3 and Proposition 2.5.
(2) For the second assertion, we can apply the arguments in [AB13, Bri08] by replacing the classical

BG inequality with the stronger one, equation (3).
�

In the next two lemmas, we control the position of the first possible wall for 𝜄∗𝐹, where F is a stable
bundle on C, and then bound the slopes of the Harder–Narasimhan (HN) factors of 𝜄∗𝐹 with respect to
BN stability.

Lemma 3.6. Let F be a slope stable vector bundle on C with rank r, slope 𝜇. Let (𝛽1, 𝛼1), (𝛽2, 𝛼2),
𝛽1 < 0 < 𝛽2, be the end points of a wall for 𝜄∗𝐹 with respect to 𝜈𝛽,𝛼-stability. Then we have 𝛽2 − 𝛽1 ≤ 6.

Proof. By the Grothendieck–Riemann–Roch theorem, we have

ch(𝜄∗𝐹) = (0, 6𝑟𝐻, 𝑟 (𝜇 − 36)). (5)

Suppose that there exists a positive integer 𝛼 and a destabilizing sequence

0 → 𝐹2 → 𝜄∗𝐹 → 𝐹1 → 0

in Coh0 (𝑆) for 𝜈0,𝛼-stability. Denote by W the corresponding wall. Note that 𝐹2 is a coherent sheaf.
Let 𝑇 ⊂ 𝐹2 be a torsion part, and put 𝑄 := 𝐹2/𝑇 . We have the following diagram in the tilted category
Coh0(𝑆):
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0

��

0

��

𝑇

��

𝑇

��

0 �� 𝐹2

��

�� 𝜄∗𝐹

��

�� 𝐹1 �� 0

0 �� 𝑄

��

�� 𝜄∗𝐹/𝑇

��

�� 𝐹1 �� 0

0 0 .

By taking the Coh(𝑆)-cohomology of the bottom row in the above diagram, we get the exact sequence

0 → 𝑄/H−1(𝐹1) → 𝜄∗𝐹/𝑇 → 𝐹1 → 0

in Coh(𝑆). In particular, the sheaf𝑄/H−1 (𝐹1) is scheme-theoretically supported on the curve C. Hence,
we have a surjection 𝑄 |𝐶 � 𝑄/H−1(𝐹1) and so get an inequality

6𝐻2 ch0(𝑄) = 𝐻 ch1(𝑄 |𝐶 ) ≥ 𝐻 ch1(𝑄/H−1 (𝐹1)).

Note also that we have ch0 (𝑄) = ch0(H−1 (𝐹1)). Now we have

𝜇𝐻 (𝑄) − 𝜇𝐻 (H−1(𝐹1)) =
𝐻 ch1(𝑄/H−1 (𝐹1))

𝐻2 ch0 (𝑄)
≤ 6. (6)

Now let (𝛽1, 𝛼1), (𝛽2, 𝛼2) be the end points of the wall W with 𝛽1 < 0 < 𝛽2. By Bertram’s nested
wall theorem (see, e.g., [Li19a, Lemma 2.9], [Maci14]), we know that for 0 < 𝜖 � 1, we have

𝑄 ∈ Coh𝛽2−𝜖 (𝑆), H−1(𝐹1) [1] ∈ Coh𝛽1+𝜖 (𝑆),

which in particular imply

𝜇𝐻 (𝑄) > 𝛽2 − 𝜖, 𝜇𝐻 (H−1(𝐹1)) ≤ 𝛽1 + 𝜖 .

Combining with the inequality (6), we have the desired inequality

𝛽2 − 𝛽1 ≤ 6. �

Lemma 3.7. Let F be a slope stable vector bundle on C with rank r, slope 𝜇 ∈ (0, 24). Let 𝑡 := 𝜇/12.
The following statements hold:

1. If 𝑡 ∈
(
0, 2 −

√
14
2

]
, then the sheaf 𝜄∗𝐹 is BN-stable.

2. We have

𝜈+𝐵𝑁 (𝜄∗𝐹) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 1

2𝑡 (𝑡 ∈ (2 −
√

14/2, 1/2] ∪ [3/2,
√

14/2])
−9𝑡+11
−8𝑡+7 (𝑡 ∈ [

√
14/2, 23/12])

3𝑡 − 5 (𝑡 ∈ [23/12, 2]).
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3. We have

𝜈−𝐵𝑁 (𝜄∗𝐹) ≥
{ −5(2𝑡−7)

2(𝑡−6) (𝑡 ∈ (2 −
√

14/2, 1/2] ∪ [3/2, 11/6])
−2 (𝑡 ∈ [11/6, 2]).

Proof. Let W be a wall for 𝜄∗𝐹, and let (𝛽1, 𝛼1), (𝛽2, 𝛼2) be the end points of the wall W with
𝛽1 < 0 < 𝛽2. Recall that the wall W is a line segment with slope 𝜈𝐵𝑁 (𝜄∗𝐹) = 𝜇/12 − 3 = 𝑡 − 3 (see
equation (5) for the second equality). Since the curve Υ is not continuous when 𝛽 ∈ Z, the points (𝛽𝑖 , 𝛼𝑖)
are either on the graph of Υ or on the vertical lines

𝐿𝑛 :=
{
(𝑛, 𝑦) :

𝑛2 − 1
2

< 𝑦 <
𝑛2

2

}
, 𝑛 ∈ Z.

When both of the end points (𝛽𝑖 , 𝛼𝑖) are on the curve Υ, we say that the wall W is of Type A; otherwise,
we say it is of Type B.

First, assume that W is of Type A. By Lemma 3.6, we know that 𝛽2 − 𝛽1 ≤ 6. Hence, the slope of the
line through (𝛽2,Υ(𝛽2)) and (𝛽2 −6,Υ(𝛽2 −6)) is smaller than or equal to that of W, i.e., 𝛽2 −3 ≤ 𝑡−3.
We conclude that every Type A wall is below the line 𝑦 = (𝑡 − 3) (𝑥 − 𝑡) + Υ(𝑡).

On the other hand, for a given point 𝑝 = (𝛽, 𝛼) ∈ 𝐿𝑛, let 𝑊𝑝 be the line passing through the point p
with slope 𝑡 − 3. It is easy to compute the intersection points of 𝑊𝑝 and Υ ∪

⋃
𝑛∈Z 𝐿𝑛. Together with

the constraint 𝛽2 − 𝛽1 ≤ 6, we can find the first possible wall of Type B.
Using these observations, we can list up the equation of the first possible wall:

◦ When 𝑡 ∈ [0, 1/2], the following is the first possible wall

𝑦 = (𝑡 − 3) (𝑥 − 𝑡) + 𝑡 − 1/2.

Note that, if 𝑡 ∈ [0, 2 −
√

14/2], it is negative at 𝑥 = 0, hence 𝜄∗𝐹 is BN stable.
◦ When 𝑡 ∈ [3/2, 2], one of the following is the first possible wall

𝑦 = (𝑡 − 3) (𝑥 − 𝑡) + 𝑡 − 1/2, 𝑦 = (𝑡 − 3) (𝑥 + 4) + 8.

The first one is the line passing through the points (𝑡,Υ(𝑡)) and (𝑡 − 6,Υ(𝑡 − 6)). The second one is
the line with slope 𝑡 − 3, passing through the point (−4,Υ(−4)). See Figure 4 below.

Let L be the first possible wall described above, and let (𝛽max, 𝛼max), (𝛽min, 𝛼min) be the intersection
points of L with the curve Υ with 𝛽min < 𝛽max. Then any wall W should be below the line L. Now
consider the maximal destabilizing subobject 𝐸1 ⊂ 𝜄∗𝐹 with respect to the BN stability. We have three
numerical constraints on 𝐸1:

◦ Since 𝜄∗𝐹 is 𝜈𝛼,0-stable for 𝛼 sufficiently large, we have ch0(𝐸1) > 0.
◦ 𝐸1 satisfies the BG type inequality (4).
◦ The point 𝑝𝐻 (𝐸1) is below the line L.

Among all points satisfying the above three conditions, its slope becomes maximum at the point
(𝛼max, 𝛽max), hence we get the bound

𝜈𝐵𝑁 (𝐸1) ≤
𝛼max
𝛽max

.

Now the straightforward computation shows the result. Similarly, we can get the bound 𝜈−𝐵𝑁 (𝜄∗𝐹) ≥
𝛼min/𝛽min. �

The following lemma gives the upper bound on the number of global sections for BN stable objects.
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Figure 4. The first possible wall L when 𝑡 = 3/2 (left) and 𝑡 = 23/12 (right).

Lemma 3.8. Let 𝐹 ∈ Coh0(𝑆) be a BN stable object. Then the following inequalities hold:

◦ When −1 < 𝜈𝐵𝑁 (𝐹) < +∞, we have

hom(O𝑆 , 𝐹) = ch0(𝐹) + 𝐻 ch1 (𝐹) + ch2(𝐹).

◦ When 𝜈𝐵𝑁 (𝐸) ∈ (−𝑛 − 1,−𝑛), 𝑛 ∈ Z>0, we have

hom(O𝑆 , 𝐹) ≤ ch0 (𝐹) +
1

2𝑛 + 1
𝐻 ch1(𝐹) +

1
(2𝑛 + 1)2 ch2(𝐹).

◦ When 𝜈𝐵𝑁 (𝐸) = −𝑛, 𝑛 ∈ Z>0, we have

hom(O𝑆 , 𝐹) ≤ ch0(𝐹) +
1

4𝑛
𝐻 ch1 (𝐹).

Proof. First, assume that 𝜈𝐵𝑁 (𝐹) > −1. Noting 𝜈𝐵𝑁 (O𝑆 [1]) = +∞ and 𝜈𝐵𝑁 (O𝑆 (−2) [1]) = −1, we
have the following vanishings for any 𝑖 ≥ 0:

hom(O𝑆 , 𝐹 [1 + 𝑖]) = hom(𝐹,O𝑆 (−2) [1 − 𝑖]) = 0,
hom(O𝑆 , 𝐹 [−1 − 𝑖]) = hom(O𝑆 [1 + 𝑖], 𝐹) = 0.

Hence, by the Riemann–Roch, we get

hom(O𝑆 , 𝐹) = 𝜒(𝐹) =
∫
𝑆

ch(𝐹).(1, 𝐻, 1)

= ch0 (𝐹) + 𝐻 ch1(𝐹) + ch2 (𝐹).

