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STRUCTURE OF p-SOLVABLE GROUPS
WITH THREE p-REGULAR CLASSES

Dedicated to Professor Takasi Nagahara on his 60th birthday

YASUSHI NINOMIYA

1. Introduction. One of the important invariants of a p-block B of a group algebra
is £ (B), the number of non-isomorphic simple B-modules. A number of authors calcu-
lated ¢ (B) for various types of defect groups of B. In particular, by Olsson [6], it has been
proved that if p = 2 and the defect groups of the block B are dihedral or semi-dihedral
or generalized quaternion, then £ (B) is at most 3. In this paper, we restrict our attention
to the principal p-block By of a finite p-solvable group with £ (By) < 3. Let I be a finite
p-solvable group and k a splitting field for I" with characteristic p. As is well known, By
is isomorphic to the group algebra kI'/ O,(T), and hence £ (By) is equal to the number
of p-regular classes, namely, the number of conjugacy classes consisting of p’-elements,
of I'/ Op,(T'). Therefore, if £(By) = 1 then By is isomorphic to a group algebra of a
p-group, that is, I'/ O(T') is a p-group. Next, let a p-group P act faithfully on a vector
space V of dimension n over GF(q), where g is a prime distinct from p, and suppose that
P acts transitively on V¥ = V — {0} . Then the values of p and ¢" and the structure of
P are completely determined in [7]. By making use of this result, we can immediately
obtain the structure of p-solvable groups which have exactly two p-regular classes. This
has been given in our previous paper [5]. We shall frequently refer to this result, but, for
convenience, we here restate it.

THEOREM A. Let G be a p-solvable group with O,(G) = (1). Suppose that G has
exactly two p-regular classes. Then G is either a p'-group or a p-nilpotent group; and

(1) ifGisa p'-group then p is odd and G ~ 7 ,, and
(2) if G is a p-nilpotent group then one of the following holds:

(a)p=2and G~ Ey X Zg.

(b)p=2and G ~ E5 % Q.

(c)p=2and G~ Ep X Sj6.

(d)p=2and G~ Z; X I, where q = 2" + 1 is a Fermat prime.

(e)p = 2" — 1 (a Mersenne prime) and G ~ Ex» X Z,,.

We therefore see that if £ (By) = 2 then F/ Oyp(I') is isomorphic to one of the groups
mentioned in the theorem and By ~ kI"/ O,(I"). The purpose of this paper is to give the
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structure of p-solvable groups which have exactly three p-regular classes. Our result is
the following theorem.

THEOREM B. Let G be a p-solvable group with O,(G) = (1). Suppose that G has
exactly three p-regular classes. Then the p'-length of G is at most 2, and one of the
following holds:

(1) p#£3and G~ ;.

(2) p#2,3and G~ Z;.

(3) p=2and G~ M3) X P, where P is Zg or Sie.

(4) p=3and G~ Qg x 75 (~ SL2,3)).

(5) p=2and G~ E5» X P, where P is 74 or Dg.

(6) p=2and G~ 7, X I, where g = 2™*' + 1 is a Fermat prime.

(7) p#2and G~ Ly % Ly, where g = 2p" + 1 is a prime.

(8) p#2,3and G~ Eyc X Z,n, where 3t = 2p" + 1.

(9) p=2and G ~ E5« X P, where P is a 2-group which contains a normal subgroup

R of index 2 satisfying one of the following conditions:
(a) |R| =2’andR = Zg X g, Qg Xs Qg or Sie Xs S16.
(b) lRl =2%andR = Zg X 73, Og X Qg or S16 Xs S1e.
(c) |R| =27 and R = Si6 X; Si6
(d)|R| = 28 and R = Sy X Sie.
(10) p = 2and G >~ Z, X P, where q is a Fermat prime greater than 3 and P is
either
(a) a Sylow 2-subgroup of GL(2, q), or
(b) a 2-group defined by

(ny| =1, 2" =y ¥=x"),

where 2° = g — 1.
(11) p=2and G ~ Ep» X T, where T is a group generated by a normal subgroup R
isomorphic to Qg and two elements w, x with the following properties:

w=1 2eR x'=1 w=wl

(12) p=2and G~ Es: X T, where T is a group generated by a normal subgroup R
isomorphic to Iy(5) and two elements w, x with the following properties:

w=1 »£eRr PL=1 w=wl

We then see that if £(By) = 3 then I'/ Op,(I) is isomorphic to one of the groups
mentioned in the theorem and By ~ kI'/ O,(I'). The notation used in the above theorems
is as follows:

z, the cyclic group of order n,
E, the elementary abelian group of order p”,
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X3 the symmetric group of degree 3,

Os the quaternion group of order 8,

Dy the dihedral group of order 8,

Ste the semi-dihedral group of order 16,

M@3) the nonabelian 3-group which is of order 33 and has exponent 3,

that is, M(3) is a group given by

(a,bc|@®=b=c=1,b"=bc, “=c, & =c).

Let g be a prime. Following [7, p. 229], we denote by Zy(g") the subgroup of GL(2, ¢")
consisting of the matrices

a 0 0 a n
(0 :ta“l)’ (:ta" 0), a € GF(¢"), a#0.

Given two groups H and K, H X K denotes a semidirect product of H by K, namely, H
isnormal in H X K and (H X K) / H ~ K; and H X, K denotes a subdirect product of H
and K, namely, H X K is a subgroup of the direct product H x K which satisfies

‘pH(HxsK)ZH’ ‘PK(HX:K):K,

where @y and @k are cononical homomorphisms of H X K onto H and K respectively.

Here we introduce some additional notation. The number of p-regular classes in G
will be denoted by r,/(G), and the set of primes dividing the order of G will be denoted
by m(G). Given g € G, we write C, for the conjugacy class containing g. If X is a subset
of G, (X) will denote the subgroup of G generated by X. The cardinality of X will be
denoted by | X|. If X, Y are subsets of G with X C Y then Y — X will denote the set of
elements of Y not contained in X. The set of nonidentity elements of G will be denoted
by G*. Given two integers m, n, m|n means m divides n and for a prime g, ¢°||n means
q°|n but ¢**' does not divide n. The other notation is standard and refer to the book of
Gorenstein [1].

The following is trivial but important for our subsequent study.

