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Abstract. We develop an untyped framework for the multiverse of set theory. ZF is extended
with semantically motivated axioms utilizing the new symbolsUni(U) andMod(U , �), expressing
that U is a universe and that � is true in the universe U , respectively. Here � ranges over the
augmented language, leading to liar-style phenomena that are analyzed. The framework is both
compatible with a broad range of multiverse conceptions and suggests its own philosophically
and semantically motivated multiverse principles. In particular, the framework is closely linked
with a deductive rule of Necessitation expressing that the multiverse theory can only prove
statements that it also proves to hold in all universes. We argue that this may be philosophically
thought of as a Copernican principle that the background theory does not hold a privileged
position over the theories of its internal universes. Our main mathematical result is a lemma
encapsulating a technique for locally interpreting a wide variety of extensions of our basic
framework in more familiar theories. We apply this to show, for a range of such semantically
motivated extensions, that their consistency strength is at most slightly above that of the base
theory ZF, and thus not seriously limiting to the diversity of the set-theoretic multiverse. We end
with case studies applying the framework to two multiverse conceptions of set theory: arithmetic
absoluteness and Joel D. Hamkins’ multiverse theory.

§1. Introduction. ZF set theory serves as a foundation for mathematics, but has
also turned out to be interesting in itself as a field of mathematical study. Much of
the interest lies in that it raises questions that are not only undecidable, but also
lacking clear-cut intuitive answers and demanding deep mathematical developments.
The continuum hypothesis is a primary historical example: It seems implausible to
reach a consensus on affirming or denying it, and it motivated two techniques central
to set theory: the inner model and forcing constructions. It is natural to view these
techniques as enabling constructions of set-theoretic universes from other set-theoretic
universes, thus taking a multiverse view of the subject matter of set theory, rather than
adopting the universe view that there is a single absolute universe of sets. In the words
of Hamkins, an advocate of the multiverse view [12, p. 418]:

A large part of set theory over the past half-century has been about
constructing as many different models of set theory as possible /.../
Would you like to live in a universe where CH holds, but � fails? Or
where 2ℵn = ℵn+2 for every natural number n? Would you like to have
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1034 PAUL K. GORBOW AND GRAHAM E. LEIGH

rigid Suslin trees? Would you like every Aronszajn tree to be special?
Do you want a weakly compact cardinal κ for which �κ(REG) fails?
Set theorists build models to order.

Hamkins follows this perspective on set-theoretic practice with his argument for
adopting the multiverse view:

This abundance of set-theoretic possibilities poses a serious difficulty
for the universe view, for if one holds that there is a single absolute
background concept of set, then one must explain or explain away
as imaginary all of the alternative universes that set theorists seem
to have constructed. This seems a difficult task, for we have a robust
experience in those worlds, and they appear fully set theoretic to
us. The multiverse view, in contrast, explains this experience by
embracing them as real, filling out the vision hinted at in our
mathematical experience, that there is an abundance of set-theoretic
worlds into which our mathematical tools have allowed us to glimpse.

Methodologically, it makes sense to represent the universes of sets as models of a
theory of sets, as that makes them accessible to the well-developed techniques of model
theory. This raises two questions:

1. Which set theory?
2. Which models of that set theory?

In answer to the first question the authors have decided on limiting scope to ZF. This
is the most utilized set theory, established in the mathematical community as a robust
foundation of mathematics. All of the results of this paper go through for extensions of
ZF (axiom of choice, large cardinals, ... ). Although one development of this paper uses
full ZF,1 the authors conjecture that for most of the results much weaker fragments
suffice.

On the second question this paper takes a liberal approach. In particular, scope is
not limited to well-founded models. The framework is intended to be applicable to a
wide range of multiverse conceptions, for example the conceptions that every universe
is of the form Vα , that every universe is well-founded, that every universe is countable
and recursively saturated (and therefore ill-founded), or that every model is a universe.

Why consider ill-founded universes? There is a sense in which a model M of set
theory can be situated as an element in two different models N0 and N1 of set theory,
such that N0 satisfies that M is well-founded while N1 satisfies that M is ill-founded.2

Thus, we may think of the property of well-foundedness as depending on the set-
theoretic background. In Hamkins’s multiverse conception this is a key feature [12, pp.
438–439]:

The concept of well-foundedness [... ] depends on the set-theoretic
background, for different models of set theory can disagree on
whether a structure is well-founded. [... ] Indeed, every set-theoretic
argument can take place in a model, which from the inside appears to

1 The proof of Theorem 2.4 requires full ZF. This is used in the proof of Theorem 5.7, a
consistency result.

2 Using Definition 2.1, the precise sense is that M = AN0 = BN1 , for some A ∈ N0 and
B ∈ N1, such that N0 satisfies that A is well-founded while N1 satisfies that B is ill-founded.
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be totally fine, but actually, the model is seen to be ill-founded from
the external perspective of another, better model. Under the universe
view, this problem terminates in the absolute set-theoretic background
universe, which provides an accompanying absolute standard of well-
foundedness. But the multiverse view allows for many different set-
theoretic backgrounds, with varying concepts of the well-founded,
and there seems to be no reason to support an absolute notion of
well-foundedness.

To approach the set-theoretic multiverse mathematically, we need a foundational
theory to situate the universes in. Just as the foundational background theory of ZF is
useful for studying groups and topological spaces, it is useful for studying set-theoretic
universes. So we find ourselves in a situation of studying models of ZF from the
background theory ZF. The multiverse theorist may extend the background theory of
ZF to a multiverse theory (in an expanded language), with axioms specifying properties
of the multiverse. In such a background multiverse theory, it is natural to consider the
universes as themselves being models of multiverse theories, having their own internal
universes, and so on. This raises an important question:

Main Question. What is the relationship between the external universe of the
background multiverse theory, and the universes internal to the background theory?
Similarly, what is the relationship between each universe and the universes within that
universe?

We shall investigate several responses to the Main Question. Most fundamentally, the
authors propose that the background multiverse theory obeys the following principle:

Copernican Principle. The background theory of the multiverse should not have
a privileged position compared to the multiverse theories of the internal universes;
specifically, if the background multiverse theory proves a statement, it should also prove
that holds in all universes.

We have an analogy with the heliocentric model of the solar system: Earth
corresponds to the universe of the background multiverse theory, as the basis for
our point of view. The geocentric model gives earth a privileged central position as an
absolute reference point, while the heliocentric model puts earth on a par with all of
the planets. So the heliocentric model differs from the geocentric model in that it obeys
the principle that for any appropriately fundamental assumption we make about our
point of view, we are committed to making the same assumption about every other
plausible point of view. Similarly, in the context of set theory, the authors propose
the Copernican Principle as the constraint that for every assumption introduced by a
multiverse theorist, s/he is committed to that it holds from the vantage point of an
arbitrary universe of sets. The name is borrowed from a modern principle in physics,
which Peacock states as “that humans are not privileged observers.” Peacock applies
the principle arguing “if the universe appears isotropic about our position, it would
also appear isotropic to observers in other galaxies” [16, p. 66]. So for the physicist,
the principle is a conceivably falsifiable statement about the uniformity of the physical
universe; while for the theorist of the multiverse of sets, it is an a priori postulate. Below
we explicate a formal deductive rule, NEC, expressing this principle.

To approach the Main Question, we require a framework that makes sense of the
notion of truth-in-a-universe. If the universes are mere models of ZF, then the usual
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satisfaction-relation expressed in the language of set theory suffices. But as soon as we
consider each universe to contain a multiverse in its own right, it is more natural to
consider the universes as structures in the language of the multiverse theory.

The main contribution of this paper is an untyped framework for handling the
notion of truth-in-a-ZF-universe. It is intended to be applicable to just about any
theory of the multiverse of sets. A primitive predicate Uni(U) is introduced to express
that U is a universe, and the primitive relation Mod(U , �) is introduced to express
that the LUni,Mod-statement � is true in the universe U , where LUni,Mod is the language
of set theory, L, augmented with the symbols Uni and Mod. The multiverse theories
considered in this paper are expressed in LUni,Mod.

1.1. Multiverse principles. Now that the language LUni,Mod and the intuitive
intended meaning of its symbols have been briefly explained, the next task is to give
natural and useful axioms for Uni and Mod. Axioms for Uni specify what universes
comprise the multiverse, what closure properties it satisfies, etc.; for example the
multiverse axioms of [12]. In this paper we are focused on semantically motivated
axioms, meant to be applicable to a wide range of multiverse conceptions. The
application of this framework to Hamkins’s multiverse is discussed in Section 6.2.
Since Mod is an untyped semantic relation, it is not surprising that it is exposed to
liar-style phenomena. Our Theorem 4.6 shows, e.g., that the schema

(
∀U (Uni(U) →

Mod(U , ���)
)
→ �, overLUni,Mod-statements �, expressing that whatever holds in every

universe also holds in the background universe, is inconsistent with a natural and mild
theory in LUni,Mod. However, this contradiction is not derivable when this schema is
restricted to L.

The basic theory introduced is called CM– (Compositional satisfaction for the
Multiverse).3 CM– is formed by adding compositional semantically motivatedLUni,Mod-
axioms to the background theory ZF, for each logical connective and quantifier, and
by extending the Separation and Replacement schemas of ZF to LUni,Mod. For example,
the compositional axiom for ∧ is

if � ∈ LUni,Mod is the conjunction of φ and �, then Mod(U , �) ⇐⇒ Mod(U , φ) ∧Mod(U , �).

These are also called the Tarskian laws of satisfaction. The analogue in the present
framework of the well-known Tarskian schema Tr(���) ↔ � (for � ∈ L) would say
roughly that � is true in every universe if, and only if, it holds in the background
universe. So this would say that the multiverse is not very diverse, and certainly not
closed under forcing, for example. But analogues of Tr(���) → � (for � ∈ L) and the
rule of Necessitation � � ⇒� Tr(���) (for � ∈ LUni,Mod) are highly relevant.

In CM– we can prove the soundness principle that the set of statements true in any
particular universe is deductively closed. CM is CM– plus an axiom called MultiverseZF
saying that every universe satisfies ZF, which is just intended to set the scope of
the present treatment. (For most of the results, the authors believe that natural
generalizations to weak fragments of ZF are possible.) Theorem 5.6 shows that an
extension of CM interpreting the Gödel–Löb modal logic is conservative over ZF. So
by the soundness principle, MultiverseZF, and Gödel’s second incompleteness theorem,
CM does not prove the statement ∃U Uni(U), saying that there exists a universe.

3 The precise specification of CM– is given in System 4.1.
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A flexible revision-semantic technique for expanding models of the background
theory ZF to models of extensions of CM– is developed. This technique builds on
ideas from [9], for circumventing truth-theoretic paradoxes. In short, one starts by
setting parameters specifying the particular multiverse conception desired. Among
other things, this pins down the interpretation of Uni. Then the interpretation of Mod
is determined by a revision-semantic process. Intuitively, a basic definition of truth-in-
a-universe is supplied among the parameters, and this definition is revised step-by-step
to more adequate definitions. Theorems 5.4 and 5.5 show that some natural settings of
the parameters lead to that further semantically motivated axioms and deductive rules
are validated in the constructed model, more on this further below.

We introduce several axioms and deductive rules in response to the Main Question.
The most fundamental such principle for this framework is the deductive rule of
Necessitation, NEC, which is a formal expression of the Copernican Principle:

If � is provable, then ∀U (Uni(U) → Mod(U , ���)) is provable,

where ��� is the Gödel code of �. Under mild assumptions on the parameters, NEC
is validated in the revision-semantic model construction. Theorem 4.8 shows that
CM + NEC is conservative over ZF.

Dually, the deductive rule of Co-Necessitation, CONEC, states:

If ∀U (Uni(U) → Mod(U , ���)) is provable, then � is provable.

In the context ofNEC as formalizing the Copernican Principle,CONECmay be thought
of as expressing that the theory is maximal within the bounds of the Copernican
Principle. On the other hand, as a stand-alone principle, CONEC can be used to boost
the expressive power: For example, we will consider CM extended by CONEC and
the statement that no universe satisfies a Σ0

1-statement that does not already hold in
the standard model of arithmetic in the background theory; in other words, a Turing
machine that does not halt in the background theory, halts in no universe. In CM
extended with this axiom we can use basic model-theoretic considerations to prove
that every universe satisfies the Reflection schema iterated �CK

1 times over ZF.4 Now,
by addingCONECwe can prove�CK

1 -iterated Reflection schema overZF outright in the
background theory. So in general, CONEC enables outright proofs of statements that
are provably satisfied across a model-theoretically delimited multiverse, thus in some
sense “extracting the deductively accessible content” of higher-order non-recursive
properties.

We write MS (Multiverse theory of Satisfaction) for the theory CM + NEC +
CONEC. This theory is analogous to the Firedman–Sheard theory of truth
(FS) from [5]. A revision-semantic technique for constructing models of CM +
NEC and/or CONEC (building on a technique from the aforementioned two papers)
is embodied in the Main Lemma (in Section 5) and its Corollary 5.2.

