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Abstract

Grammatical Framework (GF) is a special-purpose functional language for defining gram-

mars. It uses a Logical Framework (LF) for a description of abstract syntax, and adds to this

a notation for defining concrete syntax. GF grammars themselves are purely declarative, but

can be used both for linearizing syntax trees and parsing strings. GF can describe both formal

and natural languages. The key notion of this description is a grammatical object, which is not

just a string, but a record that contains all information on inflection and inherent grammatical

features such as number and gender in natural languages, or precedence in formal languages.

Grammatical objects have a type system, which helps to eliminate run-time errors in language

processing. In the same way as a LF, GF uses dependent types in abstract syntax to express

semantic conditions, such as well-typedness and proof obligations. Multilingual grammars,

where one abstract syntax has many parallel concrete syntaxes, can be used for reliable and

meaning-preserving translation. They can also be used in authoring systems, where syntax

trees are constructed in an interactive editor similar to proof editors based on LF. While being

edited, the trees can simultaneously be viewed in different languages. This paper starts with a

gradual introduction to GF, going through a sequence of simpler formalisms till the full power

is reached. The introduction is followed by a systematic presentation of the GF formalism

and outlines of the main algorithms: partial evaluation and parser generation. The paper

concludes by brief discussions of the Haskell implementation of GF, existing applications,

and related work.

Capsule Review

Type Theory provides logical foundation for functional programming, at the levels of higher

order abstract syntax and semantics, both from the operational aspect with computational

reduction rules, and from the denotational aspect with constructive realization structures.

Concrete syntax however has usually a second-class status, through ad-hoc low-level parsers

and printers. With his Grammatical Framework, Aarne Ranta bridges this gap by providing a

general computational linguistics formalism with dependent types where multilingual support

is consistent with semantical design. This system has a powerful Haskell implementation with

a pleasant structure editor. This reference paper is a comprehensive presentation of an original

synthesis of recent research in proof theory, programming methodology and computational

linguistics, which provides an elegant platform for literate programming.
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146 A. Ranta

1 Introduction: the goals of GF

The Grammatical Framework (GF) is a grammar formalism, i.e. a language for

defining grammars. The development of GF started as a notation for type-theoretical

grammars (Ranta, 1994), which use Martin-Löf’s (1984) type theory to express the

semantics of natural language. The first implementation was released in 1998 at

Xerox Research Centre Europe in Grenoble, with focus on multilingual authoring

via a type-theoretical pivot language. After the first publication (Mäenpää & Ranta,

1999), GF has developed into a functional programming language, whereby its

notation has been completely revised, but it has preserved downward compatibility.

The focus of GF has thus shifted from an initial theoretical idea to practical

applications. In this paper, we try to make explicit the theory that has proved useful

for practical applications. The goal of GF is to serve both linguists, who want a

high-level and reliable grammar formalism, and programmers, who want an elegant

and efficient tool for building natural-language applications.

1.1 A logical framework with concrete syntax

When describing or implementing a language, it is customary to distinguish between

its abstract syntax, i.e. the hierarchical structure of the language, and its concrete

syntax, i.e. what the language looks like as it is read and written. The idea is that

notions such as type checking and semantics are better defined on the level of

abstract syntax, without the clutter of concrete syntax details.

In programming language design, concrete syntax is usually kept as simple

as possible, with some concessions allowed to tradition, e.g. to include standard

mathematical notations. In linguistics, the situation is different: the linguist has to

take a natural language as it is, and describe it the best she can. It is not common

to reach a level at which one can make a neat distinction between abstract and

concrete syntax, or to discuss questions like type checking and semantics with the

same precision as in programming languages.

GF was born from a synthesis between the computer science and linguistics ways

of thinking: what about if we take an abstract syntax, with all type checking and

semantics, and try to define a concrete syntax that looks exactly as we want, including

natural languages? We took a powerful formalism for abstract syntax, a Logical

Framework (LF),1 and extended it with a notation for concrete syntax. With this

formalism, it became possible to define all aspects of a language at once, which is an

advantage for language implementation. At the same time, it gives a new perspective

on natural languages, since it makes precise semantical notions applicable to those

fragments of natural language that are recognized by GF grammars.

The practical issue of adding concrete syntax to LF was already addressed in the

Mathematical Vernacular project of de Bruijn (1994). The goal was to make LF

proof systems more accessible to users. An early implementation of this idea is a

1 The logical framework of GF is a version constructive type theory, as are LF (Harper et al., 1993),
ALF (Magnusson & Nordström, 1994) and Coq (The Coq Development Team, 1999).
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program that translates proofs in the logical framework Coq into an English-like

notation (Coscoy et al., 1995). However, the translation is part of the implementation

of Coq itself: thus, even though the abstract syntax of new mathematical concepts

is user-definable in Coq, their concrete syntax is not.

A step towards user-defined concrete syntax is taken in Isabelle (Paulson, 2002),

which has a mixfix notation to define the concrete syntax of functions. Mixfix is

a generalization of infix declarations – which of course are rudimentary concrete-

syntax definitions – into full context-free rules. To some extent, mixfix notation is

enough even for natural language. For instance, if we want to define an English

notation for the length function, whose abstract syntax is given by the function

declaration

length : (A : Set) → List A → Int

it is enough to write:2

length x = ”the” ++”length” ++”of” ++ x

However, if we want to express length in correct German, we need to inflect it in

different cases, put its argument into the dative case prefixed by the preposition von,

and tell what gender it has. All this is done by a GF definition

length = f1 ”Länge” Fem

where f1 is a concrete syntax function taking care of the details of inflection and

argument case. Of course, f1 itself is user-defined,

f1 : Str → Gen → {s : Cas ⇒ Str ; g : Gen} → {s : Cas ⇒ Str ; g : Gen} =

λF, G, x → {s = table {c ⇒ der SgGc ++F ++”von” ++x.s ! Dat} ; g = G}

This rule uses another user-defined function, der, which gives the inflectional forms

of the German definite article.

Rules like the ones for length are typically written by persons who work in LF and

are experts in the mathematical theories that they are working with. Functions like

f1 and der require expertise in linguistics and German grammar. A good division of

labour is that functions of the latter kind are provided in resource grammars written

by linguists and can be taken for granted by those who write applications. This

requires a powerful notation permitting high levels of abstraction.

1.2 A grammar formalism with the linearization perspective

Both computer scientists and linguists have developed grammar formalisms – decla-

rative descriptions of language from which language-processing algorithms can be

automatically generated. The best-known algorithm is parsing, which takes strings

into syntax trees (in the case of GF: to functional terms). Many grammar formalisms

are designed to permit easy generation of parsers. The rules of GF, however, have

their most direct readings in the direction of linearization, which takes functional

2 We use GF notation; Isabelle mixfix does not support argument suppression.
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terms into strings. To show that also a parser can be derived from every GF grammar

requires a complicated argument.

In computer science, the best-known grammar formalisms are context-free gram-

mars (=BNF) and attribute grammars (Knuth, 1968). BNF is used for describing

languages in reports, but language implementations use extensions of the declarative

format with semantic actions written in a general-purpose programming language.

YACC (Johnson, 1975) is the classical model for such formalisms. Because of

semantic actions, YACC grammars cannot generally be used for linearization. BNF

does not cover the type-checking aspect of languages, whereas attribute grammars

are able to do some of it. In YACC, some type checking can be performed in semantic

actions, but this easily becomes a mess, and separate phases are recommended

instead. In logical frameworks, type checking can be neatly included in abstract

syntax definitions, but there are not yet any tools for doing so in practical language

implementations.

In linguistics, the tradition closest to GF is Montague grammar (Montague,

1974), which uses simple type theory to express abstract syntax. In a way, GF is

just a generic framework for implementing Montague-style grammars extended with

dependent types.3 Another point of reference are the grammar formalisms based on

unification. These formalisms include DCG (Pereira & Warren, 1980) and PATR

(Shieber, 1986), which are, like GF, pure frameworks, and HPSG (Pollard & Sag,

1994) and LFG (Bresnan, 1982), which have elements of built-in linguistic theory.

While postponing the discussion of related work to section 10, it can be useful to

point out the major ways in which GF differs from unification grammar formalisms:

• GF has separate rules for abstract and concrete syntax.

• The primary perspective in GF is linearization.

• GF has a strong type system.

• GF is a functional language.

• GF can integrate semantics with abstract syntax.

• GF supports multilingual grammars.

A common feature between GF and formalisms like PATR and HPSG is the use of

records to model complex grammatical objects.

1.3 A multilingual authoring system

GF can be used in batch mode for linearization, parsing, and translation. A new kind

of application is inherited from type-theoretical proof editors: syntax editing natural

language. This is the application that explains Xerox’s interest in the GF project:

with a multilingual grammar, the user of GF can edit a document in a language that

she does not know, while at the same time seeing how it evolves in her own language.

This activity is called multilingual authoring (Power & Scott, 1998; Dymetman et al.,

3 The semantic aspects of this extension are studied in Ranta (1994). A strong application of dependent
types is the analysis of pronominal reference.
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2000). For instance, a letter being edited in Swedish may look like this:

Kära [Recipient],

jag har äran att meddela dig att du har blivit befordrad till [Position].

The expressions in brackets are placeholders, yet to be filled in to complete the letter.

The possible fillings are either choices from menus (generated from the grammar)

or strings of English or Swedish text (parsable by the grammar). In parallel with

Swedish, an English version may be generated from the same abstract source:

Dear [Recipient],

I have the honour to inform you that you have been promoted to [Position].

The author can be sure that both letters come out grammatically correct and convey

the same message. The type-theoretical representation works as a pivot language,

which controls the consistency of the document, and guarantees that all translations

have the same meaning. Interaction eliminates a notorious problem of automatic

translation, which is that a source text written in natural language generally does

not fully determine the semantic content (cf. Kay 1997).

A multilingual GF grammar is a simple and efficient way to implement translation,

which works surprisingly well, due to the long distance from concrete-syntax details

that is possible in abstract syntax. Most other systems use separate transfer rules

to translate between languages. The obvious disadvantage of transfer rules is that

n(n − 1) transfer modules are needed to translate between n languages, whereas

GF only needs n + 1 grammar modules. The disadvantage of GF’s pivot language

method is that translation is limited to be structure-preserving. Even if there is no

GF notation to express transfer rules, GF does not preclude them: the API module

(section 8.4) gives support for defining transfer rules in Haskell.

2 Context-free rewrite grammars

This section starts a series of more and more powerful fragments of GF. Most

GF concepts and applications already make sense in this first fragment, but only

a limited class of GF grammars can be written in it. Sections 3 and 4 extend the

abstract syntax part of GF, whereas section 5 independently extends the concrete

syntax part.