LEMMA L.1.  If G is a p-solvable group with r,,(G) = 3, then
(1) the p'-length of G is at most 2, and
(2) the number of primes distinct from p which divide | G| is at most 2.

In what follows, we let G be a p-solvable group with O,(G) = (1), and assume
that ry(G) = 3. In Section 2, we prove that part (1) or (2) holds if G is a p'-group. If
G = Opp(G) we can see that Oy (G) is a g-group for some prime q. In Section 3, we deal
with the case where Op(G) is nonabelian, and prove that part (3) or (4) holds for this
case. On the other hand, the case where Op/(G) is abelian is treated in Sections 4 and 5.
If a Sylow p-subgroup of G acts %-transitively on OPI(G)#, then part (5), (6), (7) or (8)
holds. This will be proved in Section 4. On the other hand, if a Sylow p-subgroup of G
does not act %-transitively on O,,/(G)#, then part (9) or (10) holds. This will be proved
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in Section 5. To complete the proof of Theorem B, it will suffice to prove that the case
G = Oppy(G) does not occur and part (11) or (12) holds for the case G = Oy, (G)
because by Lemma 1.1 the p’-length of G is at most 2. In Section 6, we complete the
proof of Theorem B by showing that this is in fact true.

2. Proof of parts (1) and (2) of Theorem B. Inthis section, we prove the following:
PROPOSITION 2.1.  If G is a p'-group, then part (1) or (2) of Theorem B holds.

PROOF. If G is abelian then clearly G ~ Z3. Thus (1) holds. Suppose next that G is
a nonabelian p’-group. By Lemma 1.1, | 7(G)| < 2. We now show | 7(G)| = 2. Suppose
otherwise and let @(G) denote the Frattini subgroup of G. As r,y (G / <I)(G)) = 2, we have
G/ ®(G) ~ 7, and so G is cyclic, contrary to our assumption. Hence | 7(G)| = 2. Set
7(G) = {q,r}. Then G has a nontrivial normal g- or r-subgroup. Without loss we may
assume that G has a nontrivial normal r-subgroup R. Noting that the conjugacy classes
of G are given by Cy, C,, Cy, where x € R*, y € G — R, we see that R is a Sylow r-
subgroup of G. From the assumption r,y(G) = 3, it follows at once that ry(G/R) = 2,
and so G/ R ~ Z,. Then we have R ~ Z3 because a Sylow 2-subgroup of G, which
is isomorphic to Z,, acts transitively by conjugation on R*. Hence G ~ X;. Thus (2)
follows.

3. Proof of parts (3) and (4) of Theorem B. In this section we consider the case
where G is p-nilpotent, that is, G = Opp(G). We set V = Op(G). First of all we prove
the following:

LEMMA3.1. |m(V)| = 1.

PROOF. Suppose the lemma is false. Then |7(V)| = 2 by Lemma 1.1. Set 7(V) =
{g,r}. From the assumption r,(G) = 3,it follows that every element of V is either a
g-element or an r-element. We therefore immediately see that V is a Frobenius group.
Let Q and R be Sylow g- and r-subgroups of V respectively. Without loss we may assume
that R is the Frobenius kernel. Then we claim that Q ~ Z7; for the set of nonidentity
g-elements of V forms a single conjugacy class in G, and so Q is elementary abelian.
But Q is a Frobenius complement. Hence Q ~ Z,,. Because r,y(G/ R) = 2, Theorem A
applies to G/ R, and we have p = 2and G/ R ~ Z, X 7, where ¢ = 2" +1 is a Fermat
prime. This forces r to be odd. Further, since G acts transitively on R*, setting |R| = r*,
we have

f—1=|R=2"q, m<n.

We now claim thatm > 1and £ > 2.Indeed, as ris odd, # —1 is even, and som > 1.On
the other hand, if £ = 1 then R is a cyclic group, and so G/ R is abelian because G/ R is
contained isomorphically in Aut R, an abelian group, which is not the case. Hence m > 1
and £ > 2. If we can prove the following lemma we reach a desired contradiction and
Lemma 3.1 will follow.
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LEMMA 3.2. Let q¢ = 2" + 1 be a Fermat prime. If m is an integer such that 1 <
m < n, then, for £ > 2, there exist no positive integers r which satisfy the equality
£ m
r'—1=2"q.

PROOF. Suppose the lemma is false and let r be a positive integer which satisfies the
equality in the lemma. Then r is odd and

g =(r— DI+ k1)

We first show that g does not divide r — 1. In fact, if g|(r — 1) then r > ¢ and

£-2

A a2

but

-2

r< T e T ek

andso r < 2" = g — 1 < g, a contradiction. Hence we may write
q q y

-2

r—1=29 et h o are1 =20,

where a+b = n. We note that a # 0 because r is odd. We now show that b # 0. Suppose

otherwise. Then

-2

rl+rT+ e +r+l =g,

and so
(g —1).

This is impossible because r is odd and g — 1 = 2". Therefore r! ! + rf 2 + ... 4+ r+ 1
is an even integer, which forces £ to be even, so that

=1t =1,

and
r+ DT T D,

Therefore r + 1 is a divisor of 2°q. From this we have a = 1. For, ifa > 1 then2¢71 +1
would be odd, and so noting that

rel=2042=202%"4+1)|2%,

we have
2T+l =gq

But
274 1< 2"+ 1 =g,

acontradiction. This proves thata = 1. Hence r = 3.1f £ = 2thenr! —1 = 32—1 = 23,
This is not the case. Therefore £ > 2. We distinguish two cases:
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CASELl. ¢ #0 (mod 4). Since £ is even, we have
31 =3B 2+3 3240,

But3*72+3%7% 4+ ...+ 32+ 1 is odd because it is the sum of £ /2 odd numbers and ¢ /2
is odd. Hence we have
3243t 4324 = q,

and so
3243t 3 =g —1 =2

This is impossible.

CASE2. £ =0 (mod 4). Because 3¢/ — 1 is divisibleby 3* — 1 = 2*. 5, we have
m > 4 and g = 5. But then n = 2. This contradicts our assumption that m < n. Thus we
complete the proof of Lemma 3.2, and so Lemma 3.1 is proved.

PROPOSITION 3.3.  If G is p-nilpotent and Oy (G) is nonabelian then part (3) or (4)
of Theorem B holds.