Next, consider the case 𝜈𝐵𝑁 (𝐸) ∈ (−𝑛 − 1,−𝑛), 𝑛 ∈ Z>0. Let

(𝑥𝐹 , 𝑦𝐹 ) := 𝑝𝐻 (𝐹) =
(
𝐻 ch1 (𝐹)
𝐻2 ch0(𝐹)

,
ch2 (𝐹)

𝐻2 ch0 (𝐹)

)
.
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Since we assumed 𝑦𝐹/𝑥𝐹 = 𝜈𝐵𝑁 (𝐹) ≤ −1 < 0, the line through (0, 0) and (𝑥𝐹 , 𝑦𝐹 ) intersects with the
region 𝑦 ≥ 1/2𝑥2, 𝑥 < 0.

Take such a point (𝛽, 𝛼). Then we know that the objects 𝐹,O𝑆 ∈ Coh𝛽 (𝑆) are 𝜈𝛽,𝛼-semistable with

𝜈𝛽,𝛼 (𝐹) = 𝜈𝛽,𝛼 (O𝑆) = 𝛼/𝛽 = 𝜈𝐵𝑁 (𝐹).

Let us consider the exact triangle

Hom(O𝑆 , 𝐹) ⊗ O𝑆
𝑒𝑣−−→ 𝐹 → 𝐹 := Cone(𝑒𝑣).

Since the only Jordan–Hölder factor of Hom(O𝑆 , 𝐹) ⊗ O𝑆 with respect to 𝜈𝛽,𝛼-stability is O𝑆 , the
evaluation map 𝑒𝑣 must be injective in the category Coh𝛽 (𝑆). Hence, it follows that 𝐹 ∈ Coh𝛽 (𝑆), and
it is 𝜈𝛽,𝛼-semistable with 𝜈𝛽,𝛼 (𝐹) = 𝜈𝛽,𝛼 (𝐹) = 𝜈𝐵𝑁 (𝐹). Now choose 𝛽 sufficiently close to zero so
that O𝑆 (−2𝑛) [1] ∈ Coh𝛽 (𝑆). As before, we have the vanishing statements

hom(O𝑆 (−2𝑛), 𝐹 [1 + 𝑖]) = hom(𝐹,O𝑆 (−(2𝑛 + 2)) [1 − 𝑖]) = 0,

hom(O𝑆 (−2𝑛), 𝐹 [−1 − 𝑖]) = hom(O𝑆 (−2𝑛) [1 + 𝑖], 𝐹) = 0

for 𝑖 ≥ 0. Hence, we have

0 ≤ hom(O𝑆 (−2𝑛), 𝐹)
= 𝜒(O𝑆 (−2𝑛), 𝐹)
= ch2 (𝐹) + (2𝑛 + 1)𝐻 ch1 (𝐹) + (2𝑛 + 1)2(ch0(𝐹) − hom(O𝑆 , 𝐹)),

and so

hom(O𝑆 , 𝐹) ≤ ch0 (𝐹) +
𝐻 ch1 (𝐹)

2𝑛 + 1
+ ch2 (𝐹)
(2𝑛 + 1)2

as required.
Finally, assume that 𝜈𝐵𝑁 (𝐹) = −𝑛, 𝑛 ∈ Z>0. Then the same argument shows that 𝜒(O𝑆 (−2𝑛 + 1),

𝐹) ≥ 0, and we get the inequality

hom(O𝑆 , 𝐹) ≤ ch0 (𝐹) +
𝐻 ch1 (𝐹)

2𝑛
+ ch2(𝐹)

(2𝑛)2 = ch0(𝐹) +
1

4𝑛
𝐻 ch1(𝐹). �

Let us define a function Ω : R × R>0 → R>0 as

Ω(𝑥, 𝑦) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦 + 𝑥 (𝑥/𝑦 > −1)
𝑦

2𝑛+1 + 𝑥
(2𝑛+1)2 (𝑥/𝑦 ∈ (−𝑛 − 1,−𝑛), 𝑛 ∈ Z>0)

1
4𝑛 𝑦 (𝑥/𝑦 = −𝑛, 𝑛 ∈ Z>0).

Lemma 3.9. Let𝑂 ∈ R2 be the origin, and let 𝑃 = (𝑥𝑝 , 𝑦𝑝), 𝑄 = (𝑥𝑞 , 𝑦𝑞) ∈ R×R>0 be points satisfying
𝑥𝑝/𝑦𝑝 < 𝑥𝑞/𝑦𝑞 and 𝑦𝑝 > 𝑦𝑞 .

Among all the sequences 𝑂 = 𝑃0, 𝑃1, · · · , 𝑃𝑚−1, 𝑃𝑚 = 𝑃 of points in the triangle 𝑂𝑃𝑄 such that
𝑃0𝑃1 · · · 𝑃𝑚 form convex polygons, the sum

𝑚∑
𝑖=1

Ω(−−−−−→𝑃𝑖−1𝑃𝑖)

can achieve the maximum only when 𝑚 ≤ 2.
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Moreover, when 𝑚 = 2, the point 𝑃1 = (𝑥1, 𝑦1) can be chosen to satisfy one of the following
conditions:

◦ 𝑃1 = 𝑄,
◦ 𝑃1 is on the line segment 𝑂𝑄 (resp. 𝑃𝑄) such that the slope of 𝑃1𝑃 (resp. 𝑂𝑃1) is −1/𝑛 for some
𝑛 ∈ Z>0.

◦ The lines 𝑂𝑃1 and 𝑃1𝑃 have slopes −1/𝑚,−1/𝑛 for some integers 𝑚, 𝑛 ∈ Z>0.

Proof. The proof is elementary and almost identical with that of [Li19a, Lemma 4.11]. The key
observations are the following:

◦ The function Ω is linear with respect to both variables x and y as long as the slope 𝑥/𝑦 is fixed.
◦ The function Ω is upper semicontinuous.

We refer to [Li19a, Lemma 4.11] for the details. �

Now we can prove Proposition 3.1.

Proof of Proposition 3.1. Let F be a slope stable vector bundle on C of rank r and slope 𝜇. Let

0 = 𝐸0 ⊂ 𝐸1 ⊂ · · · ⊂ 𝐸𝑚 = 𝜄∗𝐹

be the HN filtration with respect to the BN stability, and define 𝑃𝑖 := (ch2(𝐸𝑖), 𝐻 ch1 (𝐸𝑖)). We have an
inequality

ℎ0(𝐹) ≤
𝑚∑
𝑖=1

Ω(−−−−−→𝑃𝑖−1𝑃𝑖) (7)

by Lemma 3.8 (cf. [Li19a, Equation (21)]). We will bound the RHS in the above inequality. Let us put

𝑃 = (𝑥𝑝 , 𝑦𝑝) := (ch2(𝜄∗𝐹), 𝐻 ch1(𝜄∗𝐹)) = (𝑟 (𝜇 − 36), 12𝑟),

and𝑄 = (𝑥𝑞 , 𝑦𝑞) to be a point such that 𝑥𝑞/𝑦𝑞 is the upper bound for 𝜈+𝐵𝑁 (𝜄∗𝐹), and (𝑥𝑝−𝑥𝑞)/(𝑦𝑝−𝑦𝑞)
is the lower bound for 𝜈−𝐵𝑁 (𝜄∗𝐹), given in Lemma 3.7. We know that the HN polygon of 𝜄∗𝐹 with respect
to the BN stability is inside the triangle 𝑂𝑃𝑄. Hence, by Lemma 3.9, we may assume 𝑚 = 2 and the
point 𝑃1 satisfies one of the following conditions:

◦ 𝑃1 = 𝑄,
◦ 𝑃1 is on the line segment 𝑂𝑄 (resp. 𝑃𝑄) such that the slope of 𝑃1𝑃 (resp. 𝑂𝑃1) is −1/𝑛 for some
𝑛 ∈ Z>0.

◦ The lines 𝑂𝑃1 and 𝑃1𝑃 have slopes −1/𝑚,−1/𝑛 for some integers 𝑚, 𝑛 ∈ Z>0.

We now argue case by case.
(0) When 𝑡 ∈ (0, 2−

√
14/2], the sheaf 𝜄∗𝐹 is BN stable. The BN slope is 𝜈𝐵𝑁 (𝜄∗𝐹) = 𝑡−3 ∈ (−3,−2),

hence by Lemma 3.8, we have

ℎ0 (𝐹)/𝑟 ≤ 12
5

+ 12(𝑡 − 3)
25

=
12𝑡 + 24

25
.

(1) Assume 𝑡 ∈ (2 −
√

14/2, 1/6). By Lemma 3.7, we have

◦ The slope of
−−→
𝑂𝑃 is 1

𝑡−3 ∈ (−1/2,−1/3),
◦ The slope of

−−→
𝑂𝑄 is 2𝑡

2𝑡−1 ∈ (−1/2,−1/3).
◦ The slope of

−−→
𝑄𝑃 is 2(𝑡−6)

−5(2𝑡−7) ∈ (−1/2,−1/3).
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Hence, we may assume 𝑃1 = 𝑄 = (𝑥𝑞 , 𝑦𝑞). We get

ℎ0 (𝐹) ≤ Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃)

=
𝑦𝑞

5
+
𝑥𝑞

25
+
𝑦𝑝 − 𝑦𝑞

5
+
𝑥𝑝 − 𝑥𝑞

25
=

12𝑡 + 24
25

𝑟.

(2) Assume 𝑡 ∈ [1/6, 1/4). Then the slopes of the triangle𝑂𝑃𝑄 are the same as the case (1). The only
difference is that the slope of

−−→
𝑂𝑄 sits inside the interval (−1,−1/2], instead of (−1/2,−1/3). Hence, we

may take 𝑃1 as Q or the point A on the line segment 𝑄𝑃 with slope −1/2. The coordinates are given as

𝑄 = ((2𝑡 − 1)𝑟, 2𝑡𝑟), 𝐴 =

(
24(2𝑡2 − 8𝑡 + 1)

−6𝑡 + 11
𝑟,

12(2𝑡2 − 8𝑡 + 1)
−6𝑡 + 11

𝑟

)
.

First, consider the case of 𝑃1 = 𝑄 ≠ 𝐴. We have

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) =
𝑦𝑞

3
+
𝑥𝑞

9
+
𝑦𝑝 − 𝑦𝑞

5
+
𝑥𝑝 − 𝑥𝑞

25

=
8𝑡 + 8

9
𝑟.