2.1 From context-free grammars to context-free rewrite grammars

Context-free rewrite grammars are a generalization of context-free grammars, arising

from a distinction between two aspects: abstract syntax and concrete syntax.

Consider a context-free rule

f. C ::= t1 . . . tm

where f is the rule label, C is a category symbol, and each ti is either a category

symbol (a nonterminal) or a string (a terminal). The abstract syntax aspect of this

rule is a a function declaration, declaring f as a function whose value type is C and

argument types are the nonterminals C1 . . . Cn among t1 . . . tm:

fun f : C1 → · · · → Cn → C
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The concrete syntax aspect is a linearization rule, which assigns a linear pattern to

the function f:

pattern f x1 . . . xn = t1 ++ . . . ++tm

Each ti is either one of the variables xj (a nonterminal) or a string (a terminal).

As an example of splitting a context-free rule into a function declaration and a

linearization rule, consider the rule

Div. Prop ::= Exp ”is” ”divisible” ”by” Exp

Splitting gives the rule pair

fun Div : Exp → Exp → Prop

pattern Div x y = x ++”is” ++”divisible” ++”by” ++y

Abstract syntax rules alone define a system of syntax trees, i.e. functional terms

formed by using rule labels as constants. Given two more function declarations,

fun two : Exp

sum : Exp → Exp → Exp

we can form the syntax tree

Div (sum two two)two

whose type is Prop. Given the linearization rules

pattern sum x y = ”the” ++”sum” ++”of” ++x ++”and” ++y

two = ”two”

we have a correspondence between this tree and the string

the sum of two and two is divisible by two

2.2 Permutation, suppression and reduplication

To represent context-free rules in context-free rewrite grammar, the full expressive

power of linear patterns is not needed, but only the special case in which the sequence

of nonterminals in the linear pattern corresponds one-to-one to the arguments of

the function. The full format extends this special case in three ways:

• Permutation: constituent order may be changed.

• Suppression: constituents may be hidden.

• Reduplication: constituents may be repeated.

Permutation is important if we want to have concrete syntaxes sharing an abstract

syntax. For instance, it permits giving the same abstract syntax to prefix and infix

notation, or to adjectival modification in English (prefix: even number) and French

(postfix: nombre pair). Suppression is needed if we want a syntax tree to carry

more information than the corresponding string, as in proof-carrying documents
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(section 4.3). Reduplication shows that the formalism is more powerful than context-

free grammars: for instance, the copy language of the universal language U (over

some alphabet)

{xx|x ∈ U}
is context-sensitive, but it is encoded by the context-free rewrite grammar

fun f : U → S; pattern f x = x ++ x

2.3 Linearization

To linearize a syntax tree

f a1 . . . an

the linearization algorithm reads the linear pattern given in the rule

pattern f x1 . . . xn = t1 ++ . . . ++tm

and scans the sequence t1 ++ . . . ++tm from left to right:

(f a1 . . . an)
o = s1 ++ . . . ++sm

where

si =

{
ao
j if ti = xj (the j’th argument)

s if ti = s (string)

The algorithm assumes that expressions are in the full application form, i.e. functions

are endowed by all their arguments: otherwise it is in general not possible to fill the

linear pattern in a meaningful way. To express functions, lambda abstraction must

be used (section 3).4

2.4 Type checking and syntax editing

The type checker uses abstract syntax to look up the types of functions and verifies

that they are used in accordance with their types. Rather than formulating the

algorithm explicitly, we give the typing rule of syntax trees:

f : C1 → . . . → Cn → C a1 : C1 . . . an : Cn

f a1 . . . an : C

This is of course the same as the full application rule of typed lambda calculus.

Syntax editing takes place in a state, which consists of a tree being edited and

the subtree that is the current focus. The tree may be incomplete, that is, contain

placeholders (also called metavariables), which are yet to be filled by subtrees. An

example is the following arithmetical proposition, where the focus is marked by an

asterisk (∗) and placeholders by question marks (?):

Div (sum two ∗?) ?

4 Full application is usually required in all functional languages whenever other kinds of functions are
used than prefixes: one cannot write (if b then 5 else) to replace (\x -> if b then 5 else
x), and omitting two arguments would lead to the completely bizarre (if b then else). One of
the rare exceptions are Haskell’s infix sections, such as (4+) (equal to (\x -> 4 + x)).
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The linearization of this tree is

the sum of two and (∗ ?) is divisible by ?

An important aspect of editing in GF is that it is possible to switch between the

tree representation and its linearizations, even when the tree is incomplete.

For an efficient implementation of editing commands, we represent trees in a form

in which the types of all subtrees are shown. The above tree is then represented as

Div : Prop

sum : Exp

two : Exp

* ? : Exp

? : Exp

The editor uses the typing rule for full applications to annotate each subtree with

the value type of its function head.

The most important editing command is refinement, which replaces the metavari-

able in focus with a function. If the function takes arguments, like sum, refinement

introduces new metavariables:

the sum of two and (∗ the sum of ? and ?) is divisible by ?

The value type of the function must of course match the type of the focus

metavariable. The editor guarantees this by maintaining a menu of type-correct

refinements extracted from the grammar.

The editor focus is analogous to the cursor in a string editor: it marks the place to

which editing commands apply. The analogue of cursor movements are navigation

commands, which shift the focus without changing the tree. GF uses a zipper (Huet,

1997) to represent the editor state. As shown by Huet, navigation commands can

be implemented efficiently for the zipper. Editing commands are efficient, as well, if

the nodes locally contain all information that is needed when executing them – in

particular, the types of all subtrees.

Refinement is a purely top-down editing command, inherited to GF from the

proof editor ALF (Magnusson & Nordström, 1994). The zipper implementation has

made it easy to add a generalized bottom-up command, the local wrap. The local

wrap embeds the focus subtree, which need not be a metavariable, in a function

application. If the focus is a tree

t : A

then any function

f : · · · → A → · · · → A

can be used to replace t with (f ? . . . t . . .?); i.e. one argument place of f is filled by

t, and the other places by metavariables. For instance, wrapping the focus term of

Div two (∗one)

in the first argument place of sum : Exp → Exp → Exp results in the tree

Div two (∗sum one ?)
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In the corresponding English sentence, the word one gets embedded in the phrase

the sum of one and ?. Such an insertion is of course trivial in a text editor working on

strings, but not available in most tree-based structure editors. Yet it is a functionality

that document authors expect from an editor: they want to make local modifications

in a document without having to destroy and rebuild parts of it.

The wrap operation is similar to tree adjoining in the grammar formalism TAG

(Tree Adjoining Grammars) (Joshi, 1985). A special case is wrapping the top node,

which is pure bottom-up editing: there we can relax the requirement that the value

type of the function be the same as the type of the focus.

2.5 Parsing

While linearization in context-free rewrite grammars is straightforward, parsing is

a search problem. We reduce it to parsing in context-free grammars, which has a

complete solution by, for example, the Earley algorithm (Earley, 1970). Context-free

parsing is completed by postprocessing that involves a rearrangement of subtrees.

Translation into context-free rules. To each pair of a typing judgement and a

linearization rule {
fun f : C1 → . . . → Cn → C

pattern f x1 . . . xn = t1 ++ . . . ++ tm

we assign the context-free rule

fp. C ::= c1 . . . cm

where

ci =

{
Cj if ti = xj (nonterminal)

s if ti = s (terminal)

The function f is indexed by a profile p, which is a list of lists of integers

[p1, . . . , pn]

where

pi = [j | j ∈ {1, . . . , k}, t′j = xi]

where t′1 . . . t′k is the sequence of nonterminals in the pattern clause. In other words,

each item pi in the profile tells what places the ith argument occupies in the linear

pattern. For instance, the pair of rules

fun f : A → B → C → D; pattern f x y z = y ++”kuin” ++y ++”on” ++z

generates the rule

f[[],[1,2],[3]]. D ::= B ”kuin” B ”on” C

Postprocessing context-free parse trees. A parse tree produced by the context-free

parser may have a wrong number of arguments in wrong places and even in

inconsistent ways (because of reduplication). The transformation R of parse trees
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into proper functional terms is performed by reference to the profile of the function

head:5

(fp c1 . . . cm)R = f a1 . . . an

where

ai =

{
cRk if k ∈ pi and xi is consistently represented

? if pi is empty

If an argument is suppressed in linearization, this operation thus introduces a

metavariable to represent it. If different occurrences of an argument are not

represented consistently,6 the operation of rearrangement fails.

Context-free parsing. The choice of context-free parsing algorithm is often the main

efficiency issue when processing a language. Since GF grammars are implemented

as first-class data objects in Haskell, well-known analyses and transformations

(Hopcroft & Ullman, 1979) can be applied to them. For instance, even though the

Earley algorithm is applicable to all grammars, some grammars may turn out to

permit deterministic LR(1) parsing (Knuth, 1965), which can then be chosen for

efficiency.

Some pathological rules cause problems for all context-free parsing algorithms. A

cyclic rule

f. C ::= C

generates the infinite sequence of parse trees

t, f t, f (f t), f (f (f t)), . . .

for any tree t of type C . Cyclic rules are sometimes generated from innocent-looking

GF rules, such as

fun f : A → C → C; pattern f x y = y

where the argument x is suppressed in linearization.

2.6 Semantic definitions and computation

The abstract syntax of a GF grammar can be thought of as a semantic model of

the language, especially in those cases where GF is used as a syntactic annotation

language for a logical framework. In such a model, we often want not only to declare

functions but also to define them. To this end, GF has the form of judgement

def f x1 . . . xn = t

where f : C1 → · · · → Cn → C and t : C in the context x1 :C1, . . . , xn : Cn. An

example is

def double x = sum x x

5 In context-free rewrite grammar, profiles are an optimization that make it possible to avoid lookups
in the grammar at the postprocessing stage. In full GF, profiles are indispensable (cf. section 7.2).

6 Consistent means here that the trees are the same. In a more general setting, it means that they are
unifiable (cf. section 7.2).
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Definitions are used for computing trees, and they define thereby a notion of equality

between trees. This equality is called semantic equality, since it does not affect

linearization: even though the terms two and double one are equal by definition,

they are linearized as two different strings. We say that strings resulting from

semantically equal trees are paraphrases of each other.

3 Variable bindings

Many interesting languages have variable-binding operations. For instance, predicate

calculus has the universal quantifier ∀ forming propositions such as

∀x.x + 0 = x

where the variable x is bound in the subformula x+ 0 = x. The context-free syntax

of universally quantified propositions is

Prop ::= ”∀” Var ”.” Prop

This rule, however, does not capture the fact that the variable is bound in the

subformula. The two parts of the structure, Var and Prop, are not constituents in the

same sense: the Prop is an argument, whereas the Var is a binding. The distinction

between arguments and bindings is fundamental for abstract syntax operations, such

as type checking and computation – and in particular for syntax editing – and has

to be stated somewhere, either by separate rules, or by using higher-order abstract

syntax instead of context-free syntax. We will now explain how GF implements

higher-order abstract syntax and corresponding concrete syntax.