PROOF. Set V = Oy(G). By Lemma 3.1 and our assumption, V is a nonabelian g-
group for some prime ¢q distinct from p. Hence V possesses a proper subgroup V) which
is normal in G. Since ry(G) = 3, G must act transitively on Vg and hence we see that
Vo is a unique such subgroup. We therefore have

Vo = @(V) = Z(V),
where ®(V) and Z(V) are the Frattini subgroup and the center of V respectively. Further,
since r,(G/ Vo) = 2 Theorem A applies to G/ V.

STEP 1.  (b) of Theorem A is not applicable and if G/ V; is type (a) or (c) then part
(3) of Theorem B holds.

PROOF. Suppose that G/ V; is type (a), (b) or (¢). Then p = 2 and G/ Vj is isomor-
phic to one of the following groups:

E3z X Zg, E32 X Qs, E32 X Sie.

Hence ¢ = 3 and V/V, ~ Ej. Since G acts transitively on Vf, and Vo = Z(V), | V§|
is a divisor of the order of a Sylow 2-subgroup of G. Hence noting that Vj is a 3-group,
we have |V§| = 2 or 8. This implies that V is isomorphic to Z3 or E3.. We argue that
Vo ~ Z3. So assume that V, >~ E;> and let u be an element of V — V;. Then | Cy(u)| = 3°
because Vo = Z(V), and hence |C,| < 3 - 16 = 48. Therefore noting that the 2-regular
classes of G are Cy, Vi and C, = V — Vj, we have

3 =|V| = |Vo| +|C.] <9+48 < 3%,

a contradiction. Thus we have V) >~ 73, which implies that V is a nonabelian 3-group of
order 33. It is well known that such a group is isomorphic to M(3) or M3(3) ([1, Theo-
rem 5.5.1]). We now show that V >~ M(3). Suppose otherwise. Then there are elements
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u,vin V — Vo with |u| = 3, |[v| = 9. Therefore G does not act transitively on V — Vj,
and so G has at least four 2-regular classes, contrary to our assumption. Thus we have
V >~ M(3). Since AutM(3) ~ Ey» ¥ GL(2,3) ([4, Lemma 1.2]), we may regard a Sylow
2-subgroup P of G as a subgroup of GL(2, 3). Because V is given by

V={(abc|lad=bp==1,b"=bc, *=c, & =¢),

itis generated by @ and b. Let x = (Zl Z) be an element of P. Then the action of x on
V is given by

a" =a"b", b*=a"'b".

From this we have ¢* = ¢™ ™. But Z(V) = (c), and so P acts transitively on {c)*.
Hence there exists an element x of P such that ¢ = ¢!, which implies that P is not
contained in SL(2, 3). Thus we have P ~ Z3 or S}, proving Step 1.

STEP2. (d) of Theorem A is not applicable.

PROOF. Assume by way of contradiction that G/ V; is type (d). Then p = 2 and
G/ Vo~ 1, X Ly, where g = 2" + 1 is a Fermat prime, and so V/ Vj is a cyclic group
of order g. As Vy = ®(V), this implies that V is a cyclic group, which contradicts our
assumption.

STEP3. If G/ Vy is type (e) then part (4) of Theorem B holds.

PROOF. In this case, p = 2" — 1 is a Mersenne prime and G/ Vy ~ E» X Z,,.
Hence V/ Vo >~ Ep and Vy = ®(V) = Z(V) is an elementary abelian 2-group. At first
we show that Vo C Z(G). Suppose otherwise and choose v in Vj so that v & Z(G). Then
|VE| = |C\| = p,and so | V| = p+1 = 2". Therefore

(3.4) |V —Vo| =27 —2"=2"2" - 1).

Now choose u in V to be of order 4. Then Cg(u) 2 ( Vo, u), and so |Cs(u)| = 2* for
some k, k > n. Therefore we have |V —V,| = |C,| = 22"~*p because G acts transitively
on V — V;, which implies that

[V —Vy| =2 Fp =22 k2" — < 2"2" - 1).

This contradicts (3.4). Hence Vy C Z(G). But G acts transitively on Vg. Hence we have
| Vo| = 2. This implies that V is an extra special 2-group of order 2"*!. Therefore n must
be even. But, as 2" — 1 is a Mersenne prime, n is a prime number. Hence we have n = 2.
Thus it follows that p = 3 and V is a nonabelian 2-group of order 8. Therefore V ~ Qg
or Dg. Further G / V(> Z5) is contained isomorphically in Aut V. But, as is well known,
Aut Dg is a 2-group. We therefore have V ~ Qg, proving Step 3. Thus we complete the
proof of Proposition 3.3.
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4. Proof of parts (5) through (8) of Theorem B. In this section, we consider the
case where G is p-nilpotentand V = O,(G) is abelian. We saw in Lemma 3.1 that V is
a g-group for some prime g # p. At first we prove the following:

LEMMA 4.1. V possesses no nontrivial proper subgroups which are normal in G. In
particular, V is an elementary abelian g-group.

PROOF.  Suppose the lemma is false and let Vy # (1) be a normal subgroup of G
which is properly contained in V. Then Cy, V&, V — V, are the p-regular classes in G.
Clearly |V — Vj| is divisible by g. On the other hand |V — V| = |G : Cs(v)|, where v is
an element of V—Vj. But Cs(v) D V. Hence |G : Cg(v)| is a power of p, a contradiction.
Thus the lemma is proved.

We now assume V is of order g¢, thatis, V ~ E,. and denote by P a Sylow p-subgroup
of G. Then G ~ E;c X P. Asry(G) = 3, V* consists of two conjugacy classes in G.
We denote these conjugacy classes by A; and Ay, and set |A;| = p™, |Ay] = p",m < n.
Then we have

g" = 1+p"+p".

PROPOSITION 4.2.  Under the above notation, if m = n then part (5), (6), (7) or (8)
of Theorem B holds.

PROOF. We distinguish two cases:

CASE1l. p = 2.We shall show that part (5) or (6) of Theorem B holds. Since g —1 =

ol by [7, Lemma 19.3], one of the following holds:
(i) g=3,{ =2andn=2.