We now proceed to discuss three axioms motivated by the Main Question that have
a reflective character in that they assert that the background universe is in some sense
reflected in the multiverse. We will establish bounds on the consistency strength of
these in terms of iterated reflection principles. The reader is referred to Systems 2.8
and 5.3 for the definition of these principles.

4 See System 5.3 for the definition of this theory.
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A very basic multiverse axiom is Non-Triviality, ∃U Uni(U), saying that there is a
universe. In the presence ofNEC, this also yields that every universe contains a universe,
and so on. We show in Theorem 5.4 (and in Theorem 5.6) that CM + Non-Triviality +
NEC is locally interpreted in (and conservative over) the theory of iterated consistency
over ZF.

A stronger axiom motivated by the Main Question, called Self-Perception, expresses
that the background universe is isomorphic (over the set theoretic language) to one
of the internal universes. This embodies the idea that the universe of the background
theory should also be available in its internal multiverse, and has a distinct reflective
character. It turns out to be convenient to take the universes to be countable recursively
saturated models when modeling CM + Self-Perception + NEC, a phenomenon that
corresponds to the multiverse model of Gitman and Hamkins in [7]. This suggests that
their multiverse theory would harmonize well with CM + Self-Perception + NEC, a
hypothesis we explore briefly in Section 6.2. In Theorem 5.7, we use the revision-
semantic technique to interpret CM + Self-Perception + NEC in the theory of �-
iterated Global Reflection over ZF. The latter is a natural untyped theory of truth,
that mildly strengthens ZF. All universes are countable recursively saturated in this
interpretation.

Self-Perception is closely related to the notion of condensible models studied by
Enayat in [3]. The definition of condensability is somewhat technical, involving an
infinitary language: A model M of ZF is condensible, if there is some ordinal α ∈ M
such that M ∼= M(α) ≺LM M, where M(α) denotes the substructure of M of ranks
below α and LM denotes the intersection of L�1,� with the well-founded part of
M. In particular, Enayat positively answers a question that sprung from the present
paper: Is there an �-standard model of ZF with unboundedly many ordinals α such
that M ∼= M(α) ≺ M? Note that recursively saturated models are �-non-standard.
Enayat’s result means that the door also appears to be open for models of CM +
Self-Perception + NEC with �-standard universes.

We also introduce the axiom schema of Multiverse Reflection, stating for each
sentence � in the language L of set theory:

(
∀U (Uni(U) → Mod(U , ���))

)
→ �. Over

CM, this principle is implied by Self-Perception and implies Non-Triviality. Using the
revision-semantic technique, we show in Theorem 5.5 (and in Theorem 5.6) that
MS + Multiverse Reflection is locally interpreted in (and conservative over) the theory
of �-iterated proof-theoretic reflection schema over ZF.

The body of the paper ends with case studies, where we look at two independent
multiverse conceptions through the lens of the framework we have developed. The first
of these is a conception of the multiverse as being arithmetically absolute, in the sense
that arithmetic truth does not vary across the multiverse. The second is a conception
due to Hamkins which is fundamentally based on the principles that the multiverse
is closed under the forcing and inner model techniques, and that every universe is
countable and �-non-standard from the perspective of some other universe. We close
with a concluding section reflecting on the contributions of the paper and the relevance
of this framework for future research on the set-theoretic multiverse.

§2. Preliminaries.

2.1. A term-calculus for representation of syntax. We shall work with various
recursively enumerable set theories, in languages obtained by adding finitely many
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new non-logical symbols to the usual language of set theory on the signature {∈}. We
define a set theory to be any recursively enumerable system proving Mac Lane set theory
(excluding Choice)5 or proving Kripke–Platek set theory with Infinity,6 in a language
with finitely many non-logical symbols including a term-calculus for arithmetic and
Gödel coding explained below. Our specific choice of set theories underlying this
definition is somewhat arbitrary (even weaker theories may well suffice). Both of
these theories are sufficient for constructing the structure of the natural numbers and
implementing basic model theory; these are the important features for this paper.

Since we will be reasoning about syntactic objects, it is convenient to employ a
Gödel coding of syntax. Let K be a language with finitely many non-logical symbols.
In any set theory T (in language L) under consideration, we can define the arithmetic
functions needed to formulate a natural Gödel coding in T of terms and formulas of K.
Through the Gödel coding, the “grammatical structure” of K is coherently represented
in T. The complicated details of this procedure are described in any rigorous account
of Gödel’s incompleteness theorems. The gist is that for each syntactic object (symbol,
term or formula) s of K, there is a definable number �s� in L (the Gödel code of
s), which represents s in T, and there are operations definable in T corresponding to
syntactic operations on such objects. The authors trust that the reader is familiar with
this.

It is customary in set theory to informally introduce defined constant, relation and
function symbols to the language, in order to make the presentation more readable.
For example, one may use a function symbol +, as if it belonged to the language and
there was an axiom expressing that + is addition on the finite von Neumann ordinals.
In this paper we assume that a finite number of such symbols needed for arithmetic
and Gödel coding are already present in the language of every set theory, and that the
appropriate axioms regulating them are available in every set theory. Here follows a
semi-formal account of some of the main principles of this expanded language L for a
set theory T, also serving to specify the notation:

1. We have a constant 0 and function symbols S,+,× for the successor, addition
and multiplication operations in arithmetic. For each n ∈ N, n is shorthand for
Sn(0).

2. Each variable, constant, relation or function symbol s of K is represented in T
by a numeral �s� in L.

3. Recursively, each term f(t1, ... , tn) of K is represented by the term
�f�(�t1�, ... , �tn�) of L. Formally, the term �f�(�t1�, ... , �tn�) is the result of
applying a function symbol of L to the numerals �f�, �t1�, ... , �tn�. Moreover,
�f(t1, ... , tn)� denotes a numeral that T proves to equal �f�(�t1�, ... , �tn�).

4. Each atomic formula R(t1, ... , tn) of K is represented by the numeral
�R(t0, ... , tn)� of L. Analogous remarks apply as in the case of terms described
above.

5. The syntactic operations, standardly used to build up complex formulas from
atomic formulas, are all available. For example:

5 Its axioms are Extensionality, Null set, Pair, Union, Power set, Separation for Δ0-formulas,
and Infinity.

6 Its axioms are Extensionality, Null set, Pair, Union, Separation for Δ0-formulas, Collection
for Δ0-formulas, Foundation for Π1-formulas, and Infinity.
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(a) L has a function symbol ¬. , such that for each φ in K, ¬. �φ� represents

¬φ. Moreover, T proves that �¬φ� = ¬. �φ�.

(b) L has a function symbol ∧. , such that for each φ and each � in K, �φ� ∧.
��� represents φ ∧ �. Moreover, T proves that �φ ∧ �� = �φ� ∧. ���.

(c) L has a function symbol ∀. , such that for each variable v and each formula

φ in K, ∀.�v� �φ� represents ∀v φ. Moreover, T proves that �∀v φ� =

∀.�v� �φ�.

(d) For any φ in K, φ[t/x] denotes the formula obtained from φ by
replacing each free occurrence of the variable x by the term t (if
t has variables, then their bound occurrences in φ are renamed as
necessary). L has a function symbol (written – [– /. –]) which represents
this primitive recursive substitution operation. Moreover, T proves that
�φ(x)[y/x]� = �φ(x)�[�y�/.�x�]. Somewhat less formally, if φ has been
introduced as φ(x), we may write φ(t) for the formula φ[t/x].

In the context of a set theory T in a set-theoretic language L, Σ0
n, Π0

n and Δ0
n denote

the usual arithmetic hierarchy as defined for L-formulas (all quantifiers are bounded
to N), up to equivalence in T. It is well-known that for any recursive system S, there
is a Σ0

1-formula PrS. , representing S-provability in T. We write ConS. for the sentence

¬PrS. (�⊥)�, expressing that S is consistent. In both cases, the dot under S is sometimes

omitted, when it can be inferred from the context.
As an example, consider this consequence of Gödel’s second incompleteness

theorem:

ZF �� ConZF. .

From the perspective of the meta-theory, “ZF” refers to a set of sentences (the object
theory of ZF) whereas “ZF. ” refers to a formula representing the recursive set of Gödel

codes of that set in the object theory ZF.
Suppose now that a set theory T ′ in language L′ is represented in a set theory T in

language L. Then L′ is Gödel coded in T, as explained above. But T ′, in turn, also
Gödel codes languages; say that T ′ Gödel codes the language L′′. Note that the whole
Gödel coding of L′′ in T ′ is then carried along by the representation of T ′ in T. For
example, if φ is a formula inL′′, then there is a term �φ� inL′ which represents φ inT ′.
If�(x) is a formula ofL′, we can then form the formula�[�φ�/x] ofL′. This formula,
in turn, is represented in T by an L-term ��[�φ�/x]�. So if �(y) is an L-formula, we
can form the L-formula �[��[�φ�/x]�/y]. Thus, Gödel codes may be nested, as a set
theory represents a set theory, which in turn represents a language.

2.2. Miscellaneous logical preliminaries. L is the language with the symbol “∈”
along with a finite number of arithmetic and syntactic symbols as explained in Section
2.1. We assume that ZF is formulated as an L-theory, with the natural axioms for
defining the arithmetic and syntactic symbols of L. L+ denotes any extension of L
with a finite number of new symbols.

If L is a language and S1, ... , Sn are symbols, then LS1,...,Sn denotes the language
obtained by augmenting L with S1, ... , Sn. The Separation schema applying to all
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formulas of a language L is denoted Sep(L), and the Replacement schema applying to
all formulas of a language L is denoted Rep(L).

Any set theory suffices as meta-theory. Suppose that in the meta-theory we
consider a definable set A = {x | φ(x)}, such as a theory. We may then refer to the
corresponding set within an object-theory, for example as follows: Using the symbol
A somewhat ambiguously, we write a statement of the form ZF � ···M |= A. ··· for the

more formally precise statement of the form ZF � ··· ∃X
(
∀x(x ∈ X ↔ φ(x)) ∧ ∀x ∈

X (M |= x)
)
··· . The dot under A is occasionally omitted, when clear from the context.

To illustrate, we might express a special case of Gödel’s completeness theorem within
T as T �

(
ConZF ↔ ∃M(M |= ZF)

)
. We say that a theory T1 bounds the consistency

strength of (or has at least as high consistency strength as) a theoryT0 if the consistency
of T1 implies the consistency of T0.

An interpretation I from a language L0 to a language L1 is a function I : L0 →
L1 which is generated (by structural recursion) from the non-logical symbols of L0.
Moreover, we say that Iinterprets or validates the L0-system T0 in the L1-system T1 if
for any L0-formula φ, T1 � I(φ) whenever T0 � φ.

As default, we work with first-order languages and classical logic, but we will consider
additional deductive rules (NEC and CONEC).φ ≡ � is the statement thatφ and� are
identical formulas. If S and T are systems in languages both including L, then S ≡L T
is the statement that S and T have the same L-theorems. If S is a system involving
deductive rules, and A is an axiom, then S +A denotes the natural extension of S in
which these deductive rules may be applied to proofs also involving A. For example, in
MS + ∃x Uni(x), we may use NEC to derive ∀U ∈ Uni Mod(U , �∃x Uni(x)�).

It is sometimes notationally convenient to introduce classes of the form A = {x |
φ(x)} (the class of all sets x such that φ(x)), where φ is an L+-formula. Then x ∈ A
may be regarded as an alternative notation for φ(x). Thus, we have no need to specify
a formal class theory. For example V = {x | �} is the class of all sets.

Formally, Var is the set of variables {x1, x2, ... }, indexed by the positive natural
numbers. But we use other symbols informally (such as x, y, p, f,U , ...) for variables
as well. VA is the class of variable-assignments, {f | f : Var → V }. If a is a set (or
a structure), then VAa is the set {f | f : Var → a} of all variable-assignments to
elements of (the underlying set of) a. If f is a variable-assignment and v is a variable,
then VAf,v is the set of all variable-assignments g, such that for all u ∈ Var, u �= v →
g(u) = f(u). Suppose that we are working in a set theory T in a language L containing
terms t1, ... tn. Note that for n < �, T proves from v1 ∈ Var, ... , vn ∈ Var that there is
a primitive recursive variable-assignment f satisfying f(v1) = t1, ... , f(vn) = tn, and
∀m ∈ N (m > n → f(vm) = 0). Such a variable assignment f is denoted 〈v1, ... vn〉 �→
〈t1, ... tn〉 (or just v1 �→ t1 in the case n = 1).

We assume that model theory is set up so that any structure M uniquely determines
its language, which we denote by L(M), and we take the symbol “M” to refer
ambiguously to both the structure and its domain. Let M be an L-structure, φ a
formula in L and f ∈ VAM. We use the arrow-notation �a for finite tuples 〈a1, ... , an〉,
and the shorthand �a ∈ M for that each component ai of �a is an element of M. We
write M |= (φ,f) for the statement “φ is true in M under the variable-assignment
f,” as defined in the usual Tarskian semantics of first-order logic. If �a ∈ M and
�(�x) ∈ L, then we write M |= �(�a) for M |= (�, �x �→ �a). We write M |= φ for
∀f ∈ VAM M |= (φ,f). If K is a sublanguage of L, then M�K denotes the reduct
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of M to K. We write M ≡K N for the statement that M satisfy the same K-sentences
as N . We write M ∼=K N for the statement that M�K is isomorphic to N�K . When the
subscripts are dropped, they are assumed to be L(M).