3.1 The abstract syntax of bindings

In higher-order abstract syntax, variable-binding operators are treated as functions

that take functions as arguments. For instance, the universal quantifier has just one

argument: a function from expressions to propositions:

fun Univ : (Exp → Prop) → Prop

This function has a second-order type. The general form of a type is now

A1 → · · · → An → C

where each Ai is a type and C is a category.7 Objects of function types can be

formed by λ-abstraction, of the form

λx1, . . . , xn → b

We require that the number of λ-bound variables be the same as the number of

argument types; this is known as the η long normal form of λ-terms.

For example, the formula ∀x.x + 0 = x has the syntax tree

Univ (λx → Eq (sum x Zero) x)

7 We could say: C is a type, but the resulting notion of type would be equivalent. As we formulate it
now, we emphasize that each type has a basic type as its value type.
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3.2 The concrete syntax of bindings

In the η long normal form, every subtree whose type is a function type has a bound

variable for each of its argument types. We collect the variable symbols x1, . . . , xn
and the linearization b of the body into a record

{v1 = x1 ; . . . , ; vn = xn ; s = b}

which is the linearization of the whole tree. We use the record label s for the body,

and the labels v1, v2, v, . . . for the variables; if there is just one variable, we use v.

For example, the linearization of λx → Eq (sum x Zero) x is

{v = ”x” ; s = ”x” ++”+” ++”0” ++”=” ++”x”}

The linearization rule of the function Univ is

lin UnivP = {s = ”∀” ++ P .v ++ ”.” ++ P .s}

The general form of a linearization rule is now

lin f x1 . . . xn = {s = t1 ++ . . . ++ tm}

where each ti has one of the forms ”foo” (terminal string), xj.s (nonterminal body),

xj.vk (nonterminal variable). The linearization algorithm distinguishes three cases:

application: (f a1 . . . an)
o = t(x1 := ao

1 , . . . , xn := ao
n)

if lin f x1 . . . xn = t

abstraction: (λz1 → · · · → λzn → b)o = {v1 = ‘z1’; . . . ; vn = ‘zn’} ∗ ∗ bo

variable: xo = {s = ‘x’}
This definition uses an operation ∗∗ for conjoining records, and a substitution

operation (x := a). It also presupposes a symbol-printing operation producing a

string ‘x’ from a variable symbol x.8 The full normal form of linearization is obtained

by these rules, substitutions, and the record projection rule

{. . . ; r = t; . . .}.r = t

Using records instead of strings as values of linearization is crucial for maintaining

the compositionality of linearization: for each function f, the linearization rule assigns

a concrete-syntax function f′ such that

(f a1 . . . an)
o = f′ ao

1 . . . ao
n

where we denote the linearization of a tree t by to. Thus the linearization of a tree

depends only upon the linearizations of its subtrees, not on the subtrees themselves.

Compositionality guarantees a natural correspondence between abstract and con-

crete syntax. It also helps to make the implementation of GF efficient (section 5.4).

The pattern format used for context-free rewrite grammars is a special case of the

lin format, as defined in section 6.4.2.

8 One case is missing from this definition: variable applied to arguments. This case is needed if the
abstract syntax uses third- or higher-order functions. GF then produces an ad hoc linearization where
the symbol x is prefixed to the linearizations of the arguments in parentheses. In practice, functions
of higher order than the second are rare in abstract syntax; strictly speaking, however, one should
conclude that GF only supports user-defined concrete syntax for second-order abstract syntax.
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3.3 Parsing bindings

From the context-free point of view, variable bindings are constituents: the parser

reading the input looks for items of a certain shape (e.g. “x”) that match a particular

nonterminal Var. The context-free rule generated from Univ looks as follows:

Univ[([[1]],[2])] Prop ::= ”∀” Var ”.” Prop

The right-hand side is as expected. The profile now contains information about

where in the parse tree the bound variables are found: we extend the profiles of

section 2.5 to lists of pairs (b, c) where c is a profile item in the old sense, telling

what places the constituent occupies, and b is a list of items telling what places each

of the bound variables occupy.

When producing context-free grammars, we introduce a category Var distinct

from all categories in the context-free grammar, with some rules for recognizing

variables. We add a rule

varC. C ::= Var

for each category C . Finally, when postprocessing the parse tree, a suppressed

binding (i.e. one with the profile item [ ]) is not replaced by a metavariable (?), but

by a fresh ordinary variable. Notice that the unification phase of postprocessing is

first-order, since variables in bindings are treated as ordinary arguments.

3.4 Type checking and syntax editing bindings

Type checking syntax trees with bindings is the same thing as monomorphic type

checking in simply typed lambda calculus. In addition to the full application rule of

section 2.4, we have the full abstraction rule

(x1 : A1, . . . , xn : An)

c : C

λx1, . . . , xn → c : A1 → . . . → An → C

For syntax editing, we continue to use the zipper. Nodes are extended to contain

the actual bindings. Each binding shows the type of the variable, which makes it

easy to look up the type. For instance, a tree for the logical formula

∀x.x = x

looks as follows:

Univ : Prop

(x : Exp) Equal : Prop

x : Exp

x : Exp

4 Dependent types

Dependent types are types that depend on objects. We will give examples of two

uses of them: first a grammar that defines the type checker of a small programming

https://doi.org/10.1017/S0956796803004738 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004738


158 A. Ranta

language, and secondly a grammar of proofs, which leads to the notion of proof-

carrying documents.

4.1 Typed expressions

The following judgements define a category Typ of datatypes, and the category Exp

of expressions, which depends on Typ.

cat Typ

Exp Typ

Examples of datatypes are integers, booleans, and lists:

fun Int, Bool : Typ

List : Typ → Typ

To define expressions, we use generalized function types where the value type

depends on the argument:9

fun Zero : Exp Int

True : Exp Bool

Nil : (A : Typ) → ExpA

Cons : (A : Typ) → ExpA → Exp (ListA) → Exp (ListA)

append : (A : Typ) → ( , : Exp (ListA)) → Exp (ListA)

For example,

Cons Int Zero (Nil Int)

is a valid syntax tree of type Exp (List Int), whereas

Cons Int Zero (Cons Bool True (Nil Int))

is not a valid tree of any type. The grammar thus expresses not only the syntactic

well-formedness of the language but also its well-typedness.

Notice how dependent types define the functions Nil, Cons, and append as poly-

morphic: their Exp arguments can be expressions of any types, in virtue of the Typ

argument. The same technique is used in monomorphic type theory (Nordström et al.,

1990) and in the dependently typed programming language Cayenne (Augustsson,

1998). Polymorphism in concrete syntax results from argument suppression: for

instance, the Haskell notation for lists is defined by the rules

lin Nil = {s = ”[ ]”}
Cons x y = {s = x.s ++”:” ++y.s}

append x y = {s = ”(” ++x.s ++”++” ++y.s ++”)”}

9 In all variable-binding constructions of GF, the wildcard can serve as a bound variable, if the
variable is not used.
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When completed with semantic definitions,

def append (Nil ) y = y

appendA (Cons a x) y = ConsAa (appendAxy)

the grammar defines a complete parser, pretty-printer, type checker, interpreter, and

syntax editor for this little language.10

4.2 Curry–Howard isomorphism

The definition of type-correct expressions in abstract syntax is a fairly simple

application of dependent types. A more involved one, and originally the main

motivation of logical frameworks, is to define logical calculi by formulating inference

rules as declarations of proof functions. The structure is the same as with types and

expressions: we have a basic type Prop of propositions and the dependent type

ProofA of proofs of a proposition A. The idea to treat propositions as types of

proofs is known as the Curry–Howard isomorphism. An example is implication à la

Martin-Löf (1984): the formation, introduction and elimination rules come out as

follows:

fun Impl : Prop → Prop → Prop

ImplI : (A,B : Prop) → (ProofA → ProofB) → Proof (ImplAB)

ImplE : (A,B : Prop) → Proof (ImplAB) → ProofA → ProofB

If we now want to express formal proofs in natural language, we simply give

linearization rules that produce texts, e.g.

lin ImplI AB b = {s = ”assume” ++A.s ++”.” ++b.s ++”.” ++

”Hence” ++”if” ++A.s ++”then” ++B.s}

On the top level of mathematical texts, we use a category Text for textual units such

as theorems with or without proofs:

fun ThmProof, ThmOmit : (A : Prop) → ProofA → Text

lin ThmProof Aa = {s = ”Theorem.” ++A.s ++”Proof.” ++a.s ++”QED”}
ThmOmit A = {s = ”Theorem.” ++A.s ++”Proof.” ++”Omitted.”}

The typing of these functions forces the proof in ThmProof really to prove the

theorem; in ThmOmit, a proof must exist even though it is not shown. Thus anyone

who uses the GF syntax editor to build proof texts is forced to making them correct.

4.3 Proof-carrying documents

Besides mathematical texts, dependent types and the Curry-Howard isomorphism

are useful for other kinds of texts, to guarantee semantic properties. Consider, for

10 In GF’s parameter system (section 5), we could moreover define a precedence parameter to regulate
the use of parentheses.
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instance, texts describing train connections:

To get from Gothenburg to Hamburg, first take train 487 to Copenhagen and then change to

train 36.

The semantic well-formedness conditions for this text are that train 487 runs from

Gothenburg to Copenhagen, that train 36 runs from Copenhagen to Hamburg, and

that train 487 arrives at Copenhagen before train 36 leaves. All of these conditions

can be concisely expressed by a grammar with a dependent type TrainAB of train

connections from the city A to the city B, and a type of proofs of the fact that one

train arrives before another train leaves. New connections are generated by the rule

fun Connect : (A,B, C : City) → (a : TrainAB) → (b : TrainB C) →
BeforeAB C a b → TrainAC

It is easy to write a linearization rule for Connect generating texts like the example

above. Linearization hides the proof of the Before condition, but anyone who uses

the GF syntax editor to build the text is obliged to give a proof in order for the

text to be complete. We call this idea proof-carrying documents, with a reference to

proof-carrying code (Necula, 1997).

4.4 Concrete syntax and dependent types

Little need be said about the concrete syntax of dependent types, since linearization

rules look precisely the same as without them. In parsing rules, the arguments of

dependent categories are just ignored. The context-free parsing phase thus ignores

type dependencies. It accepts ill-formed expressions such as “0 : True : [ ]”, which

the subsequent type checking phase rejects.