When 𝑃1 = 𝐴, we have

Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃) = 𝑦𝑎
8

+
𝑦𝑝 − 𝑦𝑎

5
+
𝑥𝑝 − 𝑥𝑎

25

=
1

200
𝑦𝑎 +

12𝑡 + 24
25

𝑟.

As a function on 𝑡 ∈ [1/6, 1/4], we have an inequality

𝑦𝑎 (𝑡) ≤
(

176
19

𝑡 − 23
19

)
𝑟

since the equality holds for 𝑡 = 1/4, 1/6, and 𝑦′′𝑎 (𝑡) > 0 for 𝑡 < 11/6. Hence, we obtain

Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃) ≤ 1
200

(
176
19

𝑡 − 23
19

)
𝑟 + 12𝑡 + 24

25
𝑟

=

(
10
19

𝑡 + 145
152

)
𝑟.

We conclude that

ℎ0 (𝐹)/𝑟 ≤ max
{

8𝑡 + 8
9

,
10
19

𝑡 + 145
152

}
.

(3) Assume 𝑡 ∈ [1/4, 1/2]. Again the only difference with the cases (1), (2) is that the slope of 𝑂𝑄
is smaller than or equal to −1 (or +∞ when 𝑡 = 1/2) in the present case. Hence, we may choose 𝑃1 to
be Q, or the points 𝐴, 𝐵 on the line segment 𝑄𝑃 with slope −1/2,−1, respectively. The coordinate of
𝑄, 𝐴 are the same as in equation (2), and we have

𝐵 = (𝑥𝑏 , 𝑦𝑏) =
(
−12(2𝑡2 − 8𝑡 + 1)

8𝑡 − 23
𝑟,

12(2𝑡2 − 8𝑡 + 1)
8𝑡 − 23

𝑟

)
.
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We get

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) = 𝑦𝑞 + 𝑥𝑞 +
𝑦𝑝 − 𝑦𝑞

5
+
𝑥𝑝 − 𝑥𝑞

25
= 4𝑡𝑟,

Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃) = 1
4
𝑦𝑏 +

𝑦𝑝 − 𝑦𝑏

5
+
𝑥𝑝 − 𝑥𝑏

25
=

9
100

𝑦𝑏 +
12𝑡 + 24

25
𝑟.

As a function of 𝑡 ∈ [1/4, 1/2], we have the inequality

𝑦𝑏 (𝑡) ≤
(

82
19

𝑡 − 11
19

)
𝑟

and hence

Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃) ≤ 33
38

𝑡𝑟 + 69
76
𝑟.

We can directly compute that

Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃) = 1
200

𝑦𝑎 +
12𝑡 + 24

25
≤ 33

38
𝑡𝑟 + 69

76
𝑟.

We conclude that

ℎ0 (𝐹)/𝑟 ≤ max
{
4𝑡,

33
38

𝑡 + 69
76

}
.

(4) Assume 𝑡 ∈ [3/2, 11/6]. In this case, we have

◦ The slope of
−−→
𝑂𝑃 is 1

𝑡−3 ∈ (−1,−1/2),
◦ The slope of

−−→
𝑂𝑄 is 2𝑡

2𝑡−1 > 0,
◦ The slope of

−−→
𝑄𝑃 is 2(𝑡−6)

−5(2𝑡−7) ∈ [−1/2,−1/3).

There are four choices of the point 𝑃1, say 𝑄, 𝐴, 𝐵, 𝐶, where A is the point on the line 𝑃𝑄 with slope
−1, B is the point on the line 𝑂𝑄 such that the slope of 𝐵𝑃 is −1/2 and C is the intersection point of
two lines 𝑂𝐴 and 𝐵𝑃. Explicitly, we have

𝑄 = ((2𝑡 − 1)𝑟, 2𝑡𝑟), 𝐴 =

(
−12(2𝑡2 − 8𝑡 + 1)

8𝑡 − 23
𝑟,

12(2𝑡2 − 8𝑡 + 1)
8𝑡 − 23

𝑟

)
,

𝐵 =

(
12(2𝑡 − 1) (𝑡 − 1)

6𝑡 − 1
𝑟,

24𝑡 (𝑡 − 1)
6𝑡 − 1

𝑟

)
, 𝐶 = (−12(𝑡 − 1)𝑟, 12(𝑡 − 1)𝑟).

Hence, we get

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) = 4
5
𝑦𝑞 +

24
25

𝑥𝑞 +
12𝑡 + 24

25
𝑟 = 4𝑡𝑟,

Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃) = 9
100

𝑦𝑎 +
12𝑡 + 24

25
𝑟,

Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃) = 𝑦𝑏 + 𝑥𝑏 +
𝑦𝑝 − 𝑦𝑏

8
=

7
8
𝑦𝑏 + 𝑥𝑏 +

3
2
𝑟,

Ω(−−→𝑂𝐶) +Ω(−−→𝐶𝑃) = 𝑦𝑐
4

+
𝑦𝑝 − 𝑦𝑐

8
=

3
2
𝑡𝑟 .
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First, we can show that

9
100

𝑦𝑎 <
4
5
𝑦𝑞 +

24
25

𝑥𝑞

for 𝑡 ∈ [3/2, 11/6]. On the other hand, it is easy to see

Ω(−−→𝑂𝐶) +Ω(−−→𝐶𝑃) ≤ Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃) = 90𝑡2 − 96𝑡 + 21
2(6𝑡 − 1) 𝑟 ≤

(
231
32

𝑡 − 375
64

)
𝑟.

Hence, we can conclude that

ℎ0(𝐹)/𝑟 ≤ max
{
4𝑡,

231
32

𝑡 − 375
64

}
.

(5) Assume 𝑡 ∈ (11/6,
√

14/2]. Then we have

◦ The slope of
−−→
𝑂𝑃 is 1

𝑡−3 ∈ (−1,−1/2),
◦ The slope of

−−→
𝑂𝑄 is 2𝑡

2𝑡−1 > 0,
◦ The slope of

−−→
𝑄𝑃 is −1/2.

Hence, we can choose the point 𝑃1 to be B or C appeared in the case (4) above. For 𝑡 ∈ [11/6,
√

14/2],
we have

Ω(−−→𝑂𝐶) +Ω(−−→𝐶𝑃) ≤ Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃) = 90𝑡2 − 96𝑡 + 21
2(6𝑡 − 1) 𝑟 ≤

(
233
32

𝑡 − 191
32

)
𝑟.

(6) Assume 𝑡 ∈ [
√

14/2, 23/12]. In this case, we have

◦ The slope of
−−→
𝑂𝑃 is 1

𝑡−3 ∈ (−1,−1/2),
◦ The slope of

−−→
𝑂𝑄 is 8𝑡−7

9𝑡−11 > 0,
◦ The slope of

−−→
𝑄𝑃 is −1/2.

We may choose the point 𝑃1 as Q or A, where A is the point on the line 𝑃𝑄 with slope −1. Explicitly,
we have

𝑄 =

(
12
25

(9𝑡 − 11)𝑟, 12
25

(8𝑡 − 7)𝑟
)
, 𝐴 = (−12(𝑡 − 1)𝑟, 12(𝑡 − 1)𝑟),

and hence

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) = 𝑦𝑞 + 𝑥𝑞 +
𝑦𝑝 − 𝑦𝑞

8
=

192𝑡 − 168
25

𝑟,

Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃) = 𝑦𝑎
4

+
𝑦𝑝 − 𝑦𝑎

8
=

3
2
𝑡𝑟 .

We can see that Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) ≥ Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃), hence we conclude that

ℎ0 (𝐹)/𝑟 ≤ 192𝑡 − 168
25

.
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(7) Assume 𝑡 ∈ [23/12, 2). Then we have

◦ The slope of
−−→
𝑂𝑃 is 1

𝑡−3 ∈ (−1,−1/2),
◦ The slope of

−−→
𝑂𝑄 is 1

3𝑡−5 > 0,
◦ The slope of

−−→
𝑄𝑃 is −1/2.

Hence, 𝑃1 = 𝑄 or A, where A is the point on the line segment 𝑃𝑄 with slope −1, i.e.,

𝑄 = ((12𝑡 − 20)𝑟, 4𝑟), 𝐴 = ((−12𝑡 + 12)𝑟, (12𝑡 − 12)𝑟).

We can calculate as

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) = (12𝑡 − 15)𝑟,

Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃) = 3
2
𝑡𝑟

hence taking the maximum, we conclude that

ℎ0 (𝐹)/𝑟 ≤ 12𝑡 − 15. �

4. Stronger BG inequality

Using the Clifford type bound obtained in Proposition 3.1, we prove the following stronger version of
the (classical) BG inequality on a triple cover CY3 𝑋 := 𝑋6 ⊂ P(1, 1, 1, 1, 2).

Theorem 4.1. Let X be a triple cover CY3. Let 𝐹 ∈ 𝐷𝑏 (𝑋) be a 𝜈𝛼,0-semistable object for some 𝛼 > 0,
with 𝜇𝐻 (𝐹) ∈ [−1, 1]. Then we have the following inequality

𝐻 ch2(𝐹)
𝐻3 ch0(𝐹)

≤ Ξ(|𝜇𝐻 (𝐹) |), (8)

where

Ξ(𝑡) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡2 − 𝑡 (𝑡 ∈ [0, 1/4])
3𝑡/4 − 3/8 (𝑡 ∈ [1/4, 1/2])
𝑡/4 − 1/8 (𝑡 ∈ [1/2, 3/4])
𝑡2 − 1/2 (𝑡 ∈ [3/4, 1]).

Proof. Assume for contradiction that there is a tilt semistable object F violating the inequality (8). We
may assume 𝜇𝐻 (𝐹) ≥ 0 by replacing F with 𝐹∨ if necessary. First, observe that the following conditions
hold:

◦ Let 𝑝 = (𝑎, 𝑏) be an arbitrary point with 𝑎 ∈ [0, 1], 𝑏 > Ξ(𝑎), and take a real number 𝛼 > 0 (resp.
𝛼′ > 1/2). Then the line segment connecting the points p and (0, 𝛼) (resp. (1, 𝛼′)) is above the
graph of Ξ.

◦ Let L be the line through 𝑝𝐻 (𝐹) and 𝑝𝐻 (𝐹 (−2𝐻) [1]). Then L passes through points (0, 𝛼0), (−1, 𝛼′
0)

with 𝛼0 > 0, 𝛼′
0 > 1/2. Putting (𝑎, 𝑏) := 𝑝𝐻 (𝐹), the conditions are equivalent to the inequalities

𝑏 > 𝑎2 − 𝑎, 𝑏 > 𝑎2 − 1/2.