(ii) € =1, thatis, g = 2™ + 1 is a Fermat prime.
Suppose first that (i) holds. Then we have |A;| = |A;| = 4, and so | P| is divisible by 4.
But P is contained isomorphically in GL(2, 3) because V ~ E;.. Therefore | P| = 4, 8 or
16. Suppose | P| = 4. Then P acts semiregularly on V¥, and hence P ~ Z 4. On the other
hand, if |P| = 8 or 16 then P ~ Zg, Qg, Dg or S)6. But if P ~ Zg, Qg or Sy then P acts
transitively on V¥, This contradicts our assumption. Hence P must be isomorphic to Dg.
Therefore, in this case, (5) holds. Suppose next that (ii) holds. Then [A| = |A;| = 27,
and so | P| is divisible by 2. Further, as V ~ Z,, we have AutV ~ Z, | = Z,... Hence
|P| = 27 or 2"*1. But if | P| = 2"*! then P acts transitively on V¥, which contradicts our
assumption. Thus we have P ~ 7, and (6) follows.

CASE 2. pis odd. We shall show that part (7) or (8) of Theorem B holds. Since P
acts faithfully on V and acts %—transitively on V¥ by [7, Theorem 19.6], P is cyclic and
G is a Frobenius group. From the equality g/ — 1 = 2p", it follows at once that if ¢ = 3
then ¢ > 2. To complete the proof, we must show the converse implication. This will be
proved in the following lemma.

LEMMA 4.3. Let p be an odd prime and q a positive odd integer. If p, q satisfy the
relation g* — 1 = 2p", where £ > 2, then q = 3.
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PROOF. Because of the equality

' =q"—1=@-D@G" " +q" T+ +g+ D),

we may write

g—1=2p" q'"'+q""

where a + b = n. Hence ¢! + g2 + - - - + g + 1 is odd. But this is the sum of £ odd

numbers. Hence ¢ is odd. We now set £ = 2k + 1 and prove the lemma by induction on
k.If k=1, then f = 3 and

2+--~+q+l:p",

g—1=2p% ¢ +q+1=7p"
We have to show that a = 0. Suppose otherwise. Then p|(g — 1), so that p|(¢> — 1).
Hence we have
0=g"+qg+1=("—1D+(g—1+3=3 (mod p),

which implies that p = 3. Therefore ¢ = 2 - 3¢ + 1, and so

¥ =g +qg+1=34-3"42.3741).
Thus we have

4.3 142.30=3""— 1.

The left hand side of the above equality is divisible by 3, but the right hand side is not
divisible by 3. This contradiction shows that ¢ = 0 and hence ¢ = 3. This proves the
lemma for k = 1. Suppose next that k > 1 and that the lemma holds for £’ = 2k’ + 1
where K < k. Assume by way of contradictionthat g > 3, namely, a > 1. Then p|(g—1),
and so p|(¢"' — 1) forall i > 1. Therefore, for every positive integer e,

E+q¢ "+ +g+1=e+1 (modp).
In particular,

0=¢""+¢" 2+~ +g+1=¢ (modp),
which forces p| £. We write £ = sp. We now show that s = 1. Suppose otherwise. Then
g” — 1, being a proper divisor of g — 1, is expressible in the form 2p¢, where 0 < ¢ < n.
Therefore, by the induction hypothesis, we get ¢ = 3, which contradicts our assumption.
This proves that s = 1, namely, £ = p. As g = 2p® + 1, we have
= '+¢ 2+ - +q+1
=P+ 1Y T @Y P+ (2 D+ L
It is easy to see that the above is written in the form
AP + (p(p — 1)/ 2)2p" +p,
where A is a positive integer. Hence
P’ =4Ap" + (p— p™' +p.

But the right hand side of the above equality is not a power of p, and we reach a contra-
diction. This completes the proof of Lemma 4.3, and so Proposition 4.2 is proved.
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5. Proof of parts (9) and (10) of Theorem B. Suppose that G is a p-nilpotent group
and V = Oy(G)is abelian. We saw in Lemma 4.1 that V is an elementary abelian g-group.
Suppose now that V is of order ¢°. In the preceding section, we determined the structure
of G for the case that two p-regular classes A; and A; have the same cardinality. In this
section, we consider the case where |A;| = p™ < |A;| = p". Our result which will be
proved in this section is as follows:

PROPOSITION 5.1.  If m < n then part (9) or (10) of Theorem B holds.
First of all we prove the following
LEMMA5.2. Letv € V*. Then every element of (v)* is conjugate to v in G.

PROOF. Supppose the lemma is false and choose u in { v)* to be not conjugate to v.
As ry(G) = 3, C, C,, C, are all p-regular classes in G. Because u € (v)*, Co(u) =
Cg(v),and so |C,| = |C,|, which contradicts our assumption that m < n. Thus the result
follows.

By making use of the preceding lemma, we verify the following

LEMMA 5.3.  The following hold:
() p=2

(2) t(g—1)<pr=2"

(3) qis a Fermat prime.

PROOF. (1) Letv € V¥. Because |V| = g° = 1+p"+p", clearly g is odd. Let P be a
Sylow p-subgroup of G. By Lemma 5.2, we can choose x in P so that v* = v~!. Clearly
x has even order. Hence P is a 2-group, proving (1).

(2) From Lemma 5.2, it follows that C,U { 1} is a union of cyclic subgroups of V, and
consequently | C,| is a multiple of | (v)*| = g— 1. Further, as (C,) is a normal subgroup
of G, we have (Cv) = V by Lemma 4.1. This shows that C, contains a set of generators
of V. Thus we have |C,| > £(g— 1), and hence we have 2™ = [A|| > €(g— 1), proving
(2).

(3) We saw in the proof of (2) that g — 1 is a divisor of |A;]. But |A,| is a power of 2.
Hence g — 1 is a power of 2, proving (3).

LEMMAS5.4. Let q be a positive integer of the form 2+ 1. Suppose that q satisfies the
equality g* —1 = 2" +2", where 0 < m < nand 2¢¢ < 2". Then one of the following
holds:

(1) g=3and l = 4.

(2) g#3and ¢ = 2.

To prove this lemma we need some number-theoretical lemmas.

LEMMA S5.5. Let s be a positive integer and let 2°(a > 0) be the 2-part of s, that is,
the highest power of 2 dividing s. Then the following hold:

(1) Ifs is odd then 2%||(3° + 1) and 2||(3* — 1).