It is possible to improve the performance of the GF parser by integrating parsing

and type checking: errors are then detected at an earlier stage. Some amount of

integration is necessary if the grammar has syntactically dummy coercion rules like

fun coerce : Exp Int → Exp Float ; lin coerce x = x.

The corresponding context-free rule is cyclic,

coerce. Exp ::= Exp,

and produces an infinity of parse trees, at most one of which is type-correct.11

4.5 Type checking and syntax editing dependent types

Type checking with dependent types is harder than without them, since it involves

computation of expressions. For instance, a proof that 2 is even is also a proof that

1 + 1 is even. In the presence of variables and metavariables, moreover, it cannot

always be decided if an expression has a given type: whether a proof of Even 2 is

11 Luo and Callaghan (1999) investigate coercion as a central phenomenon of informal mathematical
language and suggest an algorithm for resolving it.
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also a proof of Even (1+?) depends on the value of ?. Therefore, what the type

checker returns is not a boolean value but a set of constraints, which are equalities

between terms. The value True corresponds to the empty set of constraints. The

value False corresponds to the situation where some of the constraints is impossible,

e.g. 1 = 0 (cf. Magnusson & Nordström, 1994).

In general, constraints contain metavariables that appear in different positions

in the tree. Because of this, metavariables have to carry unique identifiers; we use

subindexed question marks for this. For instance, parsing the expression

0 : 1 : [ ]

in the grammar of section 4.1 creates an incomplete term of an incomplete type:

Cons ?0 Zero (Cons ?1 One (Nil ?2)) : Exp ?3

The type checker can easily find out the following constraints:

?0 = ?1 = ?2 = Int, ?3 = List ?0

In this example, a simple constraint-solving mechanism is enough to automatically

instantiate all the metavariables. Such is usually the case for hidden type arguments

corresponding to polymorphism: the user of an editor does not need to fill in these

arguments.

Even if constraints remain unsolved, they can be helpful in syntax editing. since

they narrow down available choices. For instance, in a menu of refinements for

? : Exp Bool, functions whose value type is Exp Int are not shown.

Formal rules for dependent types are given in section 6.2. As type checking

algorithm, we have used the one in (Coquand, 1996), which we have modified so

that it type-annotates terms into trees used by the zipper editor. In addition to

bindings, function body, and value type, as in section 3.4, the information stored in

a node includes the constraints created when type checking that node.

5 Extending concrete syntax

The values returned by linearization have so far been strings and records of strings.

In this section, we generalize this to records that may also contain string-valued finite

functions, tables, as well as parameters. Different concrete syntaxes may use different

record types for one and the same type in the abstract syntax. This extension is

essential to keep abstract syntax independent of language-dependent features such

as inflection.

5.1 Parameters, tables, and records

A parameter type is a finite set of parameter values, on which the linearization

of an expression may depend. For example, the type of grammatical numbers in

English has two values: the singular and the plural. Expressions linearized as English

common nouns have two forms: e.g. Int has the singular form integer and the plural

form integers.
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We write

param Num = Sg | Pl

to define the parameter type Num. The type

Num ⇒ Str

is the type of string-valued tables on Num, and the expression

table {Sg ⇒ ”integer” ; Pl ⇒ ”integers”}

gives such a table in explicit form. The selection operation (!) is used for applying

tables to arguments:

table {Sg ⇒ ”integer” ; Pl ⇒ ”integers”} ! Pl = ”integers”

Concrete syntax assigns to every category in abstract syntax a linearization type:

for instance, the linearization type of CN is given by the judgement

lincat CN = {s : Num ⇒ Str}

Linearization rules for expressions of the category CN must have this value type.

An example of such a rule is

lin Int = {s = table {Sg ⇒ ”integer” ; Pl ⇒ ”integers”}}

In German, common nouns do not only depend on number, but also on case

(Nominative, Accusative, Genitive, Dative). The linearization type thus has a two-

argument table, which we “curry” into a table of tables:

lincat CN = {s : Num ⇒ Case ⇒ Str}

In yet other languages, there may be three numbers (Arabic has the dual) or fifteen

cases (Finnish has – well . . .). In context-free (rewrite) grammars, all this variation

would have to be expressed by unrelated rules, which would make it impossible to

use a common abstract syntax.

In addition to parameters that produce different forms, expressions may have

parameters as inherent features. For instance, German common nouns have a gender

(Masculine, Feminine, Neuter) associated to them, but not as inflection forms: any

noun inherently has just one gender. Inherent features are expressed by record fields

in linearization types. Here is an amended rule for German common nouns:

lincat CN = {s : Num ⇒ Case ⇒ Str ; g : Gen}

The record linearizing a tree contains all linguistic information concerning the

expression: its inflection table and its inherent features. Such information is what

we normally find in dictionaries. In grammar, this information is not only needed

for individual words, but for arbitrarily complex phrases. For instance, in English,

when a common noun is modified by an adjective, the resulting complex common

noun can still be inflected in number:

fun Mod : Adj → CN → CN

lin Mod F A = {s = table {Sg ⇒ F.s ++A.s ! Sg ; Pl ⇒ F.s ++A.s ! Pl}}
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All fun rules must have lin rules of matching linearization types. This can be checked

at compile time, before the grammar is used. It is also easy to check that the rules are

complete – essentially, that all tables have values for all elements of their argument

types. Using a type system to prevent run-time errors is one of the key ideas that

GF has inherited from functional programming languages.

5.2 Hierarchical parameters

Parameter types are like data types in Haskell and other functional languages,

with the restriction that they must be finite. Hierarchical parameter types are

permitted, and they are, in fact, often very appropriate. To give an example, French

verbs, as presented in the authoritative Bescherelle (1997), have three persons, two

numbers, two genders, four (non-composite) tenses, and six modes. But the inflection

tables display only 51 (non-composite) verb forms, not 288, which would be the

case if the forms were simply cross-products of all parameters. The reason is

that many combinations do not exist. A natural way of describing this parameter

system is by using parameter types whose constructors have arguments from other

parameter types. The following system is a straightforward GF formalization of the

Bescherelle:12

param Nombre = Sg | Pl

Personne = P1 | P2 | P3

Genre = Masc | Fem

Temps = Pres | Imparf | Passe | Futur

TSubj = SPres | SImparf

TPart = PPres | PPasse Genre Nombre

NImper = SgP2 | PlP1 | PlP2

VForm = Inf | Indic Temps Nombre Personne | Cond Nombre Personne

| Subj TSubj Nombre Personne | Imper NImper | Part TPart

5.3 Discontinuous constituents

In all examples so far, the linearization of a tree has been a record with one principal

string or string-valued table, stored in a field labelled s. Now we consider cases

where the linearization consists of separate parts, which can change order and get

other expressions inserted between them. Such expressions are called discontinuous

constituents.

A famous example of discontinuous constituents is German verb phrases. A verb

phrase is a complex expression consisting of a verb and its complements, in English

e.g. loves Mary in John loves Mary. The analysis of a sentence into a noun phrase (the

12 We have used this type system in a complete GF implementation of the Bescherelle conjugations; see
GF Homepage (Ranta, 2002). Huet (2000) uses CAML datatypes in the same way in his morphology
of Sanskrit.
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subject) and a verb phrase (the predicate) is motivated both by logic (Aristotelian or

modern) and by linguistic facts such as the conjunction John loves Mary and hates

Bill. In German, however, the verb phrase (liebt Maria) cannot be found in all uses

of the sentence (Johann liebt Maria). For instance, in the conditional

wenn Johann Maria liebt, liebt Johann Maria

the verb phrase is used with a reverse word order in the antecedent, and dissolved

into two parts in the succedent. Those linguists who still believe that liebt Maria is

a constituent of the sentence, have to treat it as a discontinuous constituent.

In GF, discontinuous constituents are records with more than one string-valued

fields. The German linearization type of verb phrases can be defined as

lincat VP = {s1 : Agr ⇒ Str ; s2 : Str}

consisting of the verb part s1 and the complement part s2. The verb part depends on

agreement features, such as number and person. It receives them from the subject of

the sentence, which has them as inherent features. The sentence-forming predication

rule

fun Pred : NP → VP → S

is linearized under a three-valued parameter that produces different strings for direct,

inverse, and subordinate sentences:

lin PredN V = {s = table {Dir ⇒ N.s ++V .s1 ! N.a ++V .s2 ;

Inv ⇒ V .s1 ! N.a ++N.s ++V .s2 ;

Sub ⇒ N.s ++V .s2 ++V .s1 ! N.a}}

The complementation rule forms a verb phrase from a transitive verb (TV) and a

noun phrase:

fun Compl : TV → NP → VP

lin Compl V N = {s1 = V .s ; s2 = N.s ! Acc}

Given the noun phrases Johann and Maria and the transitive verb Lieben, we can

form the syntax tree

Pred Johann (ComplLieben Maria)

which has a linearization producing three forms: Johann liebt Maria, liebt Johann

Maria, and Johann Maria liebt.

Parsing discontinuous constituents will be explained as a part of the full GF

parsing algorithm (section 7.2). We just notice that discontinuous constituents make

it possible to define intricate non-context-free languages, such as

{anbncn | n = 1, 2, . . .}
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This language is defined by the category S of the following GF grammar:

cat S ; Aux

fun exp : Aux → S ; first : Aux ; next : Aux → Aux

lincat Aux = {s1 : Str ; s2 : Str ; s3 : Str}
lin exp x = {s = x.s1 ++x.s2 ++x.s3}

first = {s1 = ”a” ; s2 = ”b” ; s3 = ”c”}
next x = {s1 = ”a” ++x.s1 ; s2 = ”b” ++x.s2 ; s3 = ”c” ++x.s3}

5.4 Canonical GF

We have extended context-free grammars into grammars where linearizations of

syntax trees are records of tables of grammatical objects. The operational semantics

of these grammars will be explained in terms of computation rules for table selections

and record projections in section 6.3. From this perspective, linearization is similar

to evaluation in a functional programming language.

However, GF has a computational model that is simpler than evaluation in

functional language, since it does not involve substitutions for variables. The only

variables that are present in the right-hand-side t of a linearization rule

lin f x1 . . . xn = t

are x1 . . . xn, which stand for the linearizations of the arguments of f. The substitution

of values for these variables can be performed in the same way as selections and

projections: as look-up followed by simple replacement. Linearization as a whole is

a single inorder traversal of the syntax tree.

We refer to the GF concrete-syntax notation so far introduced as canonical GF.

In the next section, we will go far beyond canonical GF by adding functions

and pattern matching. This extension is important for the usability of GF. For

the implementation, however, the important thing is that the rich notation can be

compiled back into canonical GF. Even though linearization could be performed

directly as evaluation on the rich notation, it is much more efficient to perform

partial evaluation on the grammar and use canonical GF at runtime. Moreover, it is

from canonical GF that parsers are derived. Partial evaluation and parsing will be

explained in section 7.