We use abbreviations for certain variations of the quantifiers:

1. ∃x ∈ y φ stands for ∃x (x ∈ y ∧ φ).
2. ∀x ∈ y φ stands for ∀x (x ∈ y → φ).
3. ∃!x φ stands for ∃x (φ(x) ∧ ∀y (φ(y) → x = y)).

If P is a predicate symbol, we may write x ∈ P for P(x). Similarly, we write ∃x ∈ P φ
for ∃x (P(x) ∧ φ), and so on.

We will introduce primitive relation symbols “Sat,” “Uni” and “Mod.” Informally,
Sat(φ,f) expresses that φ is satisfied under the variable assignment f ; Uni(U) expresses
that U is a universe; and Mod(U , φ, f) expresses that φ is satisfied in the universe U
under the variable assignment f. Recall that LSat denotes the language L augmented
with the symbol Sat, while LUni,Mod denotes L augmented with Mod and Uni.

Again, we introduce some abbreviations:

1. Sat(φ) and Tr(φ) stand for ∀f ∈ VA Sat(φ,f).
2. Mod(U , φ) stands for ∀f ∈ VAU Mod(U , φ, f).
3. Tr�(φ) stands for ∀U ∈ Uni ∀f ∈ VAU Mod(U , φ, f).
4. Tr�(φ) stands for ¬Tr�(¬̇φ).

If X is a formula, term or definable object in the language L of the structure M,
then XM denotes its interpretation in M; e.g., φM =df {�a ∈ M | M |= φ(�a)}.

Informally speaking, ifM is a model of set theory, N ∈ M, and M |= “N is a model
of set theory,” so that N is an internal model of M, then we may need to extract N
into an external model that can be studied on a par with M. This is achieved by the
following formal definition.

Definition 2.1. If M is a model of set theory and a ∈ M, then

aM =df {x ∈ M | M |= x ∈ a}.

This notation is generalized in the cases that a is considered as a relation or as a
structure: If M is a model of set theory, R ∈ M and M satisfies that R is an n-ary
relation (for a natural number n under consideration), then

RM =df
{
〈x1, ... , xn〉 | ∃p ∈ M [M |= p ∈ R ∧∧

1≤i≤n
“xi is the i :th component of p”]

}
.

If M is a model of set theory, N , N,R1, ... , Rn are elements of M, and M satisfies
that N is a structure with domain N and relations R1, ... , Rn (of arities r1, ... , rn,
respectively), then

NM =df 〈NM, (R1)M, ... , (Rn)M〉.

In either of the above cases aM is called the M-externalization of a.

For example, �M denotes the element of M such that M |= φ(�), where φ defines
�. On the other hand, (�M)M denotes the subset {a ∈ M | M |= a ∈ �} of M,
consisting of all a such that M |= a ∈ �.
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2.3. Recursive saturation. A typep(�x), over a theory T in a language L, is a set of
L-formulas such that T ∪ p is consistent when the variables �x are considered as fresh
constant symbols. If M |= T , then p(�x) is realized in M if there is �a ∈ M, such that
for all φ(�x) ∈ p, we have M |= φ(�a). A typep(�x, �b), over M with parameters�b ∈ M,
is a type over Th(M, �b) (the theory of M with parameters �b). Such a type p(�x, �b)
is recursive if it is a recursive set (under some fixed Gödel coding of the formulas as
natural numbers). A structure M is recursively saturated if it realizes every recursive
type over M. A crsm is a countable recursively saturated model.

Theorem 2.2 (Completeness of the crsm-semantics). Let M be a countable model in
a recursive language. There is a countable recursively saturated elementary extension of
M. In particular, every consistent theory in a recursive language is modeled by a crsm.

Proof. See the proof of Theorem 2.4.1 in [2].

Let M be a model of a set theory T. The interpretations of the numerals in M are
called the standard natural numbers of M. For each n < �, let us make the identification
n = nM. We say that M is �-non-standard if there is c ∈ (�M)M \ �. Such a c is said
to be a non-standard number of M.

Proposition 2.3. If M is a recursively saturated model of a set theory, then M is
�-non-standard.

Proof. By recursive saturation, M realizes the type {x ∈ N} ∪ {n < x | n ∈ N}.

Suppose that M is �-non-standard. We say that a subset A of � is coded inM,
if there is (a code) a ∈ (�M)M, such that A = {n ∈ N | M |= n < a}. We define the
standard system ofM as

SSy(M) =df {A ⊆ � | “A is coded in M”}.
The following result is due to [17], employing Friedman’s back-and-forth technique

[4]:

Theorem 2.4 (Canonicity of countable recursively saturated models). Let M
and N be crsms modeling ZF. If M ≡L N and SSy(M) = SSy(N ), then M ∼=L N .

Proof. See the proof of Theorem 7.14 in [8].

Remark. As far as the authors can see, the proof of the above theorem requires both
the full Separation and Replacement schemas of ZF, as well as its Foundation axiom.

We define the class

crsm =df {M | M�L|= ZF ∧ “M is a crsm′′}.
2.4. Systems of satisfaction overZF. Before embarking on developing a framework

for a notion of truth-in-a-universe relevant to the set-theoretic multiverse, we shall go
through some related systems of truth over ZF. An intuitive philosophical perspective
is that systems of truth capture various absolute notions of truth, as motivated by
the universe view of set theory, while our framework for truth-in-a-universe captures
various relative notions of truth, as motivated by the multiverse view of set theory. From
a mathematical perspective, it is interesting to relate these two approaches. Moreover,
since we will generalize techniques that have been developed for studying systems of
truth, these provide a relevant context for viewing our results.
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Right at the start of the endeavour to axiomatize truth, one faces the choice between
introducing (to the base language of set theory) a unary truth-predicateTr(�), applying
to sentences �, or a binary satisfaction-relation Sat(φ,f), applying to formulas φ and
variable-assignmentsf : Var → V . In the former option, � needs to range over a class-
sized language where there is a constant-symbol cx corresponding to each x ∈ V . The
authors have chosen the latter option. As a general heuristic, one is justified to expect
any theory of satisfaction to be interpretable in a corresponding theory of truth; the idea
being to interpret Sat(φ(x), f) byTr(φ[cf(x)/x]). Fujimoto has made a comprehensive
study of theories of truth over set theory, following the former option [6].

System 2.5 (CT). Let S be a set theory in L+. The system CT(S)� (for Compositional
Truth) consists of these axioms in the language L+

Sat:

Base S,
CT= ∀y0, y1

(
Sat(�x0 = x1�, 〈�x0�, �x1�〉 �→ 〈y0, y1〉) ↔ y0 = y1

)
,

CT∈ ∀y0, y1
(
Sat(�x0 ∈ x1�, 〈�x0�, �x1�〉 �→ 〈y0, y1〉) ↔ y0 ∈ y1

)
,

CT¬ ∀φ ∈ L+
Sat ∀f ∈ VA (Sat(¬. φ,f) ↔ ¬Sat(φ,f)),

CT∧ ∀φ,� ∈ L+
Sat ∀f ∈ VA (Sat(φ ∧. �,f) ↔ Sat(φ,f) ∧ Sat(�,f)),

CT∀ ∀φ ∈ L+
Sat ∀f ∈ VA (Sat(∀.u φ,f) ↔ ∀g ∈ VAf,u Sat(φ, g)).

We writeCT� forCT(ZF)�. The axioms of the formCT– are called compositional axioms.
By basic logic, CT� also proves the axioms CT∨, CT→ and CT∃ (analogously defined).
We use phrases such as “Sat is ∨-compositional” to express that we have CT∨, for
example.

CT is CT� + Sep(LSat) + Rep(LSat).

A routine induction argument in the meta-theory shows this proposition:

Proposition 2.6. For all L-formulas φ(x), CT� � Sat(�φ(x)�, �x� �→ y) ↔ φ(y).

The theory of satisfaction CT� + Sep(LSat) corresponds to the theory of truth TC�
+ Sep+ in [6, sec. 4]. It is straightforward to interpret the former in the latter. Using
this, it follows from Theorem 20 in [6, sec. 4.1] that CT� + Sep(LSat) is conservative
over ZF. In contrast, in CT we have access to the Reflection theorem for LSat-formulas,
enabling us to prove that there is a Vα modeling ZF. See [6, sec. 4.1] for more details
and refinements.

Proposition 2.7. CT� + Sep(LSat) � “Transfinite Induction over LSat.”

Proof. Let φ(x) ∈ LSat. Assuming ¬φ(α), for some ordinal α, we shall refute the
corresponding induction hypothesis. By Sep(LSat), the set S = {	 ≤ α | ¬φ(	)} exists,
and by assumption it is non-empty. Let 
 be the least ordinal in S. Then ¬φ(
) and
∀	 < 
 φ(	), refuting the induction hypothesis.

System 2.8 (GR�). Let S be a set theory in L+. Here we present the systems of iterated
Global Reflection over S, denoted GRα(S), for ordinals α ≤ �. For any set theory T
in the language LSat, the axiom of Global Reflection over T is

GRT. ∀φ ∈ L. +

Sat
(PrT. (φ) → Tr(φ)).

(The dot under T is sometimes omitted, when it can be inferred from the context.)
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Recursively, for each α ≤ �, we define the system GRα(S):

GR0(S) =df CT(S)� + Sep(L+
Sat),

GRα+1(S) =df GR
α(S) + GRGRα ,

GR�(S) =df

⋃
n<�

GRn(S).

We write GRα for GRα(ZF).

Remark. Observe that GRα is defined with CT� + Sep(LSat) as base case, thus without
Replacement for formulas with the Satisfaction predicate. The reason for this is that
it is intended to express iterated Global Reflection over ZF, which CT� + Sep(LSat)
conservatively extends. If it were defined with CT as base case, then it would not be
morally “over ZF,” since CT proves strong reflection principles of its own.

System 2.9 (FS). The systems FS� and FS (for Friedman–Sheard) are obtained by
adding these rules of proof to CT� and CT, respectively:

NEC For each φ ∈ Sent(LSat) : If FS � φ, then FS � Tr(�φ�).
CONEC For each φ ∈ Sent(LSat) : If FS � Tr(�φ�), then FS � φ.

Recall that Tr(�) is defined as ∀f ∈ VA Sat(�, f).

Given a set-theoretic system S in language L, the following rule will be considered:

Reflection rule For each φ in L : If S � PrS(�φ�), then S � φ.
Definition 2.10. A set-theoretic system S in language L is �-inconsistent if there is
an L-formula �(x) such that:

S � ∀x (�(x) → x ∈ N),

S � ∃x �(x),

For each n ∈ N, S � ¬�(n).

We say that �(x) witnesses the�-inconsistency of S.7

Proposition 2.11. If ZF is �-consistent, then ZF is closed under the Reflection rule.

Proof. Suppose ZF �� φ. Then ZF � ¬PrZF(n, �φ�), for every standard n ∈ N (where
PrZF(n, �φ�) is the formula expressing that n is the Gödel code of a proof of φ). Now,
by �-consistency, ZF � ¬PrZF(�φ�).

Let c be a fresh constant symbol. Note that the schema {m < c < � | m ∈ N},
expressing that there is a non-standard natural number, yields �-inconsistency when
added to a set-theoretic system (proof: take x = c as �).

Proposition 2.12. GR� and FS are �-inconsistent. GR� + GRGR� and FS + GRFS are
inconsistent.

Proof. This is a corollary of McGee’s paradox, see [15], and can be proved
analogously as Theorem 13.9 and Corollary 14.39 in [11], respectively. The arguments

7 The symbol “�” (Uranus) used here is meant to help the reader remember that its extension
consists of non-standard numbers: The arrow may be taken to point outward from the
standard model N.
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in [11] are written for theories of truth over PA, not for theories of satisfaction over
ZF. But they go through with these natural modifications:

1. Replacing instances of the truth predicate “T” by our defined predicate “Tr,”
except for instances quantifying over terms, of the form ∀�t T (φ[.�t/.��x�].), which
are replaced by ∀�y ∈ � Sat(φ, ��x� �→ �y), where �y is fresh.

2. Replacing quantifiers of the form “∀x” by “∀x ∈ �.”

These arguments rely on that GR� admits NEC, which we proceed to show: Let � ∈
Sent(LSat) and suppose that GR� � �. Then there is k < �, such that GRk � �. since
this proof can be represented in GR� , we have GR� � PrGRk (���), so that by Global
Reflection, GR� � Tr(���). Since GR� � CT�, it follows that GR� � �, as desired.

So if we were to naturally extend the definition of GRα to all ordinals α, then we
would get that GRα is inconsistent for all α > �.