(2) Ifs is even then 2||(3* + 1) and 2°**||(3* — 1).
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(3) Ifqisaninteger of the form 2° + 1 withe > 1 then 2||(¢* + 1) and 2°**||(¢°* — 1).
PROOF. (1) This is trivial for s = 1. If s > 1 we have

F+1=02+1Y+1
= (s(s—1)/2)4+2s+2 (mod 8),

and so
3F+1=2(s>+1) (mod 8).

But 2||(s* + 1) because s is odd. Thus it follows at once that 22||(3° + 1). Further the
equality
F—1=03-DG3 "+3"2+-.-43+1)

implies that 2| (3° — 1) because 3* 7! + 32 +.--+3 + 1 is odd. Thus (1) is proved.
(2) Suppose that s is even. Since 3* + 1 = (2+ 1) + 1, we have

3F+1=2(s+1) (mod4).

As s+ 1 is odd, we get at once 2||(3° + 1). Next, we show 24+?||(3* — 1) by induction on
a. Let o be the odd part of 5, so that s = 2% . If a = 1,

3F—1=3"—1=3-1)@3 +1).

Hence, by (1), we have 23||(3* — 1), proving the first step of induction. Suppose next
a > 1. We already know that 2||(3*'? + 1). Hence from the equality

320 =3 - H3ET 4 1),

we get 24+2||(3%°? — 1) by the induction hypothesis. Thus (2) is proved.
(3)Since ¢*+1 = (2°+ 1)+ 1 =2 (mod 2°), it follows at once that 2| (g* + 1). We
next prove 2% (¢° — 1) by induction on a. If a = 0 then from the equality

¢ —1=@=1(g " +q 7+ +q+1),

we have 2¢||(¢° — 1) because ¢* ! +¢*2 + -+ -+ g+ | is odd. Suppose now a > 0 and let
o be the odd part of 5. As 2||(g>" ' + 1), from the equality

1= -1+

and the induction hypothesis it follows that 2°%|| (g*** — 1). Thus (3) is proved.

Let k be a positive integer. By the preceding lemma, the 2-part of 32° — 1 is 2*2 and
the 2-part of 3% + 1 is 2. Further, if q is an integer of the form 2¢ + 1 with e > 1 then the
2-part of g% — 1 is 2°* and the 2-part of g% + 1 is 2. Concerning the odd parts of these
numbers we have the following
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LEMMA 5.6. (1) Let s, t be the odd parts of 3* — 1 and 3* + 1 respectively. Then
(a) t—1 =2 and
(b) ifk >2,22||(s— 1)
(2) Let q be an integer of the form 2° + 1 with e > 1 and let u, v be the odd parts of
qzk — 1l and q2‘ + 1 respectively. Then
(a) v—1 =21y and
(b) 2 l(u—1).

PROOF. (1) Write t — 1 = 2%7, where 7 is odd. Then
3% 41 =2 =297 42,

which implies that
3 -1 =2"r

Thus we have a = k + 1 and 7 = s, proving (a). To prove (b) we use induction on k. If
k=2,

~k

3 —1=3"-1=2"5.
Hence s = 5. Thus (b) holds for k = 2. Now let K > 2 and set
3 =kl 32 =2/
where s’ and ¢ are odd. Then
3 1 =3 - nE¥ 1) = 2R

Hence s = §¢. Wenote that / — 1 = 2¢' by (a), and s’ — 1 = 22§, 6 odd, by the induction
hypothesis. Therefore
s—1=41r—1

= k25 4 2k 148
= 4(2%s's + 2525 +6),

which implies that 22|| (s — 1). Hence (b) holds for every k > 2.
We can prove (2) by an argument wholly analogous to the proof of (1), and we omit
the proof.

LEMMAS.7. Let s andt be odd integers greater than 1. If st — | is a power of2, then
the 2-part of s — 1 coincides with that of t — 1.

PROOF. Write s— 1 = 2%, t— 1 = 2’7, where ¢ and 7 are odd. Assume by way of
contradiction that a # b. Without loss we may assume a > b. We set st — 1 = 2¢. Then

2041 = st = 2% + D27 + 1),

and so
241 + 2% 4+ 207 = 2F,

Thus we have
221 +2%bg 7 =200,

This is impossible and the result follows.
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LEMMAS.8. Let k be a positive integer and let g be an integer of the form 2° +1 with
e> 1.
(1) 3% —1is expressible as a sum 2™ +2" for some m, n withm < n only when k = 2.
(2) qzk — 1 is expressible as a sum 2™ + 2" for some m, n with m < n only when
k=1.

PROOF. (1) Suppose that 3% —1is expressible as in the form stated in the lemma.
Then it is trivial that k > 2. When k = 2 we have in fact

3 _1=3t -1 =220
Now suppose k > 2. By Lemma 5.5, we may write
T =t 3T =2
where s and ¢ are odd. Then
3 1= 3% - DEF T 1) = K2
But 3% — 1 = 27(1 + 2"~™). Hence we have
st=1+2""",

Ask > 2,5 # 1;and itis trivial that t # 1. Therefore, by Lemma 5.7, the 2-part of s — 1
coincides with that of  — 1. Thus we have 22 = 2k by Lemma 5.6, which contradicts our
assumption k > 2. Thus (1) is proved.
We can prove (2) by an argument analogous to the proof of (1), and we omit the proof.
Now we are ready to prove Lemma 5.4.

PROOF OF LEMMA 5.4.  To our end it suffices to prove that ¢ is a power of 2. Indeed
if £ is a power of 2 then the result follows at once from Lemma 5.8. We now set £ = 2%,
s odd. We must prove that a > 0 and s = 1. Suppose first a = 0, that is, £ is odd. Then
2¢||(g° —1)by Lemma 5.5. This implies that e = m. Therefore we have 2"f = 2¢¢ < 2™,
This forces £ = 1. Butthen g° — 1 = g — 1 = 2¢, which contradicts our assumption.
We therefore obtain a # 0. We next prove s = 1. We distinguish two cases:

CASEl. e = 1,thatis, g = 3. By Lemma 5.5, we have 3 — 1 = 1 = 2%*2¢, where
o is odd. Therefore
2025 = QMM =M1 42",

which implies that a + 2 = m. But then
20+2 — 2m —>_ 2( — 2a+ls,
and so s < 2. Thus we get s = 1 because s is odd.