5.5 Abstraction mechanisms

Linguists, just like functional programmers, like to work with strong generaliza-

tions and on a high level of abstraction. GF makes accessible to linguists two

abstraction mechanisms of functional programming: function definitions and pattern

matching.

Function definitions in GF are called operation definitions to distinguish them from

the fun judgements of abstract syntax. An example is the operation that produces
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regular common nouns in English:

oper regCN : Tok → {s : Num ⇒ Str} = λc → {s = Sg ⇒ c ; Pl ⇒ c+”s”}13

The linearization rule of the datatype expression Int can now be concisely written

lin Int = regCN ”integer”

Pattern matching is used in tables: branches can be defined not only for constructor

expressions, but also for patterns, which may contain variables and wildcards ( ).

For instance, the following table defines the English adjectival modification rule by

using a pattern variable n for number:

lin Mod F A = {s = table {n ⇒ F.s ++A.s ! n}}

It is possible to expand this table into the fully explicit form shown in section 5.1;

using patterns, however, captures the generalization that it is the noun part that

receives the number of the whole phrase.

Function types (A → B) and table types (A ⇒ B) have many common properties:

both allow currying, full and partial application, and formation by abstraction.

There are important differences, however:

• Tables, but not functions, are restricted to finite argument types.

• Tables, but not functions, can be formed by case analysis.14

• Tables, but not functions, are values in canonical GF.

The partial evaluation algorithm (section 7.1) shows in fact that

• Functions can always be eliminated from linearization rules.

5.6 Resource grammars

The intended use of GF is to build natural-language fragments on top of semantic

models, such as mathematical theories. This makes it possible to minimize the size

of grammars and avoid many irrelevant linguistic problems. For instance, a French

grammar for mathematics does not need to define all the 51 French verb forms, but

two is often enough.

However, the ad hoc way of defining grammars may lead to duplication of work:

if different parts of verb conjugation are needed in different applications, one cannot

use the conjugation defined for one grammar as a resource for another grammar.

And, of course, this style of grammar-writing favours linguistically unmotivated

solutions.

The idea of resource grammars is to define common and unproblematic parts of

concrete syntax – such as inflection tables – independently of abstract syntax. Using

a resource grammar needs some care, however: a grammar encoding 51 forms of

one thousand verbs is a heavy tool for actually dealing with two forms of ten verbs.

13 We use + instead of ++ between strings to say that they belong to the same token (Tok).
14 If the argument type of a function f is a parameter type, case analysis is of course possible in the

form f = λx → table {. . .} ! x.
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When used in a näıve way, it produces enormous runtime systems. What makes

resource grammars practical is type-driven partial evaluation (section 7.1). Suppose

we only need two forms of French verbs – say, the indicative and subjunctive of

third person singular present tense. The linearization type of verbs is then

lincat Verb = {s : Mode ⇒ Str}

Assume that we have a resource grammar with complete forms of conjugation à la

Bescherelle, in a form like

oper tenir : VForm ⇒ Str = t

where VForm is the parameter type with 51 values. When evaluated, t yields the

full table for the verb tenir (cf. section 5.2). Now, to use objects of this type as

linearizations of verbs in the category Verb, all we need is an interface operation

oper useVerb : (VForm ⇒ Str) → {s : Mode ⇒ Str} = λt →
{s = table {Ind ⇒ t ! (Indic Pres Sg P3) ; Sub ⇒ t ! (Subj Pres Sg P3)}}

Linearizations can then be defined compactly, for instance,

lin Tenir = useVerb tenir

and the result is a two-element table with the forms tient, tienne, since the term is

η-expanded with respect to the expected linearization type and then evaluated. If

some other set of forms is needed, all that has to be changed is the definition of the

interface operation useVerb.

Resource grammars are an obvious way to define morphology and lexicon, and

they can often be compiled from existing resources or created by using general-

purpose programming languages. But the idea also makes sense for syntax. For

instance, the German linearization types for sentences, noun phrases, verb phrases,

and transitive verbs, and the predication and complement rules (section 5.3) can be

written as operations:15

oper S : Type = {s : Ord ⇒ Str}
NP : Type = {s : Case ⇒ Str ; n : Agr}
VP : Type = {s1 : Agr ⇒ Str ; s2 : Str}
TV : Type = {s : Agr ⇒ Str}

Pred : NP → VP → S = . . .

Compl : TV → NP → VP = . . .

More functions can be defined in terms of these basic operations:

Pred1 : VP → NP → S = λF, x → Pred x F

Pred2 : VP → NP → NP → S = λF, x, y → Pred x (Compl F y)

15 If the linguist prefers to write her grammar using fun, cat, lin, and lincat, as in Section 5.3, the oper
definitions can be extracted automatically from them.
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The writer of an application grammar, e.g. for mathematics can use these operations

without knowing anything about German word order and agreement. If she has

decided that propositions are linearized as S, one-place predicates as VP, and two-

place predicates as TV, all she has to know is which verbs (from the resource

grammar) are used for each predicate.16 For instance, to linearize the one-place

convergence predicate and the two-place intersection predicate, she writes

lin Converge = Pred1 konvergieren

Intersect = Pred2 schneiden

In this way, a division of labour is achieved between authors of resource grammars,

who are experts in linguistic rules, and authors of application grammars, who are

experts in the domain of application.

6 The GF language

This section gives a concise definition of the GF formalism. The framework-level

notions of type checking and evaluation are specified by inference rules. The notation

we use is exactly the same as the notation recognized by the GF parser, with the

exeption of a handful of non-ASCII symbols: in ASCII-written GF source code, we

replace λ by \, → by ->, and ⇒ by =>.17

6.1 Grammars and judgements

A GF grammar is a sequence of judgements. Judgements are divided into two sorts:

those of abstract syntax and those of concrete syntax. Figure 1 shows the forms of

judgement used in GF grammars, together with their verbal readings.

Every form of judgement has a keyword (such as cat, param). Every judgement

ends with a semicolon (;), which we usually omit in typeset text, where we have access

to layout. Using the semicolon (or layout) makes it possible to omit keywords: once a

keyword appears in the code, it is read as the first word of every semicolon-separated

judgement, until a keyword is encountered again.

The forms of judgement shown in Figure 1 are the ones that may appear in GF

grammars. On the metalevel, we also use judgements of the forms

A : Type A is a type

a : A a is an object of type A

a = b a is definitionally equal to b

with their usual Logical Framework meanings (in e.g. (Nordström et al., 1990)).

16 Including adjectives as possible linearizations of predicates would not be a problem: the adjective-verb
distinction could be hidden in slightly more general linearization types.

17 Some GF structures that are supported by the actual implementation are left out, since we consider
them experimental; we refer to documentation in Ranta (2002) for such features.
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Abstract syntax.

cat C Γ C is a category depending on the context Γ

fun f : A f is a function of type A

def a = b a is defined as b

data C = f1 | . . . | fn C has the constructors f1, . . . , fn

Concrete syntax.

param P = C1 Γ1 | . . . | Cn Γn P is a parameter type with the constructors

C1 with context Γ1, . . . , Cn with context Γn

lincat C = L C has the linearization type L

lindef C = t C has the default linearization t

lin f = t f has the linearization function t

oper h : T = t h is an operation of type T , defined as t

Syntactic sugar: omitting keywords.

key J ; . . . ; K ≡≡ key J ; . . . ; key K

Fig. 1. Forms of judgement in GF.

6.2 Abstract syntax

6.2.1 Categories, types, and functions

Judgements of cat and fun forms are used for building basic types and objects. The

cat judgement

cat C Γ

presupposes that Γ is a context, i.e. a sequence of variable declarations

(x1 : A1) · · · (xn : An)

where Ai : Type (x1 : A1) · · · (xi−1 : Ai−1) for every i = 1, . . . , n. The rule of basic type

formation (figure 2) tells how types are formed from a category by instantiating the

context. If n = 0, the context is empty, and C is itself a type.

The fun judgement

fun f : A

presupposes that A is a type. It generates an object f of type A, to which the rules

of application and abstraction apply in accordance with the type A, as well as the

β and η conversion rules. These rules are shown in figure 2. They are more or less

the standard rules of logical frameworks with dependent types, such as (Nordström

et al., 1990).

Syntactic sugar in figure 3 is of two opposite kinds: variable elimination and type

factorization. As usual in dependently typed languages, variables can be eliminated

from contexts and function types whenever there are no dependencies on them. The

resulting notation is similar to simply typed languages, such as Haskell. On the

other hand, the use of variables allows type factorizations that are not possible in

Haskell. For instance, the following abbreviation is useful if A is complex:

( , , : A) → B ≡≡ A → A → A → B.
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Basic type formation.

cat C (x1 : A1) · · · (xn : An) a1 : A1 . . . an : An(x1 := a1, . . . , xn−1 := an−1)

C a1 . . . an : Type

Basic object formation.

fun f : A

f : A

Function type formation, application, and abstraction.

A : Type

(x : A)

B : Type

(x : A) → B : Type

f : (x : A) → B a : A

f a : B(x := a)

(x : A)

b : B

λx → b : (x : A) → B

β and η conversion.

(λx → b) a = b(x := a)
c : (x : A) → B

c = λx → (c x)

Definition expansion.

f a1 . . . an = tγ1 . . . γn

for the first def f p1 . . . pn = t such that p1 <γ1>a1, . . . , pn <γn> an

Fig. 2. Rules for types and objects in abstract syntax.

Variable elimination.

( : A)Γ ≡≡ (x : A)Γ if Γ does not depend on x

A Γ ≡≡ ( : A)Γ

( : A) → B ≡≡ (x : A) → B if B does not depend on x

A → B ≡≡ ( : A) → B

λ → b ≡≡ λx → b if b does not depend on x

Factorization.

fun f, . . . , g : A ≡≡ fun f : A ; . . . ; g : A

(x, . . . , y : A) ≡≡ (x : A) · · · (y : A)

(x, . . . , y : A) → B ≡≡ (x : A) → · · · → (y : A) → B

λx, . . . , y → b ≡≡ λx → · · · → λy → b

Fig. 3. Syntactic sugar for abstract syntax.