Under these conditions, we can apply the arguments in [Li19a, Proposition 5.2, Corollary 5.4].
As a result, by restricting to the surface 𝑇 = 𝑇2,6 ⊂ 𝑋6, we obtain a tilt-stable object F on T with
𝜇𝐻 (𝐹) ∈ (0, 1) and

ch2(𝐹)
𝐻2 ch0(𝐹)

> Ξ

(
𝐻 ch1 (𝐹)
𝐻2 ch0 (𝐹)

)
. (9)
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Furthermore, by the first paragraph in the proof of [Li19a, Proposition 5.2], we may assume that

◦ 𝜇𝐻𝑇 (𝐹) ∈ (0, 1/2],
◦ F is 𝜇𝐻𝑇 -stable coherent sheaf,
◦ 𝐹 |𝐶 , 𝐹∨(2𝐻𝑇 ) |𝐶 are slope stable.

Using the Riemann–Roch and the vanishings

hom(O𝑇 , 𝐹 (−2𝐻𝑇 )) = 0 = hom(O𝑇 , 𝐹
∨)

(both follows from slope stability of F and the assumption on its slope), we have

ch2 (𝐹) − 𝐻𝑇 ch1(𝐹) + 11 ch0(𝐹) = 𝜒(𝐹)
≤ ℎ0 (𝐹 |𝐶 ) + ℎ0 (𝐹∨(2𝐻𝑇 ) |𝐶 ).

(10)

Note that we have

ch(𝐹 |𝐶 ) = (ch0 (𝐹), 2𝐻 ch1 (𝐹)),
ch(𝐹∨(2𝐻𝑇 ) |𝐶 ) = (ch0 (𝐹), 4𝐻2 ch0 (𝐹) − 2𝐻 ch1(𝐹)).

Applying Proposition 3.1 to the RHS of equation (10), we get

ch2(𝐹)
𝐻2 ch0(𝐹)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 23
25 𝜇𝐻 (𝐹) − 13

75 (𝜇𝐻 (𝐹) ∈ (0, 1/12])
− 1

5 𝜇𝐻 (𝐹) − 7
30 (𝜇𝐻 (𝐹) ∈ [1/12, 2 −

√
14/2])

− 641
4800 𝜇𝐻 (𝐹) − 1157

4800 (𝜇𝐻 (𝐹) ∈ [2 −
√

14/2, 1/6))
− 421

3648 𝜇𝐻 (𝐹) − 595
2432 (𝜇𝐻 (𝐹) ∈ [1/6, 89/496])

− 95
1728 𝜇𝐻 (𝐹) − 883

3456 (𝜇𝐻 (𝐹) ∈ [89/496, 37/206])
13
27 𝜇𝐻 (𝐹) − 19

54 (𝜇𝐻 (𝐹) ∈ [37/206, 1/4))
109
228 𝜇𝐻 (𝐹) − 53

152 (𝜇𝐻 (𝐹) ∈ [1/4, 69/238])
𝜇𝐻 (𝐹) − 1

2 (𝜇𝐻 (𝐹) ∈ [69/238, 1/2]).

(11)

In all cases, the inequalities (11) contradict the inequality (9). �

5. The case of double cover

In this section, we consider the double cover X of P3 branched along a smooth hypersurface of degree
8; X is another example of Calabi–Yau threefolds. As in the previous sections, we treat X as a weighted
hypersurface in 𝑃 = P(1, 1, 1, 1, 4) of degree 8. Let

𝐶2,4,8 ⊂ 𝑇2,8 ⊂ 𝑋8, 𝐶2,4,8 ⊂ 𝑆2,4

be smooth (2, 4, 8)-, (2, 8)-, (2, 4)-complete intersections in P. The following is the list of their numerical
invariants we need.

◦ −𝐾𝑃 = 8𝐻, 𝐻4
𝑃 = 1/4,

◦ 𝑔(𝐶) = 49,
◦ 𝑆 � P1 × P1,
◦ 𝐾𝑇 = 2𝐻𝑇 , 𝐻2

𝑇 = 4, td𝑇 = (1,−𝐻𝑇 , 10),
◦ td𝑋 = (1, 0, 11

6 𝐻
2
𝑋 , 0), 𝐻

3
𝑋 = 2.

Remark 5.1. To make the surface S smooth, we take a (2, 4)-complete intersection instead of a (2, 2)-
complete intersection.
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5.1. Clifford type bound

In this subsection, we will prove the Clifford type theorem for the curve𝐶 = 𝐶2,4,8, using the embedding
𝜄 into the quadric surface 𝑆 � P1 × P1.

Lemma 5.2. Let F be a slope stable vector bundle on C with rank r slope 𝜇. Put 𝑡 := 𝜇
16 , and assume

𝑡 ∈ [0, 1/2] ∪ [3/2, 2]. Then we have the following statements hold:

1. When 𝑡 ∈
[
0, 5−

√
23

2

]
, the sheaf 𝜄∗𝐹 is BN stable.

2. We have

𝜈+𝐵𝑁 (𝜄∗𝐹) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 1

2𝑡 (𝑡 ∈ [ 5−
√

23
2 , 1/2] ∪ [3/2,

√
23−1
2 ])

−13𝑡+16
−12𝑡+11 (𝑡 ∈ [

√
23−1
2 , 31/16])

4𝑡 − 7 (𝑡 ∈ [31/16, 2]).

3. We have

𝜈−𝐵𝑁 (𝜄∗𝐹) ≥
{
−7(2𝑡−9)

2(𝑡−8) (𝑡 ∈ ( 5−
√

23
2 , 1/2] ∪ [3/2, 15/8])

−3 (𝑡 ∈ [15/8, 2]).

Proof. The proof is almost identical to that of Lemma 3.7. Hence, we just give an outline of the proof.
Let us consider the embedding 𝜄 : 𝐶 ↩→ 𝑆. For 𝐹 ∈ Coh(𝐶), we have ch(𝜄∗𝐹) = (0, 8𝑟𝐻, 𝑟 (𝜇 − 64)).
Let W be a wall for 𝜄∗𝐹 with respect to the 𝜈𝛼,0-stability, and let 𝛽1, 𝛽2 be the 𝛽-coordinates of the end
points of the wall W with 𝛽1 < 0 < 𝛽2. Then we can show that 𝛽2 − 𝛽1 ≤ 8. We have 𝜈𝐵𝑁 (𝜄∗𝐹) = 𝑡 − 4,
and we can get the bounds of the first possible wall as follows:

◦ When 𝑡 ∈ [0, 1/2], the equation of the first possible wall is

𝑦 = (𝑡 − 4) (𝑥 − 𝑡) + 𝑡 − 1/2,

which is the line passing through the points (𝑡,Υ(𝑡)), (𝑡 − 8,Υ(𝑡 − 8)). We can see that 𝑦(0) ≤ 0 for
𝑡 ∈ [0, 5−

√
23

2 ], hence the sheaf 𝜄∗𝐹 is BN stable.
◦ When 𝑡 ∈ [3/2, 2], we have two possibilities of the first wall:

𝑦 = (𝑡 − 4) (𝑥 − 𝑡) + 𝑡 − 1/2, 𝑦 = (𝑡 − 4) (𝑥 + 6) + 18.

The first equation is the line passing through the points (𝑡,Υ(𝑡)), (𝑡 − 8,Υ(𝑡 − 8)), and the second
one is the line passing through the point (−6,Υ(−6)) with slope 𝑡 − 4.

As similar to Lemma 3.7, we get the bound on 𝜈±𝐵𝑁 (𝜄∗𝐹) by computing the end points of the first
possible walls listed above. �

We get the following Clifford type bound:

Proposition 5.3. Let F be a slope stable vector bundle on C of rank r, slope 𝜇 ∈ (0, 8] ∪ [24, 32). Put
𝑡 := 𝜇/16. The following inequalities hold:

1. When 𝑡 ∈ (0, 1/8), we have ℎ0 (𝐹)/𝑟 ≤ 16(𝑡+3)
49 .

2. When 𝑡 ∈ [1/8, 1/6), we have ℎ0 (𝐹)/𝑟 ≤ max
{ 12𝑡+24

25 , 85𝑡
246 + 481

492
}
.

3. When 𝑡 ∈ [1/6, 1/4), we have ℎ0 (𝐹)/𝑟 ≤ max
{ 8𝑡+8

9 , 17𝑡
38 + 147

152
}
.

4. When 𝑡 ∈ [1/4, 1/2], we have ℎ0 (𝐹)/𝑟 ≤ max
{
4𝑡, 63𝑡

82 + 153
164

}
.

5. When 𝑡 ∈ [3/2, 15/8], we have ℎ0 (𝐹)/𝑟 ≤ 4𝑡.
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6. When 𝑡 ∈ (15/8,
√

23−1
2 ], we have ℎ0 (𝐹)/𝑟 ≤ 133𝑡−114

18 .
7. When 𝑡 ∈ [

√
23−1
2 , 31/16], we have ℎ0 (𝐹)/𝑟 ≤ 236

49 𝑡 −
148
21 .

8. When 𝑡 ∈ [31/16, 2), we have ℎ0 (𝐹)/𝑟 ≤ 16𝑡 − 23.

Proof. As in the proof of Proposition 3.1, the problem is reduced to computing Ω(−−−→𝑂𝑃1) + Ω(−−−→𝑃1𝑃)
for appropriate candidate points 𝑃1 in the triangle 𝑂𝑃𝑄. Here, the points 𝑃,𝑄 are defined as before,
namely, 𝑃 := (ch2(𝜄∗𝐹), 𝐻 ch1(𝜄∗𝐹)) = (16(𝑡 − 4)𝑟, 16𝑟), and 𝑄 = (𝑥𝑞 , 𝑦𝑞) is the point such that 𝑥𝑞/𝑦𝑞
is the upper bound for 𝜈+𝐵𝑁 (𝜄∗𝐹), and (𝑥𝑝 − 𝑥𝑞)/(𝑦𝑝 − 𝑦𝑞) is the lower bound for 𝜈−𝐵𝑁 (𝜄∗𝐹), given in
Lemma 5.2.