CASE2. e > 1. By Lemma 5.5, 2°*%||(¢° — 1). From this it follows that e + a = m.

Hence we have
2e+a —— 2m > zeg — 26+as.
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This forces s = 1, and the proof is complete.
We are now in a position to prove Proposition 5.1.

PROOF OF PROPOSITION 5.1. In Lemmas 5.3, 5.4, we proved that p = 2 and one of
the following holds:
(i) V~ Es.
(ii)) V ~ Ep, where g = 2¢ + 1 is a Fermat prime greater than 3.
We distinguish two cases:

CASE 1. V ~ E;.. We shall show that part (9) of Theorem B holds. We may regard
a Sylow 2-subgroup P of G as a subgroup of a Sylow 2-subgroup Q of GL(4,3). As
3* —1 = 24 +25 |A)] = 2% and |A)] = 2° Hence |P| > 2° Let D be a Sylow
2-subgroup of GL(2,3) and set

v={(5 %)]eacn)

Then U is a 2-group of order 28. Set

- o O O
(= =)

S = O
SO o~

0

Then U X (x) has order 2%, and so we may identify Q with U X (x). Write V = V| X V;
and V) = (x1) X (x), V2 = (y) x (y2). We may assume that U acts on each of V;
and V. From the form of Q, we have C,, C V¥ U V4. But then

2= Al <0y S ViU V] = 2%
We therefore have
A =C,=VIUVE, A =0C,p.
We now claim that P is not contained in U. Indeed, if P C U, then Cy, C Vf a contra-
diction. Hence we have |P : PN U| = 2 because |Q : U| = 2. Therefore we can choose

hinP—Usothat P= (PN U, h).Let g = 0) liein PN U. As h is of the form

c
0 d

b
(2 8) ,a,b € D, we have gh = (‘é 3,) This shows that the groups

o= {el(g ) ernv). w=lal(g %) erny

are isomorphic subgroups of D. But D is a semi-dihedral group Si¢, and so we may
regard P M U as a subgroup of Si¢ X Si6. Thus we see by the above that PN U is a
subdirect product H; X; H, of isomorphic subgroups H, and H, of S;¢. Moreover, as
PN U acts transitively on Vf, U, is isomorphic to Zg, Qg or Si6. Hence H, and H; are
both isomorphic to Zg, Qs or Sy6. Thus (9) follows because |P| > 26.
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We show now that this situation does in fact occur. Let g = (: _11) h =

((1) _01) be elements of GL(2, 3). Then g® = h? = I, the identity matrix, and g" = g>.
Therefore L = (g, h) is a semi-dihedral group of order 16, that is, L is a Sylow 2-
subgroup of GL(2, 3). Further it is easy to check that M = (g2, gh) is a quaternion group

of order 8. Now let A,y and Ay be the subgroups of GL(4, 3) given by

A(g):{(g 2)')‘6(8)} AM:{(S 2)|x€M}.

e faa§ ) me ol )

Then each of R; and R; has order 2°. Further R; is a subdirect product of (g) and (g);

and R; is a subdirect product of M and M. By a direct computation, we see that ( g ;h

Set

8
0

w=((§ 2)- (6 a))

has order 2°. It is easy to check that Rs is a subdirect product of L and L. Therefore R,
R, and Rj are groups of type () in (9). We now set

(3 ) e (2 ) ne ()

Then we have |P; : Rj| = 2 forevery i, 1 <i < 3. Let P; act on an abelian group V
of type (3, 3,3, 3). Then one can check directly that P; has three orbits. This shows that
rzl(V A P,‘) = 3.

We next show the existence of groups of type (b). Clearly the groups

w5 2) oo =[5 2) 50

y
are isomorphic to Zg X Zg and Qg X Qg respectively. Now set

A= {(3 2) |x€L}.
SN

is a subdirect product of L and L and its order is 2%, Therefore R4, Rs and Re are groups

of type (b). Set
_[n [0 & L
Pi—<Rz,(1 O)> i=4,5,6.

normalizes the cyclic group generated by ( ;3), and the group

Then the group

https://doi.org/10.4153/CJM-1991-034-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1991-034-2

574 YASUSHI NINOMIYA

Then | P; : R;| = 2 and one can check directly that an abelian group V of type (3,3, 3, 3)
is a union of three orbits under the action of P;. Therefore we have ry(V X P;) = 3.
A group of type (c) is given as follows. Set

e fuls )

Then Ry is a subdirect product of L and L and has order 27, that is, R; is a group of type

(c). Setting
_ 0 ¢
p=(r (] )

one can check that |P7 : R7| = 2 and an abelian group V of type (3, 3, 3, 3) is a union of
three orbits under the action of P7, and hence ry(V X P;) = 3.
Finally, we give a group of type (d). Clearly the group

w={(5 ) 1e]

is isomorphic to L x L and hence this is a group of type (d). We note that the group

we (e 5))

is in fact a Sylow 2-subgroup of GL(4, 3). It is easy to check that an abelian group V of
type (3, 3, 3, 3) is a union of three orbits under the action of Pg. Therefore ry(V % Pg) =
3.

CASE2. V ~ E_,,where g = 2¢+1 is a Fermat prime greater than 3. We shall show
that part (10) of Theorem B holds. Since ¢g> — 1 = 2°*! + 2%, we have m = e + 1 and
n = 2e. To our end, we need to find a Sylow 2-subgroup of GL(2, g). Clearly the group

To(g) = {(g ig,l),(ig,l g) |0;£aeGF(q)}

has order 2%(g — 1) = 2°*2. Let v be a generator of the multiplicative group of GF(g)
and set 7 = ((1) 2) Then 22~ € Ty(g) and so Q = (Zy(g),z) has order 22*!. Since
| GL(2,q)| = q(2¢7! + 1)2%¢*!, Q is a Sylow 2-subgroup of GL(2, ). Setting

(v o0 (10 (01
£=1o 1) *“lo =10 "Tl1 o)

we have Ty(q) = ({g) % (s)) » (). Hence, noting that s = 27 € (z), we see that Q
is given by

0= ((g) = (1) = (2).