6.2.2 Normal forms of abstract syntax types and objects

The type of any fun function f has the form

(x1 : A1) → · · · → (xn : An) → A

where A is a basic type C t1 . . . tm where C is a category. With reference to this form,

we say that A1, . . . , An are the argument types of f, that A is its value type, and that
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C is its value category. The full application of f has the form

f a1 . . . an

whose type is A(x1 := a1 . . . xn := an). A term of a function type is in βη normal

form, if it is an abstraction

λz1 → · · · → λzn → b

and b is an application of a constant or a variable or a metavariable, with all

arguments in βη normal form. We can use the β and η conversion rules to bring

any well-typed term into this form.18

6.2.3 Metavariables

There is an infinite supply of metavariables

?0, ?1, ?2, . . .

which can be terms of any type. Metavariables are generated in parsing and in

interactive editing, and they do not appear in GF grammars. Since they are generated

directly in η-expanded form λx1, . . . , xm → ?k , the metavariable ?k itself has always

a basic type C a1 . . . an.

6.2.4 Definitions

A judgement of the form

data C = f1 | . . . | fn

presupposes that C is a category and that f1, . . . , fn are fun functions, such that

the value category of each fi is C . What the judgement says is that f1, . . . , fn are

constructors of the category C . Like in ALF (Magnusson & Nordström, 1994),

constructors can be added incrementally, by new data judgements.

A judgement of the form

def f p1 . . . pm = d

presupposes that f is a fun function but not a constructor, and that d is an object

of type determined by the types of f and p1, . . . , pm.19 The arguments p1, . . . , pm are

patterns, i.e. terms formed from variables, the wildcard , and constructors. Those

def judgements that have one and the same f form the implicit definition of that

f. They determine how applications of f are computed by using pattern matching.

Matching is performed in the order in which the equations appear in the grammar,

and the patterns may overlap; the pattern-matching rules are the same as the ones

for concrete syntax in figure 6.

18 Thus a function f alone is a term in normal form only if its type is a basic type: in the general case,
the normal form of the term f is λz1 → · · · → λzn → f z1 . . . zn.

19 Cf. the definition of pattern contexts in figure 6, modified for dependent types.
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Functions f that are neither constructors nor defined implicitly are primitive

notions. The lexical rules of GF make no distinction between constructors, defined

functions, and primitive notions.

6.3 Concrete syntax types and expressions

6.3.1 Tokens and strings

The type Str, informally called “strings”, is actually a type of lists of tokens, which

are objects of type Tok. Tokens in normal form are quoted strings (”foo”). The

agglutination t+u of two tokens is also a token. Token lists are built from the empty

list [ ] and from tokens by means of concatenation ++ (Table 4).

We treat Tok and Str as abstract types, which can be instantiated by any types

that support the aforementioned methods. A simple model is one in which tokens

are strings and token lists are lists of strings. In this model, + is string concatenation

and ++ is list concatenation. Expressions for tokens can also be used as expressions

for singleton token lists, and are thus overloaded.20

6.3.2 Parameters and parameter types

A parameter type (PType) P is defined by a parameter declaration

param P = C1 Γ1 | . . . | Cn Γn

where each Γi is a parameter context, i.e. a sequence P1 . . . Pm of parameter types.

The parameter declaration introduces the parameter constructors C1, . . . , Cn, which

can be used as functions from their parameter contexts to P .

The parameter declarations of a grammar may not be recursive, nor mutually

recursive. As a consequence, every parameter type P is finite, and we can form the

list of all parameter values of type P ,

VP = [1P , 2P , . . . , np]

generated by a left-to-right enumeration of the parameter values of type P .21

6.3.3 Record types and records

The rules for labelled records in figure 4 are completely standard. Record labels

have local scopes, and their name space is distinct from identifiers. For a record r to

be of the type R, it is enough that every label of R is given a value of appropriate

type in r. The order of fields does not matter, nor do superfluous fields in r. In

notation, fields in record types and records can be factorized.

20 Another model of tokens are word descriptions obtained from a morphological analyser, e.g.
“point+Noun+Pl” instead of “points”. This demands separate morphology passes before parsing
and after linearization, but is an efficient way to implement parsing when the lexicon is large.

21 This is similar to the derivation of Enum class instances in Haskell, but more powerful, since it applies
not only to enumerated types but also to disjunctive and conjunctive types.
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The types of tokens and strings and parameter types.

Tok, Str, PType : Type

Tokens, the empty string, tokens as strings, agglutination, and concatenation.

”foo” : Tok [ ] : Str
t : Tok

t : Str

t, u : Tok

t + u : Tok

s, t : Str

s ++t : Str

Parameter types and constructors.

param P = . . .

P : PType

P : PType

P : Type

param P = . . . | C P1 . . . Pn | . . .

C : P1 → . . . → Pn → P

Record type formation.

T1, . . . , Tn : Type

{r1 : T1 ; . . . ; rn : Tn} : Type

Record formation and projection.

t1 : T1 . . . tn : Tn

{r1 = t1 ; . . . ; rn = tn} : {r1 : T1 ; . . . ; rn : Tn}
c : {. . . ; r : T ; . . .}

c.r : T

Projection computation.

{. . . ; r = t; . . .}.r = t

Table type formation.

P : PType T : Type

P ⇒ T : Type

Table formation and selection.

t1 : T ΓP p1 . . . tn : T ΓP pn [p1, . . . , pn exhaustive for P ]

table {p1 ⇒ t1 ; . . . ; pn ⇒ tn} : P ⇒ T

c : P ⇒ T p : P

c ! p : T

Selection computation.

table {. . . ; p ⇒ t; . . .} ! v = tγ for the first p such that p<γ> v

Local definition.

t : T

(x : T )

e : E

let {x : T = t} in e : E

let {x : t = T } in e = e(x := t)

Global definition.

oper h : T = t

h : T

oper h : T = t

h = t

Fig. 4. Types and objects of concrete syntax.
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Concatenation of tokens.

[”foo . . . bar”] ≡≡ ”foo” ++ . . . ++”bar”

Factorization.

{. . . ; r, . . . , s : T ; . . .} ≡≡ {. . . ; r : T ; . . . ; s : T ; . . .}
{. . . ; r, . . . , s = t; . . .} ≡≡ {. . . ; r = t; . . . ; s = t; . . .}
let {x1 : T1 = t1; . . . ; xn : Tn = tn} in e ≡≡ let {x1 : T1 = t1}in

. . . let {xn : Tn = tn} in e

Case expression.

case e of {· · ·} ≡≡ table {· · ·} ! e

Fig. 5. Syntactic sugar for concrete syntax.

6.3.4 Table types, tables and pattern matching

Tables of type P ⇒ T are finite functions from P to T . The argument type P

must be a parameter type. The normal form of a table is a complete enumeration

of argument-value pairs:

table {1P ⇒ t1 ; . . . ; nP ⇒ tn}

For convenience, and to capture generalizations, the use of patterns is permitted as

well.22 There are three kinds of patterns, as shown in figure 6. The matching relation

p<γ> v

“the pattern p matches the value v with the substitution γ”, is used in figure 6 to

define the computation of selections from tables with patterns. To test whether a list

of patterns is exhaustive for a given type P , we just test whether all values of type

P are matched by them.

Patterns are matched from left to right, and they are allowed to overlap, like in

Haskell. Nonlinear patterns are forbidden (i.e. patterns where a variable x occurs

more than once). It is in virtue of this that pattern contexts and substitutions can

be simply concatenated.

If the argument type P of a table t is known, the table can be expanded to

eliminate patterns, by going through the list of all parameter values of P :

t = table {1P ⇒ t ! 1P ; . . . ; nP ⇒ t ! nP }

It is often handy to use case expressions as syntactic sugar for selections, as shown

in figure 5.

22 Tables with patterns are syntactically similar to fn expressions in ML.
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Patterns: wildcard, variable, and constructor.

x C p1 . . . pn

Pattern contexts.

ΓP = () ΓP x = (x : P )

ΓP (C p1 . . . pn) = ΓA1
p1 · · · ΓAnpn if C : A1 → . . . → An → A

Pattern matching rules.

<>v x< (x := v)>v
p1 <γ1>v1 . . . pn <γn> vn

C p1 . . . pn <γ1 . . . γn>C v1 . . . vn

Fig. 6. Patterns and pattern matching.

6.3.5 Functions, operation definitions, and local definitions

Concrete syntax uses the same rules for functions and function types as abstract

syntax (figure 2). Since functions are not part of canonical GF (section 5.4), the βη

normal form plays no role in concrete syntax.

Functions are mostly introduced in operation definitions, judgements of the form

oper h : T = t

where T is any type (in the sense of concrete syntax) and t : T . Local definitions (let

expressions) have a similar syntax, but they are local to expressions.

The oper definitions of a grammar may not be (mutually) recursive. A consequence

of this is that a defined operation h can always be eliminated from a grammar by

replacing it with its definition t; this procedure is known as inlining.

6.3.6 Type variables

GF does not have polymorphism. Explicit type variables and dependent types are

used instead. The type of these variables is Type; there is for the time being no

stratification. An example is the flip function (familiar from Haskell):

oper flip : (a, b, c : Type) → (a → b → c) → b → a → c = λ , , , f, x, y → fyx

Another example is a local type definition, which is not possible in Haskell:

let {S : Type = {s : Str}} in S → S → S → S

6.4 Concrete syntax for abstract syntax

A mathematical view of a GF grammar is that the abstract syntax defines a free

algebra of syntax trees, and the concrete syntax defines a homomorphism from

this algebra into a system of concrete-syntax objects. Mainly for the purpose of

deriving parsers, we restrict concrete-syntax objects to certain special forms of

records, captured by the notion of a linearization type.

https://doi.org/10.1017/S0956796803004738 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004738


176 A. Ranta

6.4.1 Linearization types

A linearization type L is a record type usable as value type of linearization. It must

have one or more fields whose types are Str-valued tables, the other fields having

parameter types. More precisely,

• A string type is either Str or P ⇒ S where S is a string type.

• If S is a string type, {s : S} is a linearization type.

• If L is a linearization type, so is the type resulting from adding a field r : T

where T is a parameter type or a string type.

To simplify the generation of a parser, we require that all and only the string type

valued fields are labelled s1, s2, . . . , or s.23

When giving a linearization rule to a function whose arguments have function

types, we need to know what the linearization type of such a type is. The following

clauses define this notion inductively for all types:

(C a1 . . . an)
o = L, if lincat C = L

((x1 : A1) → (xn : An) → A)o = {v1 : Str; . . . ; vn : Str} ∗ ∗ Ao

In the latter clause, we assume that the function type is in normal form, i.e. that

A is a basic type. To form the linearization type of a function type, we thus add

to the linearization type of the value type one field of type Str for each argument

type. The idea is to introduce a field for each variable symbol. If n = 1, we follow

the convention of adding v : Str without a subscript. To avoid clashes with the

system-generated labels v, v1, v2, . . . , for bound variables, these labels are forbidden

in user-defined record types.