Later on we will introduce a multiverse axiom, called Self-Perception, to the effect
that the universe of the background theory is isomorphic (over L) to one of its internal
universes; this axiom is motivated by the idea that the universe of the background
theory should be available in its multiverse. The following lemmas establish technical
results needed to validate that axiom.

Lemma 2.13. Let U be a crsm of GR0 and let V ∈ U , such that U satisfies

V |= {� ∈ Sent(LSat) | Tr(�)}.
Then U ∼=L VU .

Recall that VU is the U -externalization of V , see Definition 2.1.

Proof. We shall establish U ∼=L VU by invoking Theorem 2.4. Thus we need to show
that VU is a crsm, that SSy(U) = SSy(VU ) and that U ≡L VU .

Note that U is �-non-standard, by U ∈ crsm and Proposition 2.3. That VU is a crsm
now follows from Lemma 2.2 in [7].8

(�U )U is mapped initially into (�(VU ))(VU ) by an embedding j (for each x ∈ (�U )U ,
j(x) is defined as the unique y ∈ U such that U |= y = xV). Therefore, we obtain
SSy(U) = SSy(VU ) as follows: Let A ∈ SSy(U), coded by a ∈ (�U )U . Since j is an
embedding, j(a) is a code for A in (�(VU ))(VU ). Conversely, let B ∈ SSy(VU ), coded
by b ∈ (�(VU ))(VU ). Since j is initial and U is �-non-standard, there is a non-standard
c ∈ (�U )U , such that j(c) ≤VU b. So since j is an embedding, c is a code for B in
(�U )U .

To seeU ≡L VU , letφ be a sentence ofL. By absoluteness of |= for standard formulas,

VU |= φ ⇐⇒ U |= “V |= (�φ�).”

Since Sat satisfies the Tarski-biconditionals for L, we have

U |= φ ⇐⇒ U |= Tr(�φ�).

Moreover, by CT¬ and the condition of the lemma,

U |= Tr(�φ�) ⇐⇒ U |= “V |= (�φ�).”

By combining these we obtain U ≡L VU , as desired.

8 That lemma is stated for ZFC, but it is easily seen that its proof does not make use of Choice.
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Remark. U |= ZF is needed for the proof of this lemma, as it relies on Theorem 2.4.
Thus, the authors do not expect it to generalize to GR0(S), unless S � ZF.

Lemma 2.14. Let k < α ≤ �, and letU |= GRα . Then there isV ∈ U , such thatU satisfies

V ∈ crsm ∧ V |= {� ∈ Sent(LSat) | Tr(�)}.

In particular, U satisfies that V |= GRk . Moreover, if U ∈ crsm, then U ∼=L VU .

Proof. We work in U . From ZF + Sep(LSat) we get that the set Tr = {φ ∈
Sent(LSat) | Tr(φ)} exists. For the first statement, by completeness of the crsm-
semantics (Theorem 2.2), it suffices to establish Con(Tr); and for this it suffices
to establish Con(�), where � is an arbitrary finite conjunction of sentences in
Tr. By ∧-compositionality of Sat, we have Sat(�). By GRZF+Sep(LSat), we have
PrZF+Sep(LSat)(¬. �) → Sat(¬. �), and by ¬-compositionality of Sat, we have Sat(¬. �) ↔
¬Sat(�). So since Sat(�), we obtain PrZF+Sep(LSat)(¬. �) → ⊥, whence Con(�). By

Theorem 2.2, we can let V be a model of Tr in crsm.
It follows from GRGRk that GRk ⊆ Tr, yielding the second statement.
The last statement now follows from Lemma 2.13.

Axiom 2.15. Let � be a function symbol and self be a constant symbol. Iso(x) denotes an
L+
� -formula expressing that x is an L+-structure and that � is an ∈-isomorphism from the

universe V onto x. We shall study this axiom in L+
�,self:

Iso(self).

(This formulation is chosen over ∃x Iso(x), as it is convenient to have a reference to a
witness.)

By the ∈-isomorphism property, and the absoluteness of |= for standard formulas,
we have:

Proposition 2.16. For each φ(�x) ∈ L, ZF + Iso(self) � (self |= �φ(�(�x))�) ↔ φ(�x).

System 2.17. Let S be a set theory in L+. By recursion, for each α ≤ �, we define the
system SPα(S) (standing for Self-Perception):

SP0(S) =df GR
0(S) = CT(S)� + Sep(L+

Sat),

SPα+1(S) =df GR
α+1(S) + self ∈ crsm + Iso(self) + self |= Tr ∪ SP.

α(S. ),

SP�(S) =df

⋃
n<�

SPn(S),

where Tr =df {� ∈ Sent(LSat) | Tr(�)}. We write SPα for SPα(ZF).

Remark. A clarificatory note on the role of the languages in SPα . Let α ≥ 1.
The language of SPα is LSat,�,self. SP

α proves Separation for LSat,self, and it proves
Replacement for Lself (since self can be treated as a parameter in these schemas).

Lemma 2.18. Let α ≤ �. Every crsmU of GRα expands to a model U∗ of SPα . Moreover,
if U is a definable model, then we can also obtain that U∗ is definable.

Proof. We start by showing the case α < � by induction. The base case α = 0 is
trivial. The induction hypothesis is that if U |= GRα , then U expands to a model of SPα ;
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and if U is definable, then the expansion is definable. Let U |= GRα+1. Applying Lemma
2.14, we find a crsmV in U , such that U ∼=L VU (as witnessed by an L-isomorphism
i : U → VU ) and U satisfies that V |= Tr ∪ GR.

α . So by the induction hypothesis applied

in U , U satisfies that V expands to a model W of SP.
α . Let U∗ be the model obtained

from U by interpreting self by W and interpreting � by i. It is immediate from the
construction that U∗ |= SPα+1.

Now to the case that α = �: Assume that U |= GR� . Working in U , let Tr = {φ ∈
Sent(LSat) | Tr(φ)}. By the above,

{x ∈ crsm ∧ x |= Tr ∪ SP.
n | n < �}

is a recursive type over U . So since U is recursively saturated, it is realized by some W
in U . It now follows from Lemma 2.13 that U ∼=L WU . So just as in the former case, U
can be expanded to a model U∗ of SP� .

Assume now that U is definable. W can then be defined as the least element of a
definable enumeration of U that satisfies the appropriate conditions. An isomorphism
witnessing U ∼=L WU can also be defined: As seen from a close look at the proof
of Theorem 2.4, the isomorphism is constructed by recursion on enumerations of U
and WU , both of which can be chosen definable since U and WU are definable and
countable.

Lemma 2.19. GR� interprets SP� .

Proof. Since GR� is �-inconsistent, there is a formula �(x) such that GR� � ∃x <
� �(x), but for each n ∈ N, GR� � ¬�(n).

We start by working in GR� . By ZF + Sep(LSat), the theory Tr = {� ∈ Sent(LSat) |
Tr(�)} of truth is a set; and by the argument starting the proof of Lemma 2.14, it is
a consistent theory. So there is a definable S ∈ crsm that models truth.9 Since S is a
model of truth, the Global Reflection axioms allow us to prove S |= GRn, for each
standard natural number n. Let d < � be the minimal number such that �(d ), and let
c be the maximal number such that c ≤ d and S |= GRc . Note that for each standard
natural number n, we can prove n < c. By Lemma 2.18, S expands to a definable model
S ′ of SPc .

Working in the meta-theory, it follows that GR� interprets SP� by an interpretation
J mapping each sentence � in the language of SP� to the LSat-sentence S ′ |= ���.

§3. Revision-semantic truth-in-a-universe. We shall now go through the key
revision-semantic technique introduced in this paper, which may be used to construct
a variety of untyped truth-in-a-universe relations for the multiverse of set theory.
Revision-semantics was independently invented in [9]. In [5], the axiomatic theory of
truth FS was presented and shown to be validated by a model constructed through
such a revision process. The revision process starts with an arbitrary extension S0 of
truth, and recursively defines Sn+1 as the theory of the structure (N, Sn). In particular,

9 This follows from the proof of Theorem 2.4.1 in [2]. The key observation to see that the model
is definable is that it is essentially a Henkin-construction by recursion on an enumeration of a
recursive language and on an enumeration of the set of all recursive subsets of that language,
both of which can be chosen definable.
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the theory of N is a subset of S1, and the liar sentence is in Sn+1 iff it is not
in Sn.

The construction in this paper is somewhat different in that it is intensional. We
start with a more-or-less arbitrary formula defining truth-in-a-universe, and revise the
definition in a revision-semantic fashion. The construction can be modified by adjusting
parameters. For example, we shall see that certain conditions on the parameters result
in that the eventual definition of truth-in-a-universe validates the multiverse theory
MS, introduced in System 4.5. This theory is analogous to FS, but is actually weaker.
The parameters need to satisfy some basic conditions as specified in this definition:

Definition 3.1. Let Tn(φ), Unin(U) and Mod0(U , φ, f) be formulas of the meta-
language (L), in the free variables {n, φ}, {n,U} and {U , φ, f}, respectively.10 For
each n ∈ N:

Tn =df {φ | Tn(φ)},
T� =df

⋃
n<�

Tn,

Unin =df {U | Unin(U)},
Uni� =df

⋂
n<�

Unin.

(Tn)n∈N is intended to be a sequence of first-order set theories, and (Unin)n∈N is
intended to be a sequence of classes of models, as formally specified below. LetLT,LRev

be recursive languages. We say that T,Uni,Mod0 are revision parameters (inLT,LRev)
if the following conditions (closed under ∀n ∈ N, where appropriate) are provable in
the meta-theory and in a given set theory (as object theory):

1. L ⊆ LRev ⊆ LT.
2. “The symbols Uni,Mod do not appear in LT.”
3. “T0 is a set theory in LT.”
4. Tn+1 � Tn.
5. Uni0(U) → x“U is an LT-structure.”
6. Unin+1 ⊆ Unin.
7. Mod0(U , φ, f) → Uni0(U) ∧ φ ∈ LRev

Uni,Mod ∧ f ∈ VAU .

In the construction below we shall see how, given revision parameters, an untyped
revision-semantic truth-in-a-universe predicate can be defined as an L-formula
Modn(U , φ, f), with this intended reading of the variables: n is the stage in the revision
process, U is a universe, φ is a formula in (the representation of) LRev

Uni,Mod and f is an
assignment of variables to elements of U . So LT is the language of the theories Tn,
LRev is any sublanguage of LT, and LRev

Uni,Mod is the language undergoing revision. The
L-formula Mod� is also introduced as a variant of Modn. Actually, only the Unin and
Mod0 parameters influence the construction. The Tn parameter comes into play later
on, in the Main Lemma (in Section 5), where we show (under certain conditions on the
revision parameters) that the Modn formula satisfies desirable semantically motivated
axioms when constructed in the theory T� .

10 Even though the n is notationally in subscript-position, it is a free variable of the formulas T
and Uni. This pattern will also be used for the formula Mod introduced below.
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The construction may intuitively be thought of as a recursive procedure, where Mod0

is a more-or-less arbitrary truth-in-a-universe relation and each Modn+1 revises Modn
into a more adequate relation. It turns out to be efficient to perform the construction
using Gödel’s fixed-point lemma. It is in fact possible to choose Mod0 such that it gets
revised to itself (see the definition of Mod� below). This phenomenon contrasts with
the revision-semantics ordinarily used to construct a model of the Friedman–Sheard
theory of truth, where the revision-operation has no fixed-point (see Lemma 14.9(iii)
in [11]). A key difference between the present revision-process and that one is that the
former is intensional and the latter is extensional. In the present framework we start
with an arbitrary formula defining truth-in-a-universe and revise it to more adequate
definitions, while in the other framework one starts with an arbitrary extension of
truth and revise it more adequate extensions. The move from extensional to intensional
revision-semantics is highly relevant for the present framework.

Construction 3.2 (Construction of Revision-semantics for the Multiverse). Let
Tn(φ), Unin(U) and Mod0(U , φ, f) be revision parameters.

By Gödel’s fixed-point lemma, there is an L-formula Modn(U , φ, f), in the free
variables n,U , φ, f, such that provably:

Modn(U , φ, f) ↔

⎛
⎜⎝
n ∈ N ∧ Unin(U) ∧ φ ∈ LRev

Uni,Mod ∧ f ∈ VAU

∧
(
n = 0 → Mod0(U , φ, f)

)
∧

(
n > 0 → 〈U�LRev , �Unin–1�U , �Modn–1�U 〉 |= (φ,f)

)
⎞
⎟⎠ . (†)

Recall that if φ(�x) is a formula in the language of a structure M, then φM = {�a ∈
M | M |= φ(�a)}. Above, this notation is used for formulas in a represented language,
hence the Gödel quotes, ��. Working in ZF, 〈U�LRev , �Unin–1�U , �Modn–1�U 〉 is the
expansion of U�LRev to LRev

Uni,Mod, interpreting �Mod� by {�a ∈ U | U |= �Modn–1�(�a)},
and interpreting �Uni� by {u ∈ U | U |= �Unin–1�(u)}.

Formally, we now have two references for the expression “Mod0,” the formula Mod0

and the formula Modn, with the variable assignment n �→ 0. However, it is clear that
these are equivalent.