From this we see immediately that the commutator subgroup @’ of Q is equal to (g).
Therefore Q/ Q' is isomorphic to Z; x Z,.. We may regard a Sylow 2-subgroup P of
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G as a subgroup of Q. Butas |P| > |A;| = 2%, we have |Q : P| < 2. Suppose now
|Q:P| =2.Then,as P D Q' = (g), one of the following holds:
() P=(g17) = (T2

(i) P=(gz).

(iii) P = (g.1z).
We now show that only case (iii) happens. So suppose first that (i) holds and let u, v be
generators of V. Then we see immediately that A; is equal to (u)* U (v)*. Therefore
A, = C,. Butt fixes uv. This is impossible because P must act regularly on A;. On the
other hand, if (ii) holds then clearly A; = (u)*, a contradiction. Thus P is a group of

type (iii). In this case, as 1z = ((l) ?)) we have
k
| (70 70,{) if i = 2k,
(fz)l = 0 ,Yk+l
('Yk 0 ) ifi=2k+1,

and so P is a group consisting of the matrices

aW" 0 0 a’YkH
( 0 a“'Y") ’ (a“vk 0 ) ’
where a € GF(q), a # 0and 0 < k < 2°~! — 1. Therefore it follows at once that C, C,
and C,, are the p-regular classes of G. Set x = g, y = tz. Then P is in fact a group given
in (10)(b). Further it is clear that V is a union of three orbits under the action of Q and so
the proof is complete.

6. Proof of parts (11) and (12) of Theorem B. In Sections 2 through 5, we proved
that if G is either a p’-group or a p-nilpotent group then one of (1)—(10) in Theorem B
holds. As remarked in Lemma 1.1, the p’-length of G is at most 2. Therefore, to complete
the proof of Theorem B, it remains only to show the following:

PROPOSITION 6.1.  The case G = Op,p(G) does not occur.
PROPOSITION 6.2.  If G = Opppp(G) then part (11) or (12) of Theorem B holds.
At first we prove Proposition 6.1.

PROOF OF PROPOSITION 6.1. Assume the proposition is false and let G be a group
such that G = Op,p(G) and ry(G) = 3. Then we have rp/(G/ OPIP(G)) = 2, and so
|G/ 0,p(G)| = 2. This forces p to be odd. Set V = Oy(G). As ry(G) = 3, G acts
transitively on V¥, and so V is elementary abelian and has a complement, say T, in G ([2,
Chap. VII, Lemma 15.4]). Further from |7/ O,(T)| = 2, it inmediately follows that V*
is a union of at most two orbits under the action of O,(T), that is, rp/(Op/,,(G)) = 2or3.
We distinguish two cases:

CASE 1. rp/(Oprp(G)) = 2. In this case, Theorem A applies to Oy,(G). But, as p
is odd, only (e) of the theorem is applicable. Hence V is a 2-group. Now let ¢ be an

https://doi.org/10.4153/CJM-1991-034-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1991-034-2

576 YASUSHI NINOMIYA

involution of T. Then the p-regular classes of G are Cy, V* and C,. This implies that a
Sylow 2-subgroup of G is of exponent 2, and so it is abelian, a contradiction.

CASE 2. r,,r(O,,/,,(G)) = 3. Since p is odd and V is elementatry abelian, (7) and (8)
of Theorem B apply to O,(G). If Oy, (G) is type (7), then V is a cyclic group. But then
G/ V is abelian, because G/ V is contained isomorphically in Aut V, which is abelian.
This is not the case. Suppose next O,,(G) is type (8). Let P be a Sylow p-subgroup of
T, so that [T : P| = 2.Letv € V¥ Clearly v is not inversed by any element of P.
But T acts regularly on V¥, We therefore can choose an involution t in 7 — P so that
T = (P,t) and vV = v™! for every v € V¥. Then we have v = v for every x in P,
which shows that xtx~'t~! € Cy(v) = (1). This shows that T is abelian, a contradiction.
Thus Proposition 6.1 is proved.

We next prove Proposition 6.2.

PROOF OF PROPOSITION 6.2.  Set V = Op(G). As ry(G) = 3, G acts transitively on
V*, and so V is an elementary abelian r-group for some prime r # p. By [2, Chap. VII,
Lemma 15.4], V has a complement in G. We denote by T a complement of V and let W be
a Hall p'-subgroup of T. Since r,(G) = 3, we have r, (T/ Op(T)) = ry(G/ Opp(G)) =
2. Hence, by Theorem A, W is an elementary abelian g-group where g is either 2 or a
Fermat prime. Clearly, the p-regular classes of G are Cy, V¥ and C,, (w € W¥), and so
the order of every element of (VW) is either ¢ or r. We now claim that ¢ # r. So assume
q = r. Then VW is a nonabelian g-group of exponent g. Hence ¢ # 2, and so g is a
Fermat prime and p = 2 by Theorem A. Since the center Z(VW) of VW is contained in V
([1, Theorem 6.3.3]), we see that | V¥| is a power of 2. This forces | V| to be ¢ or 32, that
is, V>~ Z,or E». Butif V >~ 7, then T is contained isomorphically in Aut Z,, and so T
is abelian. This is not the case. Therefore V ~ E.. In this case, we have T ~ GL(2, 3).
Because the nontrivial 2-regular classes of G are V* and C,,, the set

A, ={wfeVW|geG}

coincides with VW — V. Hence |A,,| = 18. Now let g € G and suppose w® € VW. Then
it is clear that g € Ng(VW). Set S = O»(T) (=~ Qy). Then there is an involution s in G
such that 7 = (S, W,s). Let ¢ be an involution of S and v an element of Z(VW)*. Then
N = Ng(VW) and C = Cn(w) are given by

N={(V,W,1,s), C={(v1).

Thus we have |A,| = |N : C| = 6. This contradicts the fact that |A,,| = 18. This
contradiction shows that ¢ # r. Because every element of (VW)* is either a g-element or
an r-element, VW is a Frobenius group. Therefore W is a cyclic group, and so we have
|W| = g. Hence, by Theorem A, p = 2 and T/ Ox(T) ~ Z, % Zy., where ¢ = 2" + 1.
We set S = O(T). Since T acts transitively on V¥, S acts %—transitively on V*. Therefore,
by [7, Theorem 19.6], one of the following holds:

(i) S iscyclic or generalized quaternion.