(0) First, assume that 𝑡 ∈
[
0, 5−

√
23

2

]
. In this case, the sheaf 𝜄∗𝐹 is BN stable with BN slope

𝜈𝐵𝑁 (𝜄∗𝐹) = 𝑡 − 4 ∈ (−4,−3). Hence, we have

ℎ0 (𝐹)/𝑟 ≤ 16
7

+ 16(𝑡 − 4)
49

=
16(𝑡 + 3)

49

by Lemma 3.8.
(1) Assume 𝑡 ∈

[
5−

√
23

2 , 1
8

)
. By Lemma 5.2, we have

◦ The slope of
−−→
𝑂𝑃 is 1

𝑡−4 ∈ (−1/3,−1/4),
◦ The slope of

−−→
𝑂𝑄 is 2𝑡

2𝑡−1 ∈ (−1/3,−1/4),
◦ The slope of

−−→
𝑃𝑄 is 2(𝑡−8)

−7(2𝑡−9) ∈ (−1/3,−1/4).
Hence, we can assume 𝑃1 = 𝑄 and get

ℎ0 (𝐹)/𝑟 ≤
(
Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃)

)
/𝑟 = 16

7
+ 16(𝑡 − 4)

49
=

16(𝑡 + 3)
49

.

(2) Assume 𝑡 ∈ [1/8, 1/6). Then the slope bounds on 𝜈𝐵𝑁 (𝜄∗𝐹) are the same as the case (1), but the
slope of

−−→
𝑂𝑄 is in the interval (−1/2,−1/3]. Hence, we may take 𝑃1 to be Q or A, where A is the point

on the line 𝑃𝑄 with slope −1/3. The coordinates are given as

𝑄 = ((2𝑡 − 1)𝑟, 2𝑡𝑟), 𝐴 =

(
48(2𝑡2 − 10𝑡 + 1)

−8𝑡 + 15
𝑟,

16(2𝑡2 − 10𝑡 + 1)
8𝑡 − 15

𝑟

)
.

Hence, we have

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) =
𝑦𝑞

5
+
𝑥𝑞

25
+
𝑦𝑝 − 𝑦𝑞

7
+
𝑥𝑝 − 𝑥𝑞

49
=

12𝑡 + 24
25

𝑟,

Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃) = 𝑦𝑎
12

+
𝑦𝑝 − 𝑦𝑎

7
+
𝑥𝑝 − 𝑥𝑎

49
=

1
588

𝑦𝑎 +
16(𝑡 + 3)

49
𝑟.

As a function on 𝑡 ∈ [1/8, 1/6), we have

𝑦𝑎 (𝑡) ≤
458𝑡 − 47

41
𝑟,

and hence

Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃) ≤ 85𝑡
246

𝑟 + 481
492

𝑟.

We conclude that

ℎ0 (𝐹)/𝑟 ≤ max
{

12𝑡 + 24
25

,
85𝑡
246

+ 481
492

}
.
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(3) Assume that 𝑡 ∈ [1/6, 1/4). Then the slopes of
−−→
𝑂𝑃,

−−→
𝑂𝑄,

−−→
𝑄𝑃 are same as in the case (1), but the

slope of
−−→
𝑂𝑄 ∈ (−1,−1/2] instead. There are three possibilities of the point 𝑃1, namely, 𝑄, 𝐴 and B.

Here, 𝐴, 𝐵 are the points on the line 𝑃𝑄 with slope −1/3,−1/2, respectively. The coordinates of 𝑄, 𝐴
are same as in the case (2), and

𝐵 =

(
32(2𝑡2 − 10𝑡 + 1)

−10𝑡 + 31
𝑟,

16(2𝑡2 − 10𝑡 + 1)
10𝑡 − 31

𝑟

)
.

We therefore get

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) =
𝑦𝑞

3
+
𝑥𝑞

9
+
𝑦𝑝 − 𝑦𝑞

7
+
𝑥𝑝 − 𝑥𝑞

49
=

8(𝑡 + 1)
9

𝑟,

Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃) = 𝑦𝑎
12

+
𝑦𝑝 − 𝑦𝑎

7
+
𝑥𝑝 − 𝑥𝑎

49
=

1
588

𝑦𝑎 +
16(𝑡 + 3)

49
𝑟,

Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃) = 𝑦𝑏
8

+
𝑦𝑝 − 𝑦𝑏

7
+
𝑥𝑝 − 𝑥𝑏

49
=

9
392

𝑦𝑏 +
16(𝑡 + 3)

49
𝑟.

We can see that Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃) ≤ Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃). Furthermore, as a function on 𝑡 ∈ [1/6, 1/4), we
have 𝑦𝑏 (𝑡) ≤ 100

19 𝑡𝑟 −
31
57𝑟 , and hence we have

Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃) ≤ 17
38

𝑡𝑟 + 147
152

𝑟.

(4) Assume that 𝑡 ∈ [1/4, 1/2]. In this case, the slope of
−−→
𝑂𝑄 is bigger than or equal to −1. Hence,

we may take 𝑃1 = 𝑄, 𝐴, 𝐵 or C, where 𝐴, 𝐵 are defined as in (3), and C is the point on the line 𝑃𝑄 with
slope −1. We have

𝐶 =

(
−16(2𝑡2 − 10𝑡 + 1)

12𝑡 − 47
𝑟,

16(2𝑡2 − 10𝑡 + 1)
12𝑡 − 47

𝑟

)
.

We have

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) = 𝑦𝑞 + 𝑥𝑞 +
𝑦𝑝 − 𝑦𝑞

7
+
𝑥𝑝 − 𝑥𝑞

49
= 4𝑡𝑟,

Ω(−−→𝑂𝐶) +Ω(−−→𝐶𝑃) = 𝑦𝑐
4

+
𝑦𝑝 − 𝑦𝑐

7
+
𝑥𝑝 − 𝑥𝑐

49
=

25
196

𝑦𝑐 +
16(𝑡 + 3)

49
𝑟,

and Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃), Ω(−−→𝑂𝐵) +Ω(−−→𝐶𝐵) are as in (3). Hence, we can show that

Ω(−−→𝑂𝐴) +Ω(−−→𝐴𝑃),Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃) ≤ Ω(−−→𝑂𝐶) +Ω(−−→𝐶𝑃).

On the other hand, as a function on 𝑡 ∈ [1/4, 1/2], we have 𝑦𝑐 (𝑡) ≤ 142
41 𝑡𝑟 −

15
41𝑟 , and so

Ω(−−→𝑂𝐶) +Ω(−−→𝐶𝑃) ≤ 63
82

𝑡𝑟 + 153
164

𝑟.

(5) Assume that 𝑡 ∈ [3/2, 15/8]. In this case, we have

◦ The slope of
−−→
𝑂𝑃 is 1

𝑡−4 ∈ (−1/2,−1/3),
◦ The slope of

−−→
𝑂𝑄 is 2𝑡

2𝑡−1 > 0,
◦ The slope of

−−→
𝑃𝑄 is 2(𝑡−8)

−7(2𝑡−9) ∈ [−1/3,−1/4).

Hence, we may choose 𝑃1 as𝑄, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, where 𝐵,𝐶 are defined as in (4), D is the point on the line
𝑂𝑄 such that the slope of 𝐷𝑃 is −1/3 and E (resp. F) are the intersection points of the lines 𝐷𝑃 and
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𝑂𝐵 (resp. 𝑂𝐶). Hence, the computations of Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃),Ω(−−→𝑂𝐶) +Ω(−−→𝐶𝑃), and Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃)
are exactly the same as in (4), and we can see that

Ω(−−→𝑂𝐵) +Ω(−−→𝐵𝑃),Ω(−−→𝑂𝐶) +Ω(−−→𝐶𝑃) ≤ Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃).

For 𝐷, 𝐸 and F, the coordinates are given as

𝐷 =

(
16(2𝑡 − 1) (𝑡 − 1)

8𝑡 − 1
𝑟,

32𝑡 (𝑡 − 1)
8𝑡 − 1

𝑟

)
, 𝐸 = (−(32𝑡 − 32)𝑟, (16𝑡 − 16)𝑟),

𝐹 = (−(8𝑡 − 8)𝑟, (8𝑡 − 8)𝑟).

We get

Ω(−−→𝑂𝐷) +Ω(−−→𝐷𝑃) = 𝑦𝑑 + 𝑥𝑑 +
𝑦𝑝 − 𝑦𝑑

12
,

Ω(−−→𝑂𝐸) +Ω(−−→𝐸𝑃) = 𝑦𝑒
8

+
𝑦𝑝 − 𝑦𝑒

12
=

2
3
(𝑡 + 1)𝑟,

Ω(−−→𝑂𝐹) +Ω(−−→𝐹𝑃) =
𝑦 𝑓

4
+
𝑦𝑝 − 𝑦 𝑓

12
=

4
3
𝑡𝑟 .

We can also see that Ω(−−→𝑂𝐷) +Ω(−−→𝐷𝑃) ≤ Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) = 4𝑡𝑟 , and hence we conclude that

ℎ0 (𝐹)/𝑟 ≤ 4𝑡.

(6) Assume 𝑡 ∈
(
15/8,

√
23−1
2

]
. The only difference with (5) is that the slope of

−−→
𝑄𝑃 is equal to −1/3

in the present case. Hence, we may choose 𝑃1 to be 𝑄, 𝐸 , or F appeared in (5). It is easy to see that

Ω(−−→𝑂𝐸) +Ω(−−→𝐸𝑃) = Ω(−−→𝑂𝐹) +Ω(−−→𝐹𝑃) ≤ Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃),

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) = 4(46𝑡2 − 50𝑡 + 11)
3(8𝑡 − 1) 𝑟 ≤ 133𝑡 − 114

18
𝑟.

(7) Assume that 𝑡 ∈
[√

23−1
2 , 31

16

]
. Then we have

◦ The slope of
−−→
𝑂𝑃 is 1

𝑡−4 ∈ (−1/2,−1/3),
◦ The slope of

−−→
𝑂𝑄 is 12𝑡−11𝑡

13𝑡−16 > 0,
◦ The slope of

−−→
𝑃𝑄 is −1/3.

Hence we may choose 𝑃1 to be 𝑄, 𝐸 or F, where the points 𝐸, 𝐹 are defined as in (5). We have

𝑄 =

(
16(13𝑡 − 16)

49
𝑟,

16(12𝑡 − 11)
49

𝑟

)
and hence

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) = 𝑦𝑞 + 𝑥𝑞 +
𝑦𝑝 − 𝑦𝑞

12
=

236
49

𝑡𝑟 − 148
21

𝑟.