6.4.2 Linearization type definitions and linearization rules

A linearization type definition for a category C is a judgement of the form

lincat C = L

which presupposes that L is a linearization type. A notational convention allows us

to omit the lincat judgement of a category C if the linearization type is {s : Str}.
A linearization rule for a function

fun f : (x1 : A1) → (xn : An) → A

is a judgement of the form

lin f = t

which presupposes that

t : Ao
1 → . . . → Ao

n → Ao

A concrete syntax is complete w.r.t. an abstract syntax, if it contains a lincat judge-

ment for every cat judgement, and a lin judgement for every fun judgement.

23 An alternative would be to type-annotate the record fields.
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Pattern variables in linearization rules.

lin f x1 . . . xm = t ≡≡ lin f = λx1, . . . , xm → t

The pattern rule format.

pattern f x1 . . . xn = t1 ++ . . . ++ tm ≡≡ lin f x1 . . . xn = {s = t′1 ++ . . . ++ t′m}

where ”foo”′ = ”foo” and x′
i = xi.s.

Fig. 7. Syntactic sugar for linearization.

The pattern notation for linearization rules (Section 2) can be used if the argument

and value types of f all have the linearization type {s : Str}. A pattern element ti is

then either a token or one of the variables xj (see figure 7).

6.4.3 Default linearization

To linearize symbols not defined in the grammar (variables and metavariables),

GF uses default linearization. It is a function that takes a string to an object of

a linearization type. The default linearization of a category C is defined by the

judgement

lindef C = t

which presupposes

t : Str → Co.

If the grammar does not contain a judgement of this form, a default default

linearization is used: for a string t, it is a record where every field of a string type

has uniformly the value t, and every parameter field of type P has as its value 1P ,

i.e. the first value of type P .

7 Partial evaluation and parsing

While the linearization and typechecking algorithms follow straightforwardly from

the semantics of GF, there are two other algorithms that are crucial for most

practical applications of GF, and which are nontrivial: partial evaluation and

parsing. Partial evaluation takes a GF grammar into a form by which linearization

can be performed with the minimum of interpretational overhead. The same form

is the basis of parsing, since it permits the derivation of a finite set of context-free

rules.

7.1 Partial evaluation

Partial evaluation is evaluation at compile time, leaving evaluation at runtime less

work to do (Jones et al., 1993). A partial evaluator takes a program and computes

it as far as it can. In general, the result is not fully evaluated, since some input of

the program is unknown. Moreover, partial evaluation can be performed in different
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ways, e.g. optimizing either the time needed to run the runtime program or the space

needed to store it.

What we do in GF is evaluate linearization rules into the canonical form of

section 5.4. This operation does not always optimize space: although it sometimes

does reduce space, it may also do quite the contrary. However, the result is always

a time-optimized runtime grammar.

Given a rule pair

fun f : (x1 : A1) → . . . → (xn : An) → A ; lin f = t

we η-expand the term t with respect to a sequence of argument variables, that is,

variables standing for arguments of the function f. We denote argument variables

by pairs <C, i> , where C is the value category C of the argument type Ai, and

i tells that it is the i’th argument. Showing the category will be useful in parser

generation. The result is a linearization rule

lin f = λ<C1, 1> , . . . , <Cn, n> → {r1 = t1 ; . . . ; rm = tm}

where further η-expansions w.r.t. the linearization type of A have produced the

record form. Each tj (j = 1, . . . , m) is either an expression of a basic type (Str or a

parameter type) or a fully expanded table

table {1P ⇒ u ! 1P ; . . . ; nP ⇒ u ! nP }

where each term u ! kP is evaluated further by inlining oper and let constants, η-

expanding records and tables, and applying the evaluation rules for projections,

selections, and function applications. Sometimes we also need transformations

analogous to the elimination of maximal segments in proof theory (Prawitz, 1965).

The most important such transformation is

(table {p ⇒ f ; . . . ; q ⇒ g} ! e) a� table {p ⇒ f a ; . . . ; q ⇒ g a} ! e

pushing an application inside a table. The transformation is needed if the selection

cannot be computed: such is the case if e depends on an argument variable. There are

similar rules for projection and selection. The eliminability of function applications

is analogous to the subformula property of intuitionistic propositional calculus:

since the type of the linearization term consists solely of records, tables, strings, and

parameters, no terms of function types need appear in it.

After partial evaluation, the only remaining unknown input in linearization rules

are the argument variables. Because of compositionality, they can be treated as

pointers to the linearizations of subtrees.

7.2 Parsing

In sections 2.5 and 3.3, the parsing problem of simplified versions of GF were

reduced to parsing in context-free grammars. We will now do the same to full GF.

We use the partially evaluated form of linearization functions, and consider the

fields that are of string types. Each field is an n-place table (n � 0) that has finitely
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many possible values u of type Str. We call these values u the productions of the

function f. We derive a finite set of context-free rules from every production: starting

from a linearization rule

lin f = λ<C1, 1> , . . . , <Cn, n> → r

consider an sk-labelled (and thus Str-valued) field of r. Let u be a production coming

from this field. The context-free rules generated from u have the form

fp. C
k ::= c

where the value category Ck stands for the k’th part of C , and the right-hand side c

is a sequence of context-free items. The sequence c is constructed from elements of

the set u∗, which is defined inductively on the structure of the production u:

Terminal: s∗ = {s}
Nonterminal: (<C, i> .sj)

∗ = {Cj
i }

Binding: (<C, i> .vj)
∗ = {Varji }

Concatenation: (a ++b)∗ = {cc′ | c ∈ a∗, c′ ∈ b∗}
Selection: (a ! p)∗ = a∗

Table: (table {p1 ⇒ b1; . . . ; pk ⇒ bk})∗ =

k⋃
i=1

b∗
i

Now, each sequence in the set u∗ has the form

c1 . . . cm

where each cl is either a terminal s or a category symbol C
j
i indexed by the

argument position i and the discontinuous-part number j. This is not yet a sequence

of context-free items, because of the presence of the position numbers: these numbers

are needed for profiles. However, the formation of context-free items

c′
1 . . . c

′
m

is just simplification of nonterminals: each Var j
i becomes Var, and each C

j
i becomes

Cj . The profile p is constructed by collecting, from the subsequence of nonterminals

in c1 . . . cm, the list of positions for each argument place of f, in the same way as in

section 3.3.

Profiles p in rule labels fp were earlier just an optimization removing the need

to look up f in the grammar when postprocessing parse trees. When parametric

variation is introduced, profiles become indispensable: the arguments of f may be

placed to different positions when the tree is linearized under different parameters.

Thus it would not be enough to look up f to restore the order of constituents.

When restoring syntax trees from parse trees, we do the same as in sections 2.5

and 3.3. Discontinuous constituents bring nothing new to this, since they can be

treated as reduplications. What typically happens in these reduplication instances

is that different parts have metavariables in different places, so that no conflicts

arise when the final result is formed by unifying the parts. For example, the German

grammar of section 5.3 generates the context-free grammar (with profiles that ignore
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bindings, which are empty)

Pred[[1],[2,3]]. S ::= NP VP1 VP2

Pred[[2],[1,3]]. S ::= VP1 NP VP2

Pred[[1],[2,3]]. S ::= NP VP2 VP3

Compl[[1],[]]. VP1 ::= TV

Compl[[],[1]]. VP2 ::= NP

The sentence Johann liebt Maria has the initial parse tree

Pred[[1],[2,3]] Johann (Compl lieben ?) (Compl ? Maria)

which unifies to the final tree

Pred Johann (Compl lieben Maria)

Since the formation of context-free rules suppresses all parameters, the parser

is over-tolerant. It could, for instance, recognize they walks as a valid English

sentence. A strict parser is obtained by filtering away all those parse trees whose

linearization does not match the input string. This arrangement of parsing has the

disadvantage of being potentially inefficient: the number of rejectable parses can

be exponential24. Its advantages are the simplicity of implementation and that it

gives, as by-product, grammar correction: we can use tolerant parsing followed by

linearization to correct they walks into they walk. Parsing via context-free grammars

is known as off-line parsing in the context of unification grammars: the alternative

is to perform unification at each construction step of the syntax tree.

7.3 The expressive power of GF

The expressive power of a grammar formalism is often characterized by its weak

generative capacity – the class of sets of strings (in Chomsky hierarchy) it is capable

of generating. Even though the focus in GF is on strong generative capacity (the

trees it assigns to strings), its place in Chomsky hierarchy is a meaningful question.

In a trivial sense, GF is in the class 0 of unlimited languages, since we can

define the universal language U of strings over any finite alphabet and encode any

predicate P on U in the abstract syntax as a type of proofs. The rule pair

fun f : (x : U) → P x → S ; lin f x y = x

defines a string language S which is undecidable if P is. This construction is based on

the suppression of an argument in linearization. However, since parsing of suppressed

arguments is solved by introducing metavariables, it remains a meaningful question

what happens if we consider GF without suppression. We have already seen that

GF is more powerful than the class 2 of context-free languages (section 2). GF is

not just mildly context-sensitive like e.g. TAG (Joshi, 1985), since GF can define the

24 Or even infinite, if cyclic rules are present.
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double copy language {w ew ew | w ∈ {a, b}∗}. The precise location of GF-without-

suppression is an open question.

8 The implementation of GF

Above we have described GF as a language of its own, independently of implement-

ation. This description is partly an abstraction from earlier implementation work,

partly a specification followed in later work. In this section, we will give an outline

of the implementation and some problems that we have encountered in it.

8.1 Overview of the code

The Haskell implementation of GF (Version 1.0) has 12k lines of source code in 95

modules. The main parts of the code are the following:

• Grammar compiler: lexer, parser, type checker, partial evaluator, parser

generator.

• Command line interpreter: functions to read grammar files and use grammars

in batch mode.

• Syntax editor: functions to edit GF objects interactively.

The syntax editor is based on an abstract command language built upon a zipper,

and it can be used through different user interfaces: we have a line-based editor, a

graphical editor written in Fudgets (Carlsson & Hallgren, 1998), an experimental

speech-based editor (Ranta & Cooper, 2001), and a Java GUI client communicating

with a GF server via an XML-based protocol.

8.2 The use of Haskell

Haskell was chosen as implementation language for two reasons: we found it to be

a good general-purpose programming language (particularly good for implementing

compilers for functional languages), and we wanted to connect smoothly with some

other programs written in Haskell, in particular, the proof editor Alfa (Hallgren,

2000). Some of the code was translated from earlier SML programs; in general, we

did not want to exploit the laziness of Haskell in any essential way.25 Neither did we

use Haskell’s impure features such as strictness flags. Monads (IO, error, state) are

used heavily, and some classes are defined to simplify function names. GF conforms

to the Haskell 98 standard (Peyton Jones & Hughes, 1999), and can be compiled

with all standard compilers and interpreters, on all major operating systems.26

25 There is one single point where laziness would be useful: to treat infinite lists of parse trees arising
in cyclic grammars (Section 2.5).