The above construction works for a very wide range of choices for Mod0. But by the
fixed-point lemma, we can choose Mod0 to be “equivalent to its own revision,” so that
Modn turns out to be constant with respect to n. Indeed, there is an L-formula Mod�,
such that provably:

Mod�(U , φ, f) ↔
(

Uni0(U) ∧ φ ∈ LRev
Uni,Mod ∧ f ∈ VAU

∧〈U�LRev , �Uni0�U , �Mod��U 〉 |= (φ,f)

)

End of Construction.

For the reader familiar with the extensional revision-procedure used to construct
a model of FS (this construction is reasonably well-known for FS formulated over
PA, see [11, chap. 13.1] for a detailed treatment), note how the recursive call in the
fixed-point formula of our construction operates on an intension (the formula Mod),
which is interpreted in internal models. In contrast, the recursive call of the revision
procedure for constructing a model of FS (say as a theory of truth over arithmetic)
operates on an extension (the set of true sentences from the previous step), which is
obtained from the external model. The authors take this to explain why it is possible to

https://doi.org/10.1017/S1755020321000241 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000241


THE COPERNICAN MULTIVERSE OF SETS 1051

Revision rules

NEC∗ ∀n ∈ N ∀φ ∈ LRev (Tn � φ) → (Tn+1 � ∀U ∈ Unin+1 (U |= �φ�))
)

CONEC∗ ∀n ∈ N ∀φ ∈ LRev (Tn+1 � ∀U ∈ Unin+1 (U |= �φ�)) → Tn+2 � φ
)

Reflection rule∗ ∀n ∈ N ∀φ ∈ LRev (Tn+1 � PrTn
(�φ�)) → Tn+2 � φ

)

Revision conditions

Soundness∗ ∀n ∈ N ∀U ∈ Unin+1 (U |= Tn)
Completeness∗ ∀n ∈ N ∀φ ∈ LRev (∀U ∈ Unin+1 (U |= φ)) → Tn � φ

Fig. 1. Rules and conditions for the revision parameters.

define a truth-in-a-universe relation Mod� which is fixed by the revision-procedure. In
the extensional revision-semantics, this is not possible simply because the liar sentence
must switch truth-value in the external model at every step of the revision.

Necessity was the mother of the intensional revision-semantics of this paper; the
authors do not see any way to construct models of “the Copernican multiverse of sets”
(as formalized by various theories in this paper, e.g.,CM + Non-Triviality + NEC) by the
extensional approach. Conversely, the authors do not see that the intensional approach
can replace the extensional approach, as the former relies on that the intension acted
upon in the recursive call is interpreted in an internal model. For arithmetic this may
be a serious obstacle, as arithmetic does not have that kind of internal models.

Some conditions and rules for revision parameters, relevant for showing that the
Modn formula constructed as above satisfies a desirable semantically motivated theory
(see the Main Lemma in Section 5), are shown in Figure 1. If one of the rules holds, we
say that the revision parameters admit it. Essentially, if the revision parameters admit
NEC∗ or CONEC∗, then the multiverse theory interpreted admits NEC or CONEC,
respectively. In practice it is often easier to work with the other rule and conditions in
Figure 1, using this lemma:

Lemma 3.3. Let T,Uni,Mod0 be revision parameters.

(a) If Soundness∗ is provable, then the parameters admit NEC∗.
(b) If Completeness∗ is provable and the parameters admit the Reflection rule∗, then

the parameters admit CONEC∗.

Proof. (a) Let n ∈ N and φ ∈ LRev. Assume that Soundness∗ is provable (in the
meta-theory ZF) and that Tn � φ. By the latter, encoding the proof in ZF, we
haveZF � PrTn (�φ�). Combining these, we getZF � ∀U ∈ Unin+1 (U |= �φ�)).
Since Tn+1 � ZF, we are done.

(b) Let n ∈ N and φ ∈ LRev. Assume that Completeness∗ is provable and the
parameters admit the Reflection rule∗. Since Tn+1 � ZF, we have Tn+1 �
Completeness∗. Now suppose that Tn+1 � ∀U ∈ Unin+1 (U |= �φ�). Then

Tn+1 � PrTn (�φ�). So by the Reflection rule∗, Tn+2 � φ, as desired. here

§4. Theories of untyped satisfaction for the multiverse. Section 3 showed how a
revision-semantic relation of truth-in-a-universe can be constructed in set theory. We
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turn now to the task of finding appropriate axioms for truth-in-a-universe that are
validated by such revision-constructions.

System 4.1 (CM). CM–, standing for Compositional satisfaction for the Multiverse, is
axiomatized as follows:

Base ZF + Sep(LUni,Mod) + Rep(LUni,Mod),
CM= ∀U ∈ Uni ∀f ∈ VAU (

Mod(U , �x = y�, f) ↔ f(x) = f(y))
)
,

CM¬ ∀U ∈ Uni ∀φ ∈ LUni,Mod ∀f ∈ VAU (
Mod(U ,¬. φ, f) ↔ ¬Mod(U , φ, f)

)
,

CM∧ ∀U ∈ Uni ∀φ, � ∈ LUni,Mod ∀f ∈ VAU (
Mod(U , φ ∧. �, f) ↔ (Mod(U , φ, f) ∧Mod(U , �, f))

)
,

CM∀ ∀U ∈ Uni ∀φ ∈ LUni,Mod ∀f ∈ VAU (
Mod(U , ∀. u φ, f) ↔ ∀g ∈ VAU

f,u Mod(U , φ, g)
)
.

Define ZFUni,Mod =df ZF + Sep(LUni,Mod) + Rep(LUni,Mod). We write CM for CM–

plus the axiom:

MultiverseZF ∀U ∈ Uni ∀� ∈ ZF.
Uni,Mod

Mod(U , �).

If L′ expands L, then we write CM–(L′) and CM(L′) for the corresponding systems
obtained by replacing all occurrences of LUni,Mod in the axioms of the form CM–

above by the language L′
Uni,Mod. (So the Separation and Replacement schemas remain

unchanged, ranging only over LUni,Mod.)

Remark. The natural analogue axioms CM∨,CM→,CM∃ are easily derived in CM–.

Remark. In CM–, each U ∈ Uni may be viewed as an LUni,Mod-structure, by performing
this assignment:

∈U =df
{
〈a, b〉 | Mod(U , �x ∈ y�, 〈x, y〉 �→ 〈a, b〉)

}
,

UniU =df
{
a | Mod(U , �Uni(x)�, x �→ a)

}
,

ModU =df
{
〈a, b, c〉 | Mod(U , �Mod(x, y, z)�, 〈x, y, z〉 �→ 〈a, b, c〉)

}
.

Accordingly, we will occasionally use the notation U |= φ for satisfaction in that
LUni,Mod-structure. Using the compositional axioms of CM–, it is easily shown that
Mod(U , φ, f) ⇐⇒ U |= (φ,f).

In applications, it is natural to add further axioms to CM–, ensuring, e.g., that we
can prove:

Non-Triviality ∃UUni(U).

Note that over CM–, Non-Triviality is equivalent to Tr�(�⊥�) → ⊥. Recall that the
formulas Tr�(�) and Tr�(�) are defined as ∀U ∈ Uni (Mod(U , �)) and ¬Tr�(¬. �),

respectively. We may naturally consider the interpretation of the modal operators
�,�, generated by interpreting �� by Tr�(���). Therefore, it is useful to exhibit some
compositional conditions easily provable for Tr� in CM– and CM– + Non-triviality:

Proposition 4.2. CM– proves:

CM�
→ ∀φ,� ∈ Sent(LUni,Mod)

(
Tr�(φ →. �) → (Tr�(φ) → Tr�(�))

)
,

CM�
↔ ∀φ,� ∈ Sent(LUni,Mod)

(
Tr�(φ ↔. �) → (Tr�(φ) ↔ Tr�(�))

)
,

CM�
∧ ∀φ,� ∈ Sent(LUni,Mod)

(
Tr�(φ ∧. �) ↔ (Tr�(φ) ∧ Tr�(�))

)
,

�CM ∀φ ∈ Sent(LUni,Mod)
(
Tr�(φ) ↔ ∃U ∈ Uni Mod(U , φ)

)
.
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Proposition 4.3. CM– + Non-Triviality proves:

CM�
⊥ Tr�(�⊥�) ↔ ⊥,

CM�
¬ ∀φ ∈ Sent(LUni,Mod)

(
Tr�(¬. φ) → ¬Tr�(φ)

)
,

DCM ∀φ ∈ Sent(LUni,Mod)
(
Tr�(φ) → Tr�(φ)

)
.

Lemma 4.4 (Soundness Lemma). CM– proves that for all U ∈ Uni, {φ ∈ LUni,Mod |
Mod(U , φ)} is deductively closed.

Proof. Using the compositional axioms CM¬, CM∧ and CM∀, this is proved just like
the soundness theorem for the usual semantics of first-order logic.

The theory MS (standing for Multiverse theory of Satisfaction) is analogous to the
Friedman–Sheard theory of truth FS:

System 4.5 (MS). Consider these rules of proof:

NEC For each φ ∈ Sent(LUni,Mod): If MS � φ, then MS � Tr�(�φ�).
CONEC For each φ ∈ Sent(LUni,Mod): If MS � Tr�(�φ�), then MS � φ.

The system MS– is CM– + NEC + CONEC and the system MS is CM + NEC + CONEC.
If L′ expands L, then we write MS–(L′) and MS(L′) for the corresponding systems

obtained by replacing all occurrences of LUni,Mod, in the axioms of the form CM– and
in the rules NEC,CONEC, by the language L′

Uni,Mod.

Recall that if S is a system involving deductive rules, and A is an axiom, then S +A
denotes the natural extension of S in which these deductive rules may be applied to
proofs also involving A. For example, in MS + ∃x Uni(x) we may use NEC to derive
∀U ∈ Uni Mod(U , �∃x Uni(x)�).

Figure 2 displays reflective axioms, modal axioms and the systemGLCM– interpreting
Gödel–Löb logic.

The reflective axioms may be viewed as statements, of increasing strength, that the
universe of the background theory is reflected in the multiverse: Non-Triviality just says
that there is a universe in the multiverse; Multiverse Reflection is equivalent to that
any L-sentence holding in the background universe also holds in some universe; and
Self-Perception goes as far as saying that the background universe is isomorphic to a
universe in the multiverse.

The next theorem applies standard arguments from axiomatic theories of truth to
exhibit semantically motivated axioms that turn out to be paradoxical.

Theorem 4.6. (a) The following axiom schema is inconsistent over CM– + NEC:

TCM ∀� ∈ Sent(LUni,Mod), Tr�(���) → �.
(b) The following axiom schema is inconsistent over CM– + NEC + Non-Triviality:

4CM ∀� ∈ Sent(LUni,Mod), Tr�(���) → Tr�(�Tr�(���)�).

Remark. Note that TCM is the untyped version of Multiverse Reflection.

Proof. By Gödel diagonalization, there is an LUni,Mod-sentence �, such that

CM � �↔ ¬Tr�(���).

By TCM, Tr�(���) → �, so we get ¬Tr�(���), and therefore �. Now Tr�(���) follows
by NEC, a contradiction.
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Multiverse

Given a set theory S in language

Completeness

Non-Triviality
Multiverse Reflection

Multiverse Completeness

Self-Perception

Sent

Sent

Sent
Sent
Sent
Sent

Gödel-Löb multiverse

Model axioms

Reflective axioms

Scope and Completeness axioms

Fig. 2. Semantically motivated multiverse axioms.

By 4CM, Tr�(���) → Tr�(�Tr�(���)�), so by CM�
↔, Tr�(���) → Tr�(�¬��), and

by CM�
¬ (using Non-Triviality), Tr�(���) → ¬Tr�(���). So we get ¬Tr�(���) and

therefore �. Now Tr�(���) follows by NEC, a contradiction.

The following proposition relates the natural systems obtained by adding reflective
axioms to CM– + NEC.

Proposition 4.7. Over CM– + NEC:

(a) Multiverse Reflection � Non-Triviality.
(b) Self-Perception � Multiverse Reflection.

Proof. (a) From Tr�(�⊥�) → ⊥ we get ¬∀U ∈ Uni Mod(U , �⊥�), whence Non-
Triviality.

(b) Let � ∈ L, and assumeTr�(���). ThenMod(self, ���). So by Proposition 2.16,
we have �.

CompCM in Figure 2 includes two axioms that refer to the theory CompCM. These
axioms can be constructed by Gödel’s fixed-point lemma. The following theorem shows
that (� �→ Tr�) generates an interpretation of Gödel–Löb provability logic inCompCM,
which in turn is interpretable in ZF.

Theorem 4.8. (a) There is an interpretationB of the systemK of modal propositional
logic11 in CM– + NEC, satisfying any given assignment of the propositional

11 The system K is regulated by the rule of modal necessitation, � � ⇒ � ��, and the axiom
schema K, �(� → �) → (�� → ��).
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variables, and

B(��) = Tr�(B. (���)), for each modal propositional formula �.