On the other hand, from the computations in (5), we see that

Ω(−−→𝑂𝐸) +Ω(−−→𝐸𝑃) = Ω(−−→𝑂𝐹) +Ω(−−→𝐹𝑃) = 4
3
𝑡𝑟 ≤ Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃).
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We conclude that

ℎ0 (𝐹)/𝑟 ≤ 236
49

𝑡 − 148
21

.

(8) Assume 𝑡 ∈ [31/16, 2). Then we have

◦ The slope of
−−→
𝑂𝑃 is 1

𝑡−4 ∈ (−1/2,−1/3),
◦ The slope of

−−→
𝑂𝑄 is 1

4𝑡−7 > 0,
◦ The slope of

−−→
𝑃𝑄 is −1/3.

Hence, we may choose 𝑃1 to be 𝑄, 𝐸 or F, where the points 𝐸, 𝐹 are defined as in (5). We have

𝑄 = (4(4𝑡 − 7)𝑟, 4𝑟)

and hence

Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃) = 𝑦𝑞 + 𝑥𝑞 +
𝑦𝑝 − 𝑦𝑞

12
= (16𝑡 − 23)𝑟.

As in (7), we see that

Ω(−−→𝑂𝐸) +Ω(−−→𝐸𝑃) = Ω(−−→𝑂𝐹) +Ω(−−→𝐹𝑃) = 4
3
𝑡𝑟 ≤ Ω(−−→𝑂𝑄) +Ω(−−→𝑄𝑃),

and we can conclude that

ℎ0 (𝐹)/𝑟 ≤ 16𝑡 − 23. �

5.2. Strong (classical) BG inequality

Using Proposition 5.3, we get the following (classical) BG type inequality on a double cover CY3 X.

Theorem 5.4. Let X be a double cover CY3. Let 𝐹 ∈ 𝐷𝑏 (𝑋) be a 𝜈𝛼,0-semistable object for some 𝛼 > 0,
with 𝜇𝐻 (𝐸) ∈ (−1, 1). Then we have the inequality

𝐻 ch2(𝐹)
𝐻3 ch0(𝐹)

≤ Ξ

(����𝐻2 ch1(𝐹)
𝐻3 ch0(𝐹)

����) .
Here, the function Ξ is defined as in Theorem 4.1, i.e.,

Ξ(𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡2 − 𝑡 (𝑡 ∈ [0, 1/4])
3𝑡/4 − 3/8 (𝑡 ∈ [1/4, 1/2])
𝑡/4 − 1/8 (𝑡 ∈ [1/2, 3/4])
𝑡2 − 1/2 (𝑡 ∈ [3/4, 1]).

Proof. As in the proof of Theorem 4.1, the problem is reduced to proving the same statement for tilt-
semistable objects on T. Assume that there exists a tilt semistable object F on T violating the inequality
in the statement. As before, we may assume that 𝜇(𝐹) ∈ (0, 1/2] and 𝐹 |𝐶 is slope semistable. Then we
have (cf. equation (10))

ch2 (𝐹) − 𝐻𝑇 ch1(𝐹) + 10 ch0(𝐹) = 𝜒(𝐹)
≤ ℎ0 (𝐹 |𝐶 ) + ℎ0 (𝐹∨(2𝐻𝑇 ) |𝐶 ),

(12)
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and

ch(𝐹 |𝐶 ) = (ch0(𝐹), 4𝐻 ch1(𝐹)),
ch(𝐹∨(2𝐻) |𝐶 ) = (ch0(𝐹), 4(2𝐻2 ch0 (𝐹) − 𝐻 ch1 (𝐹))).

By applying Proposition 5.3 to the right-hand side of the inequality (12), we have

ch2 (𝐹)
𝐻2 ch0 (𝐹)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 143
49 𝜇𝐻 (𝐹) − 23

98 (𝜇𝐻 (𝐹) ∈ (0, 1/16])
− 6

49 𝜇𝐻 (𝐹) − 1081
588 (𝜇𝐻 (𝐹) ∈ [1/16, 5−

√
23

2 ])
− 2701

3528 𝜇𝐻 (𝐹) − 127
882 (𝜇𝐻 (𝐹) ∈ [ 5−

√
23

2 , 1/8))
85
984 𝜇𝐻 (𝐹) − 503

1968 (𝜇𝐻 (𝐹) ∈ [1/8, 217/1654])
3
25 𝜇𝐻 (𝐹) − 13

50 (𝜇𝐻 (𝐹) ∈ [217/1654, 1/6))
17
152 𝜇𝐻 (𝐹) − 157

608 (𝜇𝐻 (𝐹) ∈ [1/6, 107/604]
2
9 𝜇𝐻 (𝐹) − 5

18 (𝜇𝐻 (𝐹) ∈ [107/604, 1/4))
63
328 𝜇𝐻 (𝐹) − 175

656 (𝜇𝐻 (𝐹) ∈ [1/4, 153/530])
𝜇𝐻 (𝐹) − 1

2 (𝜇𝐻 (𝐹) ∈ [153/530, 1/2]),

which is a cotradiction. �

6. BG type inequality conjecture

In this section, we will prove that the strong BG inequality in Theorem 1.1 implies Theorem 1.2. We
work in the following general set up. Let X be a smooth projective Calabi–Yau threefold, H a nef and
big divisor on X. Let us put 𝑑 := 𝐻3, 𝑒 := 𝐻. td𝑋,2. We define the positive real number 𝛿𝑋 = 𝛿𝑋 (𝐻) as
follows:

𝛿𝑋 := max
{

4
𝑑
,
𝑒

𝑑
,

26
3𝑑

− 𝑒

𝑑
− 1

3
,

16 − 3𝑒
3𝑑

}
.

Note that we always have 57−7𝑒
13𝑑 < max{ 4

𝑑 ,
16−3𝑒

3𝑑 } ≤ 𝛿𝑋 .
It is easy to compute the number 𝛿𝑋 in the following cases:

◦ When X is a triple cover CY3, we have 𝛿𝑋 = 25/18.
◦ When X is a double cover CY3, we have 𝛿𝑋 = 13/6.

Remark 6.1. As pointed out by the referee, there exist some inequalities between d and e; see [KW14,
Proposition 2.2]. For example, if H is very ample, then the inequality 3𝑒 ≤ 𝑑 + 9 holds by [KW14,
Proposition 2.2 (1)]. This implies

26
3𝑑

− 𝑒

𝑑
− 1

3
≥ 17

3𝑑
>

4
𝑑

and hence the definition of 𝛿𝑋 simplifies.

We put the following assumption:

Assumption 6.2. Every object 𝐸 ∈ 𝐷𝑏 (𝑋), which is 𝜈0,𝛼-semistable for some 𝛼 > 0, satisfies the strong
BG inequality (2).
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Proposition 6.3. Let X be a smooth projective Calabi–Yau threefold, H a nef and big divisor on X. For
a real number 𝛿 ≥ 𝛿𝑋 , define a 1-cycle Γ as Γ := 𝛿𝐻2 − td𝑋,2. Assume that Assumption 6.2 holds. Then
every BN stable object 𝐸 ∈ 𝐷𝑏 (𝑋) with 𝜈𝐵𝑁 (𝐸) ∈ [0, 1/2] satisfies the inequality

𝑄Γ (𝐸) := 𝑄Γ
0,0 (𝐸) = 2(𝐻 ch2(𝐸)) (2𝐻 ch2 (𝐸) − 3Γ𝐻 ch0(𝐸))

− 6(𝐻2 ch1(𝐸)) (ch3(𝐸) − Γ ch1 (𝐸)) ≥ 0.

Proof. First, assume that 𝜈𝐵𝑁 (𝐸) ∈ (0, 1/2]. Let us consider the universal extension

𝐸 → 𝐸 → Hom(O𝑋 , 𝐸) ⊗ O𝑋 [1] .

By [Li19a, Lemma 2.12], 𝐸 is BN semistable with 𝜈𝐵𝑁 (𝐸) = 𝜈𝐵𝑁 (𝐸). By Assumption 6.2, we can see
that 𝜇𝐻 (𝐸) ∉ (−1/4, 0]. Indeed, if otherwise, we have

𝐻 ch2 (𝐸)
𝐻3 ch0 (𝐸)

≤ 𝜇𝐻 (𝐸)2 + 𝜇𝐻 (𝐸) < 1
2
𝜇𝐻 (𝐸).

Dividing both sides by 𝜇𝐻 (𝐸) (< 0), we get 𝜈𝐵𝑁 (𝐸) > 1/2, a contradiction. When 𝜇𝐻 (𝐸) ∈
[−1/2,−1/4], using Assumption 6.2 to the object 𝐸 , we have

𝐻 ch2(𝐸)
𝐻3 ch0 (𝐸)

≤ −3
4
𝜇𝐻 (𝐸) − 3

8
. (13)

Note that we have ch0(𝐸) = ch0(𝐸) − hom(O𝑋 , 𝐸) and ch𝑖 (𝐸) = ch𝑖 (𝐸) for 𝑖 = 1, 2. Note also that
we have 𝐻2 ch1 (𝐸) ≥ 0 since 𝐸 ∈ Coh0 (𝑋). Together with the assumption 𝜇𝐻 (𝐸) < 0, we have
ch0(𝐸) < 0. From these observations, the inequality (13) is equivalent to the inequality

hom(O𝑋 , 𝐸) ≤
8

3𝑑
𝐻 ch2(𝐸) +

2
𝑑
𝐻2 ch1 (𝐸) + ch0(𝐸). (14)

On the other hand, the inequality 𝜇𝐻 (𝐸) < −1/2 is equivalent to

hom(O𝑋 , 𝐸) ≤
2
𝑑
𝐻2 ch1 (𝐸) + ch0(𝐸),

which is stronger than equation (14) since we have 𝐻 ch2(𝐸) > 0 by our assumption 𝜈𝐵𝑁 (𝐸) > 0. If
𝜇𝐻 (𝐸) > 0, the same inequality (14) obviously holds since ch0(𝐸) − hom(O𝑋 , 𝐸) = ch0(𝐸) > 0 and
𝐻2 ch1(𝐸) > 0. Hence, the inequality (14) always holds.