(ii) | V| = r*, ris a Mersenne prime and S is dihedral or semi-dihedral.
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(iii) |V| = r?, ris a Fermat prime and S ~ Zy(r).

(iv) |V| = 3%, 8§ ~ T5(3%) or a central product of Dg and Qg.
Concerning part (iv), see also [7, p. 242] and [3, Theorem II]. We note that if S is cyclic,
generalized quaternion of order greater than 8, dihedral, semi-dihedral or Ty(r) with
r = 2% + 1, then, with the exception of Zy(5), AutS is an abelian group or a 2-group
([7, Theorem 9.1, Propositions 9.10, 19.7]). But T/ S = Nz(S)/ C1(S) is contained iso-
morphically in Aut S and 7/ S is neither an abelian group nor a 2-group. Hence we have
one of the following possibilities:

(a) S~ Qs.

(b) V™ Es, S~ Ty5).

(¢c) V ~ Ez, Sis a central product of Dg and Qs.

STEP 1. If case (a) holds then part (11) of Theorem B holds.

PROOF. As AutQg ~ ¥4, T/S ~ Z3. Hence ¢ = 3 and |V#| = 3-8 0r3- 16, and
so V =~ Es» or E72. We now show that V =~ E;.. Suppose otherwise and let P be a Sylow
2-subgroup of 7. We distinguish two cases:

CASE 1. Suppose that P acts %-transitively on V*. Clearly P does not act semiregu-
larly on V¥, and so by [7, Theorem 19.6], P is isomorphic to Zy(5). Therefore Z(P) ~ Z4;
and by [, Theorem 6.3.3], it is contained in Oy»(G) = VS. This is impossible because
Z(S) ~ 7,.

CASE 2. Otherwise P does not act 3-transitively on V¥. Clearly V* is a union of
two orbits A, A, with |A;| = 8, |Az| = 16 under the action of P, which implies that
ry(V x P) = 3. Hence (10) of Theorem B applies to V X P, and so P is given by

(xy| =12 =y ¥ =x").

Again this contradicts [1, Theorem 6.3.3] because Z(P) ~ Z4 and Z(S) ~ Z,.

Thus we have V ~ E5.. Let w be a generator of W, a cyclic group of order 3. Since w™
is conjugate to w in G, there is an element x in 7— SW such that x° lies in S, T = ( SW, x)
and w* = wl. But then x> € Cg(w) = Z(S), and so the order of x is at most 4. Because
a Sylow 2-subgroup (S, x) of T acts semiregularly on V¥, it is a generalized quaternion
group of order 16, which implies that x> # 1, that is, the order of x is 4. This shows
that G is a group stated in (11). We note that 7 is a group Gug given in [2, Chap. XII,
Definition 8.4].

We show now that a group G which satisfies condition (11) does in fact exist. Let

(98 =2 2) = (33 =0 2)

be elements of GL(2,7). Set S = (s,7). Then S ~ Qy; and the element w is of order

3 and normalizes S. Further x* = (_01 _01

(w). Now let T be a group generated by S, w and x. Then, regarding E7: as a vector space

1

) € Z(S) and x normalizes each of S and
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over GF(7), we get a semidirect product G = E,» X T. This is a group of type (11) in
Theorem B, and we can easily check that r»(G) = 3.

STEP2. If case (b) holds then part (12) of Theorem B holds.

PROOF. Since W acts semiregularly on V¥ and | V¥#| = 3-2%, we have |[W| = ¢ =3
and T/ S ~ Z;. Let w be a generator of W. Then we can choose x € T — SW so that
T = (SW.x), X € Sand w* = w™!. Clearly x* € Cs(w). Since the center Z(%(5)) of
To(5) is a cyclic group <((2) g) >
with Sylow’s theorem implies that Cs(w) = Z(S). Therefore the order of x is at most 8.
We must show that the order of x is 8. We note that a Sylow 2-subgroup Q of GL(2,5) is

given by
1 0
o= (75} %))

It is easy to check that if ¢ is an element of Q — Zy(5) such that 02 € Z(‘Z()(S)) then the
order of ¢ is 8. This implies that the order of x is in fact 8. Hence G is a group stated in
(12).

of order 4, we see that Cs(w) 2O Z(S). This together

We show now the existence of such a group. Let w = (_22 i ) be an element of
GL(2,5). Then w is of order 3 and normalizes Ty(5). Set x = ((l) (2)) Then x> =
((2) g) € Ty(5), and x normalizes each of (w) and Zy(5). Let T be a group generated

by Zo(5), w and x. Then, regarding Es: as a vector space over GF(5), we get a semidirect
product G = Es» x T. This is a group of type (12) in Theorem B, and one can check
directly that r»(G) = 3. :

STEP 3. Case (c) does not occur.

PROOF. Assume by way of contradiction that case (c¢) occurs and let G be a group
which satisfies the condition stated in (c). Since W acts semiregularly on V¥ and | V#| =
5-2% we have |W| = g = 5 and T/ SW ~ Z,. Therefore we can choose an element x
of T — SWso that x* € Sand T = (SW,x). Now we note that for every element v of
V#, the length of the S-orbit containing v is 16, that is, |C5(v)| = 2; and the length of
the SW-orbit containing v is 80, that is, SW acts transitively on V¥. Set U = (S, W, x?).
Then a Sylow 2-subgroup R of U does not act %—transitively on V¥ ({7, Theorem 19.6)).
Hence there exists an element v of V¥ such that the length of the R-orbit containing v is
32, which implies that Cr(v) = Cs(v). We can now choose an element y of (S, x*) — S
so that v’ is not contained in the S-orbit containing v. But, because SW acts transitively
on V*, there exists ¢ € SW — S with v* = . Then Uy”l € Cy(v). Now set 0 = sw,
where s € S, w € W¥*. We then see that wy ! is a 2-element because T/ S is a Frobenius
group. Hence oy™' = s(wy™') is contained in some Sylow 2-subgroup R of U, which
contradicts the fact that Cg(v) = Cg(v). This contradiction shows that case (c¢) does not
occur. Thus we complete the proof of Proposition 6.2, and Theorem B is proved.
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