(b) B above interprets the system GL of modal predicate logic12 in CompCM. In
particular,

CompCM � KCM + 4CM + LöbCM + NEC.

(c) ZF interprets CompCM. If ZF is closed under the Reflection rule (or if ZF is
�-consistent), then ZF interprets CompCM + CONEC.

Proof. (a) The interpretation B can be constructed by primitive recursion, using
the technique described in [11, chap. 5.3]. By NEC, B validates the modal
necessitation rule, and by CM�

→ (from which KCM is easily derived), it validates
K.

(b) By the Soundness Lemma,

CompCM � ∀� ∈ Sent(LUni,Mod) (Pr GLCM(�) ↔ Tr�(�)). (∗)

We apply the Hilbert–Bernays–Löb provability conditions. For NEC, note that
for each � ∈ LUni,Mod, CompCM � � ⇒ CompCM � PrCompCM(���), and apply
(∗). For 4CM, note that for each � ∈ LUni,Mod, CompCM � PrCompCM(���) →
PrCompCM(�PrCompCM(���)�), and apply (∗) both externally and internally. By
Löb’s Theorem (see Lemma 13.7 in [11]) and the preceding item, we are done.

(c) Let C be the interpretation generated by:

Uni(U) �→ U |= CompCM,

Mod(Uni, φ, f) �→ U |= (φ,f).

By the Tarskian conditions of satisfaction, ZF � C(CM–). By construction
of C, ZF � C(MultiverseCompCM). By construction of C and the Completeness
theorem, ZF � C(CompletenessCompCM

). From (∗), it is easily seen that the
Reflection rule yields CONEC. By Proposition 2.11, �-consistency suffices.

§5. Interpreting the Copernican multiverse of sets. Now we proceed to lay forth a
technique for validating the theories in Section 4 by means of the revision-semantic
construction in Section 3. The Main Lemma establishes that a variety of Copernican
multiverse theories can by interpreted in a suitable hierarchy of theories.

First we need a lemma establishing a normal form for derivation in MS. The
analogous result for the case of the Friedman–Sheard theory of truth (over arithmetic)
was established by [1]. The authors are grateful to Broberg for allowing the inclusion
of his proof re-worked for the system MS. We write MS–

NC + S for the system
whose theorems are the conclusions of Hilbert-style proofs in MS– + S such that
all applications of NEC are before all applications of CONEC.

Lemma 5.1. Let S be a theory. If MS– + S � �, then there exists  such that CM– +
NEC + S �  and CM– + CONEC + S +  � �.

12 The system GL extends K with the axiom schema 4, �� → ���, and with Löb’s schema,
�(�� → �) → ��.
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Proof. For simplicity, we assume that all formulas in all theories and proofs
considered are sentences; there is an adequate Hilbert-style proof system meeting
this assumption. It suffices to show that MS–

NC + S � �.
Let � be a Hilbert-style proof, with �0, ... , �l–1 as rows, of �l–1 in MS– + S. By

induction, we may assume that MS–
NC + S � �r , for each r < l – 1. There are four

cases to consider as to how the last row of � is obtained:

(Axiom) �l–1 is an axiom.
(First-order) �l–1 is derived by a rule of inference of first-order logic.
(CONEC) �l–1 is derived from �r by CONEC, for some r < l – 1.
(NEC) �l–1 is derived from �r by NEC, for some r < l – 1.

We proceed to establish MS–
NC + S � �l–1 for each case.

(Axiom) In this case �l–1 is also an axiom of MS–
NC + S (a proof of length 1).

(First-order) In this case �l–1 is also derived by the same rule in MS–
NC + S,

utilizing the induction hypothesis.
(CONEC) In this case �l–1 is also derived by CONEC in MS–

NC + S, utilizing
the induction hypothesis and that this application of CONEC is right at the end,
after all applications of NEC.
(NEC) This is the case requiring work. We have that �l–1 is the sentence
Tr�(��r�) and that MS–

NC + S � �r . Let �0, ... , �k–1 = �r be the rows of
a Hilbert-style proof � witnessing this. We proceed to show MS–

NC + S �
Tr�(��q�), for each q ≤ k – 1. By induction, we may assume that this holds
for each q < k – 1. Again there are four cases to consider as to how the last row
of � is obtained:

(Axiom’) �k–1 is an axiom.
(First-order’) �k–1 is derived by a rule of inference of first-order logic.
(CONEC’) �k–1 is derived from �q by CONEC, for some q < k – 1.
(NEC’) �k–1 is derived from �q by NEC, for some q < k – 1.

We proceed to establish MS–
NC + S � Tr�(��k–1�) for each case.

(Axiom’) In this case we applyNEC to �k–1 to obtain a proof ofTr�(��k–1�)
(of length 2).
(First-order’) We have q0 < ··· < qn < k – 1, such that {�q0 , ... , �qn} �
�k–1. By the induction hypothesis, MS–

NC + S � Tr�(��qi �), for each
0 ≤ i ≤ n. Clearly, these proofs can be merged (respecting the requirement
on the order of the applications ofNEC andCONEC) into one Hilbert-style
proof in MS–

NC + S in which Tr�(��q0�), ... ,Tr�(��qn�) are derived.Now
note that by the Soundness Lemma,

CM– + {Tr�(��q0�), ... ,Tr�(��qn�)} � Tr�(��k–1�).

We add a proof of that (which has no applications of NEC or CONEC)
to the end of the previous proof, obtaining MS–

NC + S � Tr�(��k–1�), as
desired.
(CONEC’) In this case Tr�(��k–1�) equals �q , which we already have a
proof of.
(NEC’) In this case the last step of � is obtained byNEC, so there cannot be
any application of CONEC in �. Hence, we can make an extra application
of NEC at the end of � to obtain a proof of Tr�(��k–1�) in MS–

NC + S.

�
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Before embarking on proving the Main Lemma of the paper, we introduce notation
for the kind of interpretations involved. The Main Lemma encapsulates the revision-
semantic construction of a model of “the Copernican multiverse of sets.”

Let T,Uni,Mod0 be revision parameters. Let S be a set theory in a language L
and let t be an L-term such that S � t ∈ N. Then IUni,Mod0

L,t denotes the interpretation
of the language LUni,Mod into L generated by interpreting Mod as Modt (obtained
from Construction 3.2) and Uni as Unit . (Although the full notation is IUni,Mod0

L,t , with
L,Uni,Mod fixed, for example, we denote this interpretation by It .) Note that this
interpretation fixes each formula in L.

More generally, if S � ∃!x (φ(x) ∧ x ∈ N), then Iφ denotes the interpretation
generated by interpretingMod by∀x ∈ N (φ(x) → Modx) andUni by∀x ∈ N (φ(x) →
Unix). We may expand the language with a constant symbol cφ and extend S with the
axiom ∀x (φ(x) ↔ x = cφ), to produce an interpretation Icφ equivalent to Iφ .

Let T0 and T1 be theories in the languages L0 and L1, respectively. Let F be a family
(set) of interpretations from L0 to L1. We say that F is a local interpretation of T0 in
T1 if for any finite set T ′

0 of consequences of T0, there is an I ∈ F which interprets T ′
0

in T1. Alternatively, we say that T1 locally interprets T0 by F, respectively.
Given revision parameters T,Uni,Mod0, recall thatLT is the language of the theories

Tn and that LRev is any sublanguage of LT.

Main Lemma. Let T, Uni and Mod0 be revision parameters such that T� � ZF, let
F = {Ik | k ∈ N} and let S be an LRev

Uni,Mod-theory such that for any finite Γ ⊆ S,

∃A ∈ N ∀k ∈ N [A ≤ k → Tk � IUni,Mod0
k (Γ)].

(a) If T,Uni,Mod0 admit NEC∗, then T� locally interprets CM– + NEC + S by F.
(b) If T,Uni,Mod0 admit CONEC∗, then T� locally interprets CM– + CONEC + S

by F.
(c) If T,Uni,Mod0 admit NEC∗ and CONEC∗, then T� locally interprets MS– + S

by F.

Proof. We prove the latter, most complicated assertion; the other two assertions
follow by restricting the proof to the appropriate cases. Assume that T,Uni,Mod0 are
revision parameters admitting NEC∗ and CONEC∗.

Assume that MS– + S � �. By Lemma 5.1, we have that MS–
NC + S � �. Let � be a

linear Hilbert-style proof witnessing this. Let Γ be the axioms of CM– + S occurring
in �. We shall start by showing that

∃A′ ∈ N ∀k ∈ N [A′ ≤ k → Tk � IUni,Mod0
k (Γ)]. (∗)

We have by the assumption of the lemma that there is A < �, such that for any
k < � with A ≤ k, we have Tk � IUni,Mod0

k (φ), for every axiom φ of S in Γ. Moreover,
note that for any k < �, and any axiom φ of ZF + Sep(LUni,Mod) + Rep(LUni,Mod),
IUni,Mod0
k (φ) is an axiom of ZF. So since T� � ZF, there is A′ ≥ 1 with A ≤ A′ < �,

such that for any k < � with A′ ≤ k, we have Tk � IUni,Mod0
k (φ), for every axiom φ of

ZF + Sep(LUni,Mod) + Rep(LUni,Mod) in Γ.
Suppose that φ is a compositional axiom (of the form CM–). Then ∀A′ ≤ k <

� [Tk � IUni,Mod0
k (φ)] follows from that for all LT-structures U and all LRev

Uni,Mod-
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formulas φ, it is provable that for all A′ ≤ k < �,

Modk(U , φ) ⇐⇒ 〈U�LRev , �Unik–1�U , �Modk–1�U 〉 |= φ

(using 1 ≤ A′), and from that the corresponding compositional conditions hold for |=.
Hence, A′ satisfies (∗) as desired. We introduce shifted parameters T′,Uni′,Mod′

0
defined by T′

k ≡df Tk+A′ , Uni′k ≡df Unik+A′ and Mod′
k ≡df Modk+A′ . Note that Mod′

also satisfies (†) in Construction 3.2. It is easily seen that T′,Uni′,Mod′
0 are revision

parameters admitting NEC∗ and CONEC∗, and that T′
� = T� . Note that for all φ, it is

provable that for all k < �, IUni′,Mod′0
k (φ) ↔ IUni,Mod0

k+A′ (φ).
We index the sequence of steps in the proof by numbers 0, 1, ... , l – 1, where l is the

length of �. For each q < l , let �q be the derived formula (or axiom) at step q of � (so
� = �l–1), letNq be the number of applications of NEC in the derivation of �q , and let
Cq be the number of applications of CONEC in the derivation of �q . It suffices to show

that there are natural numbersm, n, such that T′
m � IUni′,Mod′0

n (�q), for each q < l . We
do so by induction on the steps of �. Let r < l . Here is our induction hypothesis:

(IH) T′
2Cq+k � IUni′,Mod′0

k (�q), for any step q < r, and for any k ≥ Nq + 1.

We need to show that T′
2Cr+k � IUni′,Mod′0

k (�r), wheneverNr + 1 ≤ k. There are four
cases, as to which rule of inference (if any) is applied to obtain �r from {�q | q < r}:

(Axiom) �r is an axiom in Γ.
(First-order) �r is derived by a rule of inference of first-order logic.
(NEC) �r is derived from �r′ by NEC, for some r′ < r.
(CONEC) �r is derived from �r′ by CONEC, for some r′ < r.

Let k ≥ Nr + 1. We proceed to show T′
2Cr+k � IUni′,Mod′0

k (�r) in each of the above
cases. The fact that T′

a � T′
b , for any 0 ≤ b ≤ a ∈ N, will be used repeatedly without

mention.

(Axiom) Suppose that �r is an axiom in Γ. We have T′
k � IUni′,Mod′0

k (φr), since

T′
k � Tk+A′ and Tk+A′ � IUni,Mod0

k+A′ (φr).

(First-order) By (IH), T′
2Cr+k � IUni′,Mod′0

k (φq), for each q < r. Since IUni′,Mod′0
k

is an interpretation, it respects the inference rules of first-order logic. Therefore,

T′
2Cr+k � IUni′,Mod′0

k (�r).
(NEC) In this case�r is ∀U ∈ Uni (Mod(U , ��r′�)). Note thatCr = 0 andNr′ <
Nr .

T′
k–1 � IUni′,Mod′0

k–1 (�r′) (IH)

T′
k � ∀U ∈ Uni′k (U |= �IUni′,Mod′0

k–1 (�r′)�) NEC∗

T′
k � ∀U ∈ Uni′k (Mod′

k(U , ��r′�)) (†) in Construction 3.2

T′
k � IUni′,Mod′0

k

(
∀U ∈ Uni (Mod(U , ��r′�))

)
Definition of IUni′,Mod′0

k
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(CONEC) In this case �r′ is ∀U ∈ Uni (Mod(U , ��r�)).