On the other hand, by using the BN stability of E and O𝑋 [1], we have

hom(O𝑋 , 𝐸) ≥ 𝜒(𝐸) = ch3 (𝐸) + td𝑋,2 ch1(𝐸). (15)

Combining the inequalities (14) and (15), we get

ch3 (𝐸) + td𝑋,2 ch1 (𝐸) ≤
1
𝑑
𝐻3 ch0 (𝐸) +

2
𝑑
𝐻2 ch1 (𝐸) +

8
3𝑑

𝐻 ch2 (𝐸),
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and hence

𝑄Γ (𝐸) ≥ 4(𝐻 ch2(𝐸))2 − 6 · 𝛿𝑑 − 𝑒

𝑑
𝐻 ch2 (𝐸)𝐻3 ch0 (𝐸) + 6𝛿

(
𝐻2 ch1 (𝐸)

)2

− 6𝐻2 ch1 (𝐸)
(

1
𝑑
𝐻3 ch0(𝐸) +

2
𝑑
𝐻2 ch1(𝐸) +

8
3𝑑

𝐻 ch2(𝐸)
)

= 4𝑏2 − 16
𝑑
𝑎𝑏 + 6

(
𝛿 − 2

𝑑

)
𝑎2 − 6

(
𝛿 − 𝑒

𝑑

)
𝑟𝑏 − 6

𝑑
𝑟𝑎.

(16)

Here, we put (𝑟, 𝑎, 𝑏) := (𝐻3 ch0(𝐸), 𝐻2 ch1 (𝐸), ch2(𝐸)), to simplify the notation. Note that we have
𝑎 ≥ 0 since 𝐸 ∈ Coh0(𝑋). Moreover, we also have 𝑏 ≥ 0 from the assumption 𝜈𝐵𝑁 (𝐸) ≥ 0. Note also
that by definition of 𝛿𝑋 , we have 𝛿 − 2/𝑑, 𝛿 − 𝑒/𝑑 ≥ 0.

By Assumption 6.2, we know that 𝜇𝐻 (𝐸) ∉ [0, 1/2]. When 𝜇𝐻 (𝐸) ∉ [1/2, 1], we have 𝑟 < 𝑎.
Together with the inequality (16), we have

𝑄Γ (𝐸) ≥ 4𝑏2 − 16
𝑑
𝑎𝑏 + 6

(
𝛿 − 2

𝑑

)
𝑎2 − 6

(
𝛿 − 𝑒

𝑑

)
𝑎𝑏 − 6

𝑑
𝑎2

= 𝐴1𝑎
2 − 𝐵1𝑎𝑏 + 4𝑏2,

where we put 𝐴1 := 6(𝛿 − 3/𝑑), 𝐵1 := 6(𝛿 − 𝑒/𝑑) + 16/𝑑 > 0. We can further compute as

𝐴1𝑎
2 − 𝐵1𝑎𝑏 + 4𝑏2 = (𝑎 − 2𝑏) (𝐴1𝑎 + (2𝐴1 − 𝐵1)𝑏) + (4𝐴1 − 2𝐵1 + 4)𝑏2. (17)

By the assumption 0 < 𝜈𝐵𝑁 (𝐸) ≤ 1/2, we have 0 < 2𝑏 ≤ 𝑎. Moreover, we also have 𝛿 ≥ 𝛿𝑋 ≥ 26
3𝑑−

𝑒
𝑑−

1
3

by definition. From these we can conclude that the right-hand side of the equality (17) is nonnegative,
and hence we have 𝑄Γ (𝐸) ≥ 0 as required.

When 𝜇𝐻 (𝐸) ∈ [1/2, 3/4], by Assumption 6.2, we have

−𝑟 ≥ −2𝑎 + 8𝑏.

Combining with the inequality (16), we have

𝑄Γ (𝐸) ≥ 4𝑏2 − 16
𝑑
𝑎𝑏 + 6

(
𝛿 − 2

𝑑

)
𝑎2 + 6

(
𝛿 − 𝑒

𝑑

)
(−2𝑎 + 8𝑏)𝑏 + 6

𝑑
(−2𝑎 + 8𝑏)𝑎

=
(
4 + 48

(
𝛿 − 𝑒

𝑑

))
𝑏2 +

(
32
𝑑

− 12
(
𝛿 − 𝑒

𝑑

))
𝑎𝑏 + 6

(
𝛿 − 𝑒

𝑑

)
𝑎2

=: 𝐶2𝑏
2 − 𝐵2𝑎𝑏 + 𝐴2𝑎

2

= (𝑎 − 2𝑏) (𝐴2𝑎 + (2𝐴2 − 𝐵2)𝑏) + (4𝐴2 − 2𝐵2 + 𝐶2)𝑏2,

where the real numbers 𝐴2, 𝐵2, 𝐶2 are defined so that the second equality holds. Since 𝛿 ≥ 4/𝑑, 3/𝑑, we
can see that 4𝐴2 − 2𝐵2 + 𝐶2 ≥ 0. Moreover, using the inequalities 0 < 2𝑏 ≤ 𝑎 and 𝛿 ≥ −𝑒/𝑑 + 16/3𝑑,
we also obtain 𝐴2𝑎 + (2𝐴2 − 𝐵2)𝑏 ≥ 0. Hence, we have 𝑄Γ (𝐸) ≥ 0.

Next, consider the case when 𝜇(𝐸) ∈ [3/4, 1]. By Assumption 6.2, we have 𝑏/𝑟 ≤ 7𝑎/4𝑟 − 5/4,
equivalently,

−𝑟 ≥ −7
5
𝑎 + 4

5
𝑏.
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Together with the inequality (16), we have

5𝑄Γ (𝐸) ≥ 20𝑏2 − 80
𝑑
𝑎𝑏 + 30

(
𝛿 − 2

𝑑

)
𝑎2

+ 6
(
𝛿 − 𝑒

𝑑

)
𝑏(−7𝑎 + 4𝑏) + 6

𝑑
𝑎(−7𝑎 + 4𝑏)

=
(
20 + 24

(
𝛿 − 𝑒

𝑑

))
𝑏2 −

(
42

(
𝛿 − 𝑒

𝑑

)
− 66

𝑑

)
𝑎𝑏 +

(
30𝛿 − 102

𝑑

)
𝑎2

=: 𝐶3𝑏
2 − 𝐵3𝑎𝑏 + 𝐴3𝑎

2

= (𝑎 − 2𝑏) (𝐴3𝑎 + (2𝐴3 − 𝐵3)𝑏) + (4𝐴3 − 2𝐵3 + 𝐶3)𝑏2.

Using the inequalities 𝑎 ≥ 2𝑏 and 𝛿 ≥ −𝑒/𝑑+46/10𝑑−1/3, (57−7𝑒)/13𝑑, we can show that𝑄Γ (𝐸) ≥ 0.
The remaining case is when 𝜈𝐵𝑁 (𝐸) = 0. The issue is that we do not know whether 𝐸 is BN

semistable or not. If it is 𝜈𝛼,0-semistable for some 𝛼 > 0, as in the case of 𝜈𝐵𝑁 (𝐸) > 0, we have the
inequality

hom(O𝑋 , 𝐸) ≤
2
𝑑
𝐻2 ch1(𝐸) + ch0(𝐸). (18)

Assume that 𝐸 is 𝜈𝛼,0-unstable for all 𝛼 > 0. Then by the proof of [Li19a, Proposition 3.3], for each
0 < 𝛿 � 1, there exists 𝛼𝑖 > 0 and a filtration of E such that each factor 𝐸𝑖 is 𝜈𝛼𝑖 ,0-semistable with
𝜈𝐵𝑁 (𝐸𝑖) < 𝛿. By Assumption 6.2, we must have

𝜇𝐻 (𝐸𝑖) ∉
[
− 3

8𝛿 + 6
, 0
]
.

Taking a limit 𝛿 → +0, we get 𝜇(𝐸) ∉ [−1/2, 0], hence the inequality (18) holds. Furthermore, by
using the derived dual (cf. proof of [Li19a, Proposition 3.3]), we also have

hom(O𝑋 , 𝐸 [2]) ≤
2
3
𝐻2 ch1(𝐸) − ch0 (𝐸).

Hence, we get

ch3(𝐸) + td𝑋,2 ch1(𝐸) = 𝜒(𝐸) ≤ hom(O𝑋 , 𝐸) + hom(O𝑋 , 𝐸 [2])

≤ 4
𝑑
𝐻2 ch1(𝐸),

from which we deduce 𝑄Γ (𝐸) ≥ 0, as we assume 𝛿 ≥ 4/𝑑. �

Corollary 6.4. Let X be a triple (resp. double) CY3. We put 𝛾 := 2/9 (resp. 1/3) and Γ := 𝛾𝐻2. Let E
be a BN stable object on X with 𝜈𝐵𝑁 (𝐸) ∈ [0, 1/2]. Then we have

𝑄Γ (𝐸) := 𝑄Γ
0,0 (𝐸) = 2(𝐻 ch2(𝐸)) (2𝐻 ch2 (𝐸) − 3Γ𝐻 ch0(𝐸))

− 6(𝐻2 ch1(𝐸)) (ch3(𝐸) − Γ ch1 (𝐸)) ≥ 0.

Proof. By Theorems 4.1 and 5.4, a triple/double CY3 satisfies Assumption 6.2. Furthermore, we can
take the 1-cycle Γ to be Γ := 𝛿𝑋𝐻

2 − td𝑋,2 = 𝛾𝐻2. �
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7. Construction of Bridgeland stability conditions

The goal of this section is to prove Theorem 1.3 in the introduction. First, let us recall the definition of
Bridgeland stability condition.
Definition 7.1 ([Bri07]). Let D be a triangulated category. Fix a lattice Λ of finite rank and a group
homomorphism cl : 𝐾 (D) → Λ.

A stability condition on D (with respect to (Λ, cl)) is a pair (𝑍,A) consisting of a group homomor-
phism 𝑍 : Λ → C and the heart of a bounded t-structure A ⊂ D satisfying the following axioms.
1. We have 𝑍 ◦ cl(A \ {0}) ⊂ H ∪ R<0, where H is the upper half plane.
2. Every nonzero object in the heart A has a Harder–Narasimhan filtration with respect to 𝜇𝑍 -stability.

Here, we define a Z-slope function 𝜇𝑍 as

𝜇𝑍 := −�𝑍

�𝑍
: A → R ∪ {+∞},

and define 𝜇𝑍 -stability on the abelian category A in a usual way.
3. There exists a quadratic form q on Λ satisfying the following conditions.