T′
2Cr′+k+1 � IUni′,Mod′0

k+1

(
∀U ∈ Uni (Mod(U , ��r�))

)
(IH)

T′
2Cr′+k+1 � ∀U ∈ Uni′k+1 (Mod′

k+1(U , ��r�)) Definition of IUni′,Mod′0
k+1

T′
2Cr′+k+1 � ∀U ∈ Uni′k+1 (U |= �IUni′,Mod′0

k (�r)�) (†) in Construction 3.2

T′
2Cr′+k+1 � ∀U ∈ Uni′2Cr′+k+1 (U |= �IUni′,Mod′0

k (�r)�) Uni′2Cr′+k+1 ⊆ Uni′k+1

T′
2Cr′+k+2 � IUni′,Mod′0

k (�r) CONEC∗

T′
2Cr+k � IUni′,Mod′0

k (�r) Cr′ < Cr

This completes the proof of the lemma. We close by recording the more detailed
statement that we have actually proved: IfN,C are the number of applications of NEC
and CONEC, respectively, in a proof of � in MS–

NC + S, then

T′
2C+N+1+A′ � IUni′,Mod′0

N+1+A′ (�).

Corollary 5.2. Let T, Uni and Mod0 be revision parameters such that for some B ∈ N,
TB � ZF. Let F = {Ik | k ∈ N} and let S be a theory (possibly with Uni,Mod in its
language) such that for any finite Γ ⊆ S,

∃A ∈ N ∀k ∈ N [A ≤ k → Tk � IUni,Mod0
k (Γ)].

(a) If T,Uni,Mod0 admit NEC∗, then T� locally interprets CM + NEC + S by F.
(b) If T,Uni,Mod0 admit CONEC∗, then T� locally interprets CM + CONEC + S

by F.
(c) If T,Uni,Mod0 admit NEC∗ and CONEC∗, then T� locally interprets MS + S

by F.

Proof. Let B ∈ N, such that TB � ZF. Since T, Uni and Mod0 are revision
parameters, we have

∀k ∈ N [B + 1 ≤ k → Tk � ∀U ∈ Unik (U |= ZF. )].

So by the definition of IUni,Mod0 and (†) in Construction 3.2,

∀k ∈ N [B + 1 ≤ k → Tk � IUni,Mod0
k (MultiverseZF)].

Applying the Main Lemma with S + MultiverseZF for S, and the maximum of A and
B + 1 for A, we obtain the desired result.

The following systems, along with GRα from Definition 2.8, are useful for measuring
the consistency strength of various extensions of CM.

System 5.3. Let S be a set-theoretic system. For any set theory T in language L, RT is
the so called (proof-theoretic) Reflection schema:

RT. {PrT. (�φ�) → φ | φ ∈ L}.

(The dot under T is sometimes omitted, when it is clear from the context.)
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We recursively define, for recursive ordinals13 α, the theories Conα(S) and Rα(S), of
α-iterated Consistency over S and α-iterated Reflection schema over S, respectively:

Con0(S) =df S;

Conα+1(S) =df Con
α(S) + ConConα(S);

Conα(S) =df

⋃
	<α

Con	(S), for α a limit ordinal;

R0(S) =df S;

Rα+1(S) =df R
α(S) + RRα(S);

Rα(S) =df

⋃
	<α

R	(S), for α a limit ordinal.

We use the notations Conα and Rα for Conα(ZF) and Rα(ZF), respectively.

Recall System 2.8, where GRα is defined, using the axiom GRT of Global Reflection
over a set theory T extendingCT� (in some languageLSat with a satisfaction predicate):

∀φ ∈ L.
Sat

(PrT. (φ) → Tr(φ)).

Comparing RT with GRT , note that RT is a schema, with a separate axiom for each
formula of the form φ in the meta-language, while GRT quantifies internally over all
formulas in the object-language; the latter is made possible by the satisfaction/truth-
predicate.

Remark. Let us pause to measure the consistency strengths of GR� , R� and Con� :
The consistency strength of GR� is bounded by that of MK + GC (Morse–Kelley
class theory with Global Choice),14 which, in turn, is far less than that of ZFC +
“there exists an inaccessible cardinal.”15 The consistency strength of R� is bounded by
that of GR1.16 The consistency strength of Con� is bounded by that of R1.17 Moreover,
it is easily observed that for each n ∈ N:GRn+1,Rn+1 andConn+1 proves the consistency
of GRn, Rn and Conn, respectively.

13 An ordinal α is recursive if there is a Σ0
1-formula defining a well-ordering of a subset of N of

order-type α. These are precisely the ordinals below �CK
1 .

14 The following argument indicates that the consistency strength of GR� is far less than
that of MK + GC. We rely on [6]: Fujimoto shows in his Theorem 70 that the consistency
strength of his theory of truth, FS, is equal that of NBG� , which is a subtheory of NBG<E0

introduced in [10]. By Theorem 15 in (ibid.), and by Fujimoto’s Proposition 4, NBG<E0 is
a subsystem of MK + GC. (All of the relevant definitions are found in Fujimoto’s Section
3.1.) Moreover, the proof of Fujimoto’s Proposition 21 provides the base step, and NEC
provides the induction step, to show that his FS proves the version of GR� for truth (even
with the Replacement schema extended to the language with the truth predicate). Since that
version of GR� interprets our GR� , the consistency strength of our GR� is bounded by the
consistency strength of NBG� (and since our GR� does not have the Replacement schema
extended to the language with the satisfaction relation, this bound is probably not tight),
which in turn is bounded by the consistency strength of MK + GC.

15 If κ is an inaccessible cardinal, then Vκ+1 provides a natural model of MK + GC.
16 This is shown by a routine argument, using Global Reflection to prove each iteration of the

Reflection schema.
17 This is shown by a routine argument, using the Reflection schema to prove each iteration of

Consistency.
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Theorem 5.4. Con� locally interprets CM + NEC + Non-Triviality.

Proof. We can choose revision parameters T,Uni,Mod0, such that for each n ∈ N:

Tn = Conn,

Unin+1 = {U | U |= Tn}.

Clearly, these are revision parameters provably satisfying Soundness∗, and thereby
admitting NEC∗. Moreover, we have for each k ∈ N:

Tk+1 � Unik+1 �= ∅ Definition of Tk+1,Unik+1,

Tk+1 � IUni,Mod0
k+1 (Non-Triviality) Definition of IUni,Mod0

k+1 .

So the result follows from Corollary 5.2, by setting S = {Non-Triviality}.

Remark. Under the mild meta-theoretic assumption that each Conn is closed under
the Reflection rule, it follows from Lemma 3.3 that the revision parameters in the
above proof admit CONEC∗, yielding that Con� locally interprets CM + NEC +
Non-Triviality. This meta-theoretic assumption follows from the assumption that Con�

is �-consistent, which in turn follows from the existence of an �-standard model of
ZF.

Remark. Using the fine-grained result obtained at the end of the proof of the Main
Lemma, we can show by an overspill-argument that Con� + {n < c | n ∈ N} (for a
fresh constant c) interprets CM + NEC + Non-Triviality (not just locally). This raises:

Question. Is CM + NEC + Non-Triviality�-inconsistent?

Theorem 5.5. R� locally interprets MS + Multiverse Reflection.

Proof. We can choose revision parameters T,Uni,Mod0, such that for each n ∈ N:

Tn = Rn,

Unin+1 = {U | U |= Tn}.

It is easily seen that these are revision parameters provably satisfying Soundness∗, and
thereby admitting NEC∗. Similarly, it is easily seen that they admit the Reflection rule∗

and satisfy Completeness∗, so that they admit CONEC∗. Moreover, we have for each
k ∈ N and each φ ∈ L:

Tk+1 �
(
∀U ∈ Unik+1 Modk+1(U , �φ�)

)
→ φ The completeness theorem and

the definition of Tk+1,Unik+1

Tk+1 � IUni,Mod0
k+1 (Tr�(�φ�) → φ) Definition of IUni,Mod0

k+1

So the result follows from Corollary 5.2, by setting S = Multiverse Reflection.

Remark. The technique for obtaining full (not just local) interpretability, mentioned
in the second remark following Theorem 5.4, does not work for the above theorem,
because Multiverse Reflection is not finitely axiomatizable (as far as the authors can
see). The overspill-argument must be carried out on a single formula, not a schema.
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Theorem 5.6. The following conservativity results hold:

(a) CompCM ≡L ZF.
(b) CM + NEC + Non-Triviality ≡L Con� .
(c) MS + Multiverse Reflection ≡L CM + NEC + Multiverse Reflection ≡L R� .

Proof. (a) This is immediate from Theorem 4.8(c) and that the interpretation
used in its proof restricts to the identity on L.

(b) The right-to-left direction follows from Theorem 5.4, observing that the
interpretation is the identity on L.

For the left-to-right direction, suppose as induction hypothesis that we have
proved Conn in CM + NEC + Non-Triviality. By NEC, we have Tr�(Conn. ). So
by Non-Triviality and Lemma 4.4, we can prove Conn + Con(Con.

n), which is
Conn+1, as desired.

(c) That R� proves every L-theorem of MS + Multiverse Reflection follows from
Theorem 5.5, observing that the interpretation is the identity on L.

That MS + Multiverse Reflection � CM + NEC + Multiverse Reflection is
trivial.

For CM + NEC + Multiverse Reflection � R� , we shall show that for each
n ∈ N, CM + NEC + Multiverse Reflection � Tr�(R.

n). Then the result follows

from Multiverse Reflection. We proceed by induction. By MultiverseZF, we have
the base case: MS + Multiverse Reflection � Tr�(R.

0). So suppose as induction

hypothesis that

MS + Multiverse Reflection � Tr�(R.
k).

Let � ∈ Sent(L). By NEC we have

MS + Multiverse Reflection � Tr�(�Tr�(R.
k)�), (1)

MS + Multiverse Reflection � Tr�(CM. ), (2)

MS + Multiverse Reflection � Tr�(�Tr�(���) → ��), (3)

since (by MultiverseZF) NEC only needs to be applied to finitely many
axioms of CM. We work in MS + Multiverse Reflection. Let U ∈ Uni. Assume
Mod(U , �PrR. k (���)�). We shall show Mod(U , ���). By (2), we can apply

the Soundness Lemma in U to obtain Mod(U , �Tr�(���)�) from (1) and
Mod(U , �PrR. k (���)�). Now by CM→ and (3), we obtain Mod(U , ���), as

desired.

Theorem 5.7. GR� interprets CM(L�,self) + NEC + Self-Perception.

Proof. Set LT = LSat,�,self and set LRev to L�,self. We can choose revision parameters
T,Uni,Mod0, such that for each n ∈ N:

Tn = SPn,

Unin+1 = {U | U |= Tn ∧ U ∈ crsm}.
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Clearly these are revision parameters satisfying Soundness∗, thus admitting NEC∗.
Moreover, note that for each k < �, Tk � Unik(self). So for each k < �,

Tk � IUni,Mod0
k (Self-Perception).

Thus, it follows from Corollary 5.2 that F = {Ik | k < �} is a local interpretation of
CM(L�,self) + NEC + Self-Perception in SP� .

Recall from Lemma 2.19 that there is an interpretation J of SP� in GR� . For
each n < �, let Kn = J ◦ In. Then G = {Kk | k < �} is a local interpretation of
CM(L�,self) + NEC + Self-Perception in GR� . There is a technical hurdle later on in
this proof caused by the fact that the image of each Kn is not included in L, but
includes the instance of Tr needed to define the set Tr = {� ∈ Sent(LSat) | Tr(�)} for
the construction of J in the proof of Lemma 2.19. To overcome this, we construct the
functions K′

n(φ), for each n < �, replacing each occurrence of the form “Tr(t)” in the
values of Kn by “t ∈ y,” where y is assumed to be fresh. Then we have for each φ that

GR� � K(φ) ↔ (K′(φ))[Tr/y].

Let f be a function enumerating the theorems of CM(L�,self) + NEC +
Self-Perception, such that the length of the theorems is non-decreasing. Then, for
each i < � there is �, such that GR� � f. (i) = ���. Let �(x, z) be the formula

expressing

x < � ∧ ∃j < � ∀i ≤ x Sat
(
K. ′
j
(f(i)), �y� �→ z

)
.

Since the values of the K′
n are in L, we have by Proposition 2.6 that for each j < � and

each φ ∈ LRev
Uni,Mod:

GR� � Sat(K. ′
j
(�φ�), �y� �→ z) ↔ K′

j(φ)[z/y].

So since G is a local interpretation, we have for each n < � that

GR� � �(n,Tr).

Since GR� is�-inconsistent, there is a formula �(x) such that GR� � ∃x < � �(x), but
for each n ∈ N,GR� � ¬�(n). Working in GR� , employing Proposition 2.7, we obtain
a maximal number d < � such that �(d,Tr) ∧ ¬�(d ). Now there is a minimal number
e < � such that

∀i ≤ d Sat
(
K. ′
e
(f(i)), �y� �→ Tr

)
.

So GR� defines e by a formula �. It follows from Proposition 2.6 that K� is an
interpretation of CM(L�,self) + NEC + Self-Perception in GR� .

Remark. Under the meta-theoretic assumption that the revision parameters used in
the above proof admit theReflection-rule∗,GR� interpretsMS(L�,self) + Self-Perception.
Another potential approach to validating CONEC would be to employ revision
parameters based on a hierarchy of theories converging to FS� + Sep(LSat), rather
than to GR� (but the authors are not certain that this approach would work).

Question. Does FS� + Sep(LSat) interpret MS(L�,self) + Self-Perception?
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Arithmetic Compositionality
Arithmetic Absoluteness

Absoluteness Sent
Sent

Axioms of Arithmetic Absoluteness

Fig. 3. Axioms of Arithmetic Absoluteness.

Remark. There is another proof of the above theorem that utilizes the fine-grained
result at the end of the proof of the Main Lemma. That technique only works
when the theory S of the Main Lemma is finitely axiomatized (as here where
S = {Self-Perception}). But the technique used in the above proof works also for
non-finitely axiomatized S.

Remark. Note the contrast that CM includes ZF + Sep(LUni,Mod) + Rep(LUni,Mod)
while GR� only includes ZF + Sep(LSat). The essential reason why GR� interprets
Rep(LUni,Mod) is that the interpretations In in the above proof map Mod and Uni to the
L-formulas Modn and Unin, respectively.

In light of Theorems 5.6 and 5.7, the authors ask:

Question. Is it the case that GR� ≡L CM(L�,self) + NEC + Self-Perception? If not,
what is the precise consistency strength of CM(L�,self) + NEC + Self-Perception?

The fact that the extended schema Sep(LSat) in GR� was only used to obtain the set
of true sentences, suggests a negative answer; GR� may have strictly higher consistency
strength than CM(L�,self) + NEC + Self-Perception.

§6. Case studies. This section examines how the framework introduced above can
be applied to two rather different conceptions of the set-theoretic multiverse.

6.1. Multiverse conceptions of arithmetical absoluteness. One may feel confident
in adopting a universe view on arithmetic, appealing to the general acceptance of an
intended model consisting of the finite ordinals, while having a multiverse view of set
theory, where agreement on an intended model is lacking. This subsection therefore
explores how the techniques of this paper may be applied to a conception of the
multiverse where arithmetic is more or less fixed throughout the universes.

Let LPA be the language of arithmetic, and let ΣPA
n be the usual complexity hierarchy

of arithmetic formulas over PA. Given φ ∈ LPA, φN denotes the corresponding L-
formula obtained by restricting the quantifiers to N. Figure 3 exhibits axioms, of
increasing strength, expressing the absoluteness of arithmetic. The strongest of these
is Arithmetic Absoluteness, which expresses that the bounded quantifier “∀x ∈ N”
commutes with the Mod-relation, for the untyped language LUni,Mod.

Proposition 6.1. CM– + Arithmetic Compositionality � Arithmetic Absoluteness.

Proof. Let � ∈ Sent(LPA), such that �N holds. Let U ∈ Uni. We show by induction
on the syntactic structure that Mod(U , ��N�) ↔ �N. For atomic sentences it follows
from that arithmetic equations are decidable. For the propositional connectives, the
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induction step follows from the axioms of the form CM–; let us look at �N ≡ ¬φ for
example:

Mod(U , �¬φ�) ⇐⇒ ¬Mod(U , �φ�) ⇐⇒ ¬φ.
The first equivalence holds by CM¬ and the second by the induction hypothesis. For
the quantifier case, suppose that �N ≡ ∀x ∈ N φ(x). We calculate:

Mod(U , �∀x ∈ N φ(x)�) ⇐⇒ ∀n ∈ NMod(U , �φ(n)�) ⇐⇒ ∀n ∈ N φ(n) ⇐⇒ �N.

The first equivalence holds by Arithmetic Compositionality, the second by the
induction hypothesis, and the third by the fact that for all n ∈ N, N |= n = n.

The following proposition shows the reflective power of Arithmetic Absoluteness,
and exhibits a scenario where CONEC is useful.

Proposition 6.2. CM + ΣPA
1 -Absoluteness + CONEC � R�

CK
1 .

Proof. By CONEC it suffices to prove Tr�(R.
�CK

1 ). Naturally, we do so by transfinite

induction. The base case follows from MultiverseZF, an axiom of CM. For the successor
case, assume that Tr�(R.

α) for some α < �CK
1 . Suppose U ∈ Uni, let � ∈ L and assume

that Mod(U , �PrR.α (�)�). Since α is recursive, PrR.α is Σ0
1, so by ΣPA

1 -Absoluteness,

we have PrR.α (�). It now follows from Tr�(R.
α) and the Soundness Lemma that

Mod(U , ���). So by CM→, we have Mod(U ,R. α+1), as desired. The limit case is

immediate from the definition of Rα .

Remark. Note that the above proof argues model-theoretically on an arbitrary
universe. But even though CM + ΣPA

1 -Absoluteness + CONEC proves a fair amount
of reflection, it is not clear to the authors whether it proves that there is a universe
(Non-Triviality).

This section raises questions about the consistency (strength) of combinations of
Copernican multiverse theories and axioms of arithmetic absoluteness, in particular:

Question. Is CM + ΣPA
1 -Absoluteness + CONEC consistent relative to R�

CK
1 ?

Question. Is CM–(L�,self) + NEC + Self-Perception + Arithmetic Compositionality
consistent?

The following proposition may be viewed as a partial answer to the second question,
but the authors do not consider it to suggest an ultimately negative answer:

Proposition 6.3. The systemCM– + NEC + Arithmetic Compositionality + Non-Triviality
is �-inconsistent.

Proof. This is a corollary of McGee’s paradox, see [15].

6.2. The Hamkins multiverse. Hamkins [12] introduced a conception of the set-
theoretic multiverse, which informally is based on four over-arching principles:

1. The multiverse is a non-empty collection of models of ZFC.
2. The multiverse is closed under the usual techniques for constructing models of

set theory from other models of set theory, such as forcing extensions and inner
models.
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3. Every universe is countable and�-non-standard from the perspective of another
universe.

4. The multiverse is closed under iterating large cardinal embeddings backward.

Definition 1.1 in [7, pp. 475–476] gives succinct formulations of axioms encapsulat-
ing this conception. The third (and possibly the fourth) principle is more controversial
than the first two. For example, the Well-foundedness Mirage axiom states that for
every universe U there is a universe V which thinks U is �-non-standard.

Philosophical arguments in support for the axioms are provided in [12, sec. 9]; and
a model of them is constructed by [7], essentially taking the multiverse to consist of
the countable recursively saturated models of ZFC. We call this the Gitman–Hamkins
model of the multiverse.

Gitman and Hamkins [7] consider a weak and strong form of Well-foundedness
Mirage. In the terminology of this paper, these are formally stated as follows:

WMweak ∀U ∈ Uni ∃V ∈ Uni ∃u ∈ V
(
uV = U ∧

∧ V |= “u is �-non-standard”
)
,

WMstrong ∀U ∈ Uni ∃V ∈ Uni ∃u ∈ V
(
uV = U ∧

∧ V |= “u is an �-non-standard model of ZFC”
)
.

The distinction between the axioms is discussed in [7, pp. 479–480], where a reflection
assumption is introduced to ensure that the stronger axiom gets validated in the model.
Their multiverse conception is flat in the sense that it does not consider the universes as
themselves being models of the multiverse axioms. However, the move from WMweak

to WMstrong may naturally be viewed as a step in that direction. Accordingly, we may
reformulate Well-founded Mirage in LUni,Mod as:

WM ∀U ∈ Uni ∃V ∈ Uni ∃u ∈ V
(
uV = U ∧

∧Mod(V , “u is an �-non-standard model in Uni”)
)
.

Informally speaking this says not only “for every universe U there is a universe V
that thinks that U is �-non-standard,” but also “V thinks that U is a universe.” Note
that over CM + Choice + NEC,18 we get WMstrong from WM, and also iterated forms
of WM, starting with ∀W ∈ Uni Mod(W ,WM). The authors take this to be a natural
way for Well-founded Mirage to manifest in the multiverse of sets. The analogous
modification can also be made to the Countability axiom in Definition 1.1 of [7].

We write HM (the Hamkins Multiverse) for the LUni,Mod-theory obtained by
extending CM with the axioms of Definition 1.1 in [7] reformulated so that |= is
replaced by Mod and the Well-founded Mirage and Countability axioms are modified
as above. In general, it is natural to add the closure condition NEC to this system, since
that gives us a Copernican conception which ensures that the background universe does
not have a privileged point of outlook over the multiverse. In particular, this yields a
natural strengthening of Well-founded Mirage (and Countability), as explained in the
previous paragraph. Moreover, the techniques used to validate Self-Perception in this
paper are closely related to the validation of Well-founded Mirage by [7]. Therefore, the
authors champion CM(L�,self) + HM + Self-Perception as a theory of the multiverse.

Note that the choice of Unin in the proof of Theorem 5.7 is the collection of countable
recursively saturated models, just as in the Gitman–Hamkins model of the multiverse.

18 Choice is added here because Hamkins’s conception of the multiverse is formulated for ZFC.
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A plausible approach to proving the consistency of the above theory is therefore to use
the construction from the proof of Theorem 5.7, setting up the revision parameters
T,Uni,Mod0 so that for each n ∈ N:

Tn = SPn(ZFC),

Unin+1 = {U | U |= Tn ∧ U�L∈ crsm}.
Conjecture . GR�(ZFC) interprets CM(L�,self) + NEC + HM + Self-Perception.

Addressing this conjecture falls outside the scope of this paper. What needs to be
done is essentially to verify that the proof of the Main Theorem by [7] generalizes from
models of ZFC to models of SPn(ZFC).

§7. Conclusion. We have developed a framework of satisfaction for the multiverse
of set theory, with two sides: A revision-semantic construction of an increasingly
adequate definition of truth-in-a-universe, and a family of axiomatic theories validated
by the revision construction. We have shown how the construction can be adjusted, by
tuning the revision parameters, in order to validate various multiverse axioms.

The basic theory of satisfaction for the multiverse is CM, which extends ZF with
axioms expressing that truth-in-a-universe is compositional with respect to the logical
connectives and quantifiers. Adding the deductive rule NEC yields a system with the
closure condition that whatever is provable in the multiverse theory also provably
holds in each universe. So such a system respects the Copernican Principle that the
background universe should not have a privileged point of outlook over the multiverse.
Adding also the dual principle of CONEC yields the system MS. MS is in a sense
analogous to the Friedman–Sheard theory of truth (FS), but in Theorem 4.8 we
saw that, unlike FS, it is conservative over the base theory, under the meta-theoretic
assumption that ZF is closed under the Reflection rule (which follows if ZF is �-
consistent, and in particular if there is an �-standard model of ZF).

The choice of ZF as base theory for our framework is important for the axiom
of Self-Perception. The proof of Theorem 5.7 yields a model of CM(LSat) + NEC +
Self-Perception satisfying that each universe is a countable recursively saturated model
of ZF (under Mod). As far as the authors can see, both the full Separation and
Replacement schemas of ZF, as well as its Foundation axiom, are needed both for the
background theory and for the internal theory of each universe, due to the application
of Theorem 2.4 in the proofs of Lemmas 2.14 and 2.18. In contrast, for the weaker
extensions of CM introduced in this paper, the authors do not see any need for full ZF.
For example, the authors believe that most of the results of this paper hold (with minor
modifications) also when taking Mac Lane set theory,19 or Kripke–Platek set theory
with Infinity,20 as base theory and as theory for the internal universes. Due to the close
connection between Mac Lane set theory and topoi, this suggests that the framework
can be adapted to give an analogous multiverse framework for topos theory.

We explored adding axioms of a reflective character, asserting that the universe of
the background multiverse theory is reflected in the multiverse. Whereas Non-Triviality

19 This set theory is ZF minus Foundation and Replacement, and with Separation only for
Δ0-formulas.

20 This set theory is ZF minus Powerset, and with Separation and Collection (instead of
Replacement) only for Δ0-formulas.
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merely states the existence of a universe in the multiverse, Multiverse Reflection can
be viewed as expressing that for every formula in the base language that holds in
the background universe, it holds in some universe. Self-Perception goes as far as
expressing that the background universe is isomorphic to a universe in the multiverse.
These axioms were interpreted in systems of various types of iterated reflection over
ZF, all of which are very mild in terms of consistency strength; indeed their consistency
strengths are all bounded by Morse–Kelley class theory with Global Choice (and the
remark following System 5.3 indicates that they are far weaker), which in turn is far
weaker than ZFC + “there exists an inaccessible cardinal.”

Having this framework available, the multiverse theorist can proceed to make use of
its untyped relation of truth-in-a-universe. Apart from the light it sheds on the axioms
above, a concrete value added, compared to the usual |=-relation, is that it makes it
possible to express multiverse principles that reach arbitrarily deep into the structure of
universes, universes within universes, universes within universes within universes, etc.
We give the final word to Tomas Tranströmer, through his poem “Romanska bågar”
(translation by Robert Bly):

Inne i dig öppnar sig valv bakom valv oändligt.
Du blir aldrig färdig, och det är som det skall.

Inside you one vault after another opens endlessly.
You’ll never be complete, and that’s as it should be.
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