◦ q is negative definite on the kernel of Z,
◦ For every 𝜇𝑍 -semistable object 𝐸 ∈ A, we have 𝑞(cl(𝐸)) ≥ 0.
The group homomorphism Z is called a central charge, and the axiom (3) is called the support

property.
Let StabΛ(D) be a set of stability conditions on D with respect to (Λ, cl). Then the set StabΛ (D)

has a structure of a complex manifold [Bri07]. Moreover, there is an action of the group G̃L+(2,R) on
StabΛ (D), where G̃L+(2,R) is the universal covering of the group

GL+(2,R) := {𝑔 ∈ GL(2,R) : det(𝑔) > 0}.

Let us consider the case when D = 𝐷𝑏 (𝑋), where X is a double/triple cover CY3. In this case, we
fix a lattice Λ to be the image of the morphism

cl :=
(
𝐻3 ch0, 𝐻

2 ch1, 𝐻 ch2, ch3

)
: 𝐾 (𝑋) → 𝐻2∗(𝑋,Q).

We simply denote as Stab(𝑋) := StabΛ(𝐷𝑏 (𝑋)). Following [BMS16, BMT14], we explain an explicit
construction of stability conditions on 𝐷𝑏 (𝑋). Let us recall several notions from [BMS16]. Fix real
numbers 𝛼, 𝛽 ∈ R with 𝛼 > 0.

The heart corresponding to a stability condition is constructed as a tilt of Coh𝛽 (𝑋). Let us define a
slope function 𝜈′𝛽,𝛼 on Coh𝛽 (𝑋) as

𝜈′𝛽,𝛼 :=
𝐻 ch𝛽2 − 1

2𝛼
2𝐻3 ch𝛽0

𝐻2 ch𝛽1
: Coh𝛽 (𝑋) → R ∪ {+∞}.

Compared with the function 𝜈𝛽,𝛼 defined in Section 2, we have

𝜈′𝛽,𝛼 = 𝜈𝛽, 1
2 (𝛽2+𝛼2) − 𝛽. (19)

We define full subcategories T ′
𝛽,𝛼,F ′

𝛽,𝛼 of Coh𝛽 (𝑋) as

T ′
𝛽,𝛼 :=

〈
𝑇 ∈ Coh𝛽 (𝑋) : 𝑇 is 𝜈′𝛽,𝛼-semistable with 𝜈′𝛽,𝛼 (𝐸) > 0

〉
,

F ′
𝛽,𝛼 :=

〈
𝐹 ∈ Coh𝛽 (𝑋) : 𝐹 is 𝜈′𝛽,𝛼-semistable with 𝜈′𝛽,𝛼 (𝐸) ≤ 0

〉
.
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Here, 𝜈′𝛽,𝛼-stability is same as 𝜈𝛽, 1
2 (𝛽2+𝛼2) -stability, and 〈−〉 denotes the extension closure in the

abelian category Coh𝛽 (𝑋). We now define the double-tilted heart as

A𝛽,𝛼 :=
〈
F ′
𝛽,𝛼 [1], T ′

𝛽,𝛼

〉
⊂ 𝐷𝑏 (𝑋).

We also define a central charge function 𝑍𝑎,𝑏
𝛽,𝛼 : Λ → C as

𝑍𝑎,𝑏
𝛼,𝛽 := − ch𝛽3 +𝑏𝐻 ch𝛽2 +𝑎𝐻2 ch𝛽1 +𝑖

(
𝐻 ch𝛽2 −1

2
𝛼2𝐻3 ch𝛽0

)
for real numbers 𝑎, 𝑏 ∈ R.

Finally, for a real number 𝛾 > 0, define 𝑈𝛾 to be a set of vectors (𝛼, 𝛽, 𝑎, 𝑏) ∈ R4 satisfying

𝛼 > 0, 𝛼2 +
(
𝛽 − �𝛽� − 1

2

)2
>

1
4
, 𝑎 >

1
6
𝛼2 + 1

2
|𝑏 |𝛼 + 𝛾. (20)

Theorem 7.2 (cf. [BMS16, Proposition 8.10]). Let X be a triple (resp. double) cover CY3, and put
𝛾 := 2/9 (resp. 1/3). Then there exists an injective continuous map

𝑈𝛾 ↩→ Stab(𝑋), (𝛼, 𝛽, 𝑎, 𝑏) ↦→
(
𝑍𝑎,𝑏
𝛽,𝛼,A𝛽,𝛼

)
.

Furthermore, the orbit G̃L+(2,R) · 𝑈𝛾 forms an open subset in the space Stab(𝑋) of stability
conditions.

We divide the proof of the above theorem into several steps. The arguments below are essentially the
same as that in [BMS16, Section 8].

Proposition 7.3 (cf. [BMS16, Theorem 8.6]). For every element (𝛼, 𝛽, 𝑎, 𝑏) ∈ 𝑈𝛾 with 𝛼, 𝛽 ∈ Q, the
pair

(
𝑍𝑎,𝑏
𝛽,𝛼,A𝛽,𝛼

)
satisfies axioms (1) and (2) in Definition 7.1.

Proof. First, we check the axiom (1) in Definition 7.1 for the pair
(
𝑍𝑎,𝑏
𝛽,𝛼,A𝛽,𝛼

)
. As in the proof of

[BMS16, Theorem 8.6], it is enough to show the inequality 𝑍𝑎,𝑏
𝛽,𝛼 (𝐹 [1]) < 0 for every 𝜈′𝛽,𝛼-semistable

object F with 𝜈′𝛽,𝛼 (𝐹) = 0. By the inequality 𝛼2 +
(
𝛽 − �𝛽� − 1

2

)2
> 1

4 in equation (20), we can apply
Theorem 1.2 to the object F. Noting the equation (19), we get

ch𝛽3 (𝐹) ≤
(
𝛾 + 1

6
𝛼2

)
𝐻2 ch𝛽1 (𝐹). (21)

Furthermore, together with the assumption 𝐻 ch𝛽2 (𝐹) = 1
2𝛼

2𝐻3 ch𝛽0 , the classical BG inequality (cf.
[BMS16, Theorem 3.5]) Δ𝐻 (𝐹) ≥ 0 gives the inequality(

𝐻 ch𝛽2 (𝐹)
)2

≤ 1
4
𝛼2

(
𝐻2 ch𝛽1 (𝐹)

)2
. (22)

By the inequalities (21) and (22), we obtain

𝑍𝑎,𝑏
𝛽,𝛼 (𝐹 [1]) = �𝑍𝑎,𝑏

𝛽,𝛼 (𝐹 [1])

≤
(
𝛾 + 1

6
𝛼2

)
𝐻2 ch𝛽1 (𝐹) +

1
2
|𝑏 |𝛼𝐻2 ch𝛽1 (𝐹) − 𝑎𝐻2 ch𝛽1 (𝐹) < 0.
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Now the axiom (2) is also satisfied since we assume 𝛼, 𝛽 ∈ Q (see the proof of [BMS16, Theorem
8.6] for the detail). �

Next, we discuss the support property. Let us put

∇𝛼,𝛽,𝛾

𝐻 (𝐸) := 3𝛾𝛼2
(
𝐻3 ch𝛽0 (𝐸)

)2
+ 2

(
𝐻 ch𝛽2 (𝐸)

) (
2𝐻 ch𝛽2 (𝐸) − 3𝛾𝐻3 ch𝛽0 (𝐸)

)
− 6

(
𝐻2 ch𝛽1 (𝐸)

) (
ch𝛽3 (𝐸) − 𝛾𝐻2 ch𝛽1 (𝐸)

)
for an object 𝐸 ∈ 𝐷𝑏 (𝑋).
Proposition 7.4 (cf. [BMS16, Lemmas 8.5, 8.8]). Fix an element (𝛼, 𝛽, 𝑎, 𝑏) ∈ 𝑈𝛾 . Then there exists
an interval 𝐼𝑎,𝑏𝛼,𝛾 ⊂ R such that for every 𝐾 ∈ 𝐼𝑎,𝑏𝛼,𝛾 , the quadratic form 𝑄

𝛼,𝛽,𝛾
𝐾 := 𝐾Δ𝐻 + ∇𝛼,𝛽,𝛾

𝐻 is
negative definite on the kernel of the central charge function 𝑍𝑎,𝑏

𝛽,𝛼.
Furthermore, if we assume (𝛼, 𝛽) ∈ Q, then every 𝑍𝑎,𝑏

𝛽,𝛼-semistable object E satisfies the inequality
𝑄

𝛼,𝛽,𝛾
𝐾 (𝐸) ≥ 0.

Proof. Let us prove the first assertion. The vectors
(
1, 0, 1

2𝛼
2, 1

2𝑏𝛼
)

and (0, 1, 0, 𝑎) forms the basis the

kernel of 𝑍𝑎,𝑏
𝛽,𝛼. With respect to this basis, the quadratic form 𝐾Δ𝐻 +∇𝛼,𝛽,𝛾

𝐻 is represented by the matrix(
−𝛼2𝐾 + 𝛼4 − 3

2𝑏𝛼
2

− 3
2𝑏𝛼

2 𝐾 − 6(𝑎 − 𝛾)

)
. (23)

When 𝑏 = 0, the matrix (23) is negative definite if and only if 𝐾 ∈
(
𝛼2, 6(𝑎 − 𝛾)

)
=: 𝐼𝑎,𝑏=0

𝛼,𝛾 . This
interval is nonempty by equation (20).

When 𝑏 ≠ 0, we also need to require the determinant of the matrix (23) to be positive, i.e.,

𝛼2
(
−𝐾2 +

(
6(𝑎 − 𝛾) + 𝛼2

)
𝐾 − 6(𝑎 − 𝛾)𝛼2 − 9

4
𝑏2𝛼2

)
> 0. (24)

The solution space 𝐾 ∈ 𝐼𝑎,𝑏𝛼,𝛾 of the inequality (24) forms a nonempty open interval since we have,
by equation (20),

𝑎 − 𝛾 >
1
6
𝛼2 + 1

2
|𝑏 |𝛼.

We can prove the second assertion as in [BMS16, Lemma 8.8], using the BG type inequality obtained
in Theorem 1.2. �

Finally we are able to prove Theorem 7.2.

Proof of Theorem 7.2. By Propositions 7.3 and 7.4, the pair
(
𝑍𝑎,𝑏
𝛽,𝛼,A𝛽,𝛼

)
is a stability condition on

𝐷𝑏 (𝑋) for every element (𝛼, 𝛽, 𝑎, 𝑏) ∈ 𝑈𝛾 with 𝛼, 𝛽 ∈ Q. We can deform them to the real parameters
(𝛼, 𝛽) by the support property in Proposition 7.4. See [BMS16, Proposition 8.10] for the precise
proof. �
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