26 Since the Fudgets library (Carlsson & Hallgren, 1998) requires the X window system, the Java GUI
is the only graphical interface that works on Microsoft Windows.
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8.3 Performance

There are two demanding components in GF: grammar compilation and object-

language parsing. The parser of grammars was created using the Happy parser

generator (Marlow, 2001), and it performs well. If the grammar is close to canonical

form, type checking and partial evaluation together take less time than parsing.27

However, if the grammar makes heavy use of functions and pattern matching,

partial evaluation may take ten times longer than parsing. Some heuristics have

helped considerably, such as topologically sorting all oper definitions and compiling

them in dependency order, ignoring unused operations. Of course, once a grammar

is ready, the compiled version can be saved in a file for rapid reuse.

The inefficiency of object-language parsing is partly due to the inherent complexity

of general-purpose context-free parsing algorithms.28 This can be helped in the

special case of LALR(1) by using Happy parsers, which can be automatically

generated from GF. More often, however, the bottleneck is postprocessing. To solve

this problem, postprocessing would have to be integrated in the first parsing phase,

using e.g. the semantic actions of Happy or some form of attribute or unification

grammar. This is a research problem rather than an implementation issue.

8.4 Accessing GF

Users who do not write grammars themselves typically use GF via the graphical

interactive editor. For grammar developers, and writers of batch programs, there is

a command language and a shell, also permitting scripts. For instance, the following

script imports an English and a French grammar, reads the file enter.txt, parses

it as an English text, and linearizes the resulting tree in French:

i alarm.Eng.gf

i alarm.Fra.gf

rf enter.txt | p -lang=Eng | l -lang=Fra

Haskell programmers can access GF through an API (Application Programmer’s

Interface) module. It contains both default and customizable versions of parsing,

linearization, and translation functions. This makes it possible to include GF

functionalities and use GF grammars in other Haskell programs.

A library of macros is provided for creating GF grammars by Haskell programs.

One way of using these macros is to define translations from other grammar formats

to GF. For instance, BNF and EBNF can be used as input formats. Another use of

code generation is to bypass the partial evaluator of GF: make all generalizations

and abstractions in the Haskell code, and generate canonical GF directly. The next

step from this idea would be to define GF as an embedded language (Hudak, 1996).

However, we prefer to see GF as a language of its own, which can be used and

27 Parsing a 22k-line grammar with a Swedish resource lexicon takes 4 seconds on a 1.5 GHz Pentium
4 with RedHat Linux 7.1; the rest of the compilation of this close-to-canonical grammar takes 3
seconds.

28 The time they take is cubic in the length of the input string.
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reasoned about independently of implementation language. Moreover, since GF has

dependent types, it is not possible to rely on code generated from Haskell: at least

a type checker would in any case have to be written.

9 Some applications of GF

GF grammars have been written for fragments of at least 20 natural languages and

many formal languages. Most of these grammars serve the theoretical purpose

of verifying that GF can express a particularly intricate grammatical rule, or

formalize the semantics of some specific application. The following list mentions

some applications that have passed the level of first experiments and become

independent projects.

Proof text editors. These are systems in which formal proofs are interactively

constructed in type theory and at the same time viewed as texts in natural language.

Via a parser, natural language input is also possible. The system is extensible to user-

defined constants by means of user-defined linearization rules; if a rule is not given,

a default linearization is generated. Users can also extend it to new new natural

languages by writing GF grammars for the concrete syntax. Two implementations

of proof text editors have been made in GF: one that works as a plug-in in the

proof editor Alfa (Hallgren & Ranta, 2000), with support for English, French and

Swedish, and another one using the generic GF interface, also supporting Finnish,

Italian, and Russian.

Software specifications. Formal and semi-formal software specification languages,

such as OCL (Warmer & Kleppe, 1999), are widely used in industry, but still

wider is the use of informal specifications in natural language. A project is going

on to bridge this gap by building an abstract specification language in GF, with

concrete syntaxes for OCL and English (Hähnle et al., 2002). The goal is to enable

simultaneous production of formal and informal specifications. The editor is being

integrated in an industrial CASE tool.

Controlled language. This is the next step from mathematical proofs via software

specifications towards non-mathematical language. Controlled languages are subsets

of natural languages used for technical purposes such as instruction manuals for

aircraft maintenance. Today’s controlled languages (e.g The Boeing Company, 2001)

have neither formal grammars nor automatic checkers. But GF has been used to

define prototypes where formal verification is applied to documents written in natural

language. An example is a set of instructions for using an alarm system, generated

in English, French, German, and Swedish, and equipped with a formal proof that

the instructions preserve the system in a legal state (Johannisson & Ranta, 2001).

Dialogue systems. This is human-machine interaction where information is gathered

by questions and answers. For instance, in a travel-agency dialogue system the

machine asks where and when the customer wants to travel. The human answers

all questions till enough information has been gathered to complete the booking.

In order for the dialogue not to be too monotonous, the dialogue system should
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be flexible and, for example, accept answers to many questions at once. Several

such criteria are identified in Bohlin et al. (1999). Somewhat surprisingly, it turned

out that the metavariable-based model of interaction in proof editors readily fulfils

most of these criteria, even adding extra functionality, e.g. a better control of the

continuation of a dialogue via dependent types (Ranta & Cooper, 2001).

10 Related work

10.1 Montague grammar and categorial grammars

From the linguistic point of view, GF belongs to the tradition of Montague grammar

(Montague, 1974). For Montague, a grammar was a set of rules linearizing logically

interpreted analysis trees into strings of a natural language. The focus was on

semantics rather than concrete syntax. A well-known problem in Montague’s syntax

is the use of so-called “quantifying in” rules to linearize variable-binding operations.

Unlike other parts of Montague grammars, these rules cannot be directly formalized

in GF, since they are not compositional. The rules can be circumscribed, however,

partly by using combinators instead of variable binding (as suggested by Steedman

(1988)), partly by means of discontinuous constituents.

The distinction between abstract and concrete syntax is seldom made by linguists.

It was suggested, however, by the logician Haskell B. Curry, under the headings

of tectogrammatic and phenogrammatic structure (Curry, 1963). For Curry, a tec-

togrammatic structure is similar to a term in combinatory logic, and it can show

up as different phenogrammatic structures in different languages. Neither Curry

nor Montague pursued the multilingual aspect, but there is a machine translation

project, Rosetta (1994), based on Montague grammar.

Categorial grammar shares with Montague grammar the use of a type system to

explain syntactic well-formedness. However, the idea is to explain not only abstract

but also concrete syntax in terms of function application. To this end, Bar-Hillel

(1953) made a distinction between prefix and postfix function types, β/α vs. α\β. His

idea was developed further by Lambek (1958), resulting in a calculus that covered an

impressive fragment of English, and was eventually proved equivalent to context-free

grammars (Pentus, 1993). Extensions of Lambek calculus use richer sets of connect-

ives (Morrill, 1994), or treat it as noncommutative linear logic (Abrusci, 1990).

In functional programming, some efforts have been made to implement logical

and categorial grammars. A parser for a Montague-style grammar was implemented

as a part of a database query system by Frost and Launchbury (1989), in Lazy

ML. The grammar used in the system can also be defined in GF. A parser for the

categorial grammar of Shaumyan was implemented by Jones and Hudak (1995) in

Haskell. This theory shares with Lambek calculus the use of typing rules to define

concrete syntax.

10.2 Unification grammars

Unification grammars (Shieber, 1986) are a family of grammar formalisms where

context-free categories are made dependent on features, which the parser tries to
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unify. Many grammar formalisms in computational linguistics belong to this family.

Definite Clause Grammar (DCG) (Pereira & Warren, 1980) is perhaps the purest and

simplest of them, and it has a built-in implementation in the Prolog programming

language. It is also the most widely known, because it works well in education. The

biggest grammars, however, have been written in Head Driven Phrase Structure

Grammar (HPSG) (Pollard & Sag, 1994).

A typical example of DCG is the English predication rule,

S −→ NP(n) VP(n)

This rule expresses the condition that the subject and the verb must have the same

number, n. In GF, the natural way to express the predication rule would be

fun Pred : NP → VP → S ; lin PredN V = {s = N.s ++V .s ! N.n}

The traditional grammar view is closer to GF than to DCG: the subject and the

verb are not in symmetric relation, but the verb depends on the subject. The subject

has a number (as inherent feature), which it gives to the verb (as parameter).

The advantage of treating inherent features and parameters on a par is com-

putational: it allows a direct implementation of parsing as unification. From the

descriptive point of view, DCG appears as a low-level language, which moreover

does not have types. A suggestive way of parsing in GF grammars would be to

compile them into a DCG, and use local unification instead of off-line parsing and

postprocessing.

HPSG inherits from PATR (Shieber, 1986) the use of records to express complex

grammatical objects. In HPSG, these records contain both syntactic and semantic

information. For instance, the English noun form integers could be described by the

record (in GF notation)

{cat = CN ; sem = Int ; phon = ”integers” ; n = Pl ; g = Neut}

Records like this are called signs in HPSG. The information contained in a sign

belongs partly to function declarations and partly to linearization rules in GF. We

come close to a sign if we take a linearization record and add fields for the type and

the syntax tree. However, the result is not quite the same: for Int, we get

{cat = CN ; sem = Int ; s = table {Sg ⇒ ”integer”;Pl ⇒ ”integers”} ; g = Neut}

The difference reflects the characteristic fact that HPSG records are obtained by

analysing strings, whereas GF records are obtained by linearizing trees. The HPSG

record is, in a sense, an instance of the GF record: it shows one branch of a table

instead of the whole table.

Another interesting feature of HPSG is that it has a type system, which helps

to detect errors at compile time. As regards records, the type system has much

in common with GF. But there are no function types and thus no higher-order

abstractions available for grammar writers.
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10.3 Syntax editors

As a syntax editor, GF belongs to the tradition starting from Mentor (Donzeau-

Gouge et al., 1975) and the Cornell Program Synthesizer (Teitelbaum & Reps, 1981).

These systems were initially not frameworks but had a hard-wired object language.

Later on, the Cornell system used attribute grammars (Knuth, 1968) in the same

rle as the GF formalism is used in the GF editor, and Mentor was extended by

the formalism framework Metal (Kahn et al., 1983). As for concrete syntax, these

systems of course only support unambiguous programming languages, one at a time.

On the abstract level, they have advanced computational features, such as stepwise

forward and backward execution of code.

Proof editors are a descendant of syntax editors, and the closest to GF are those

that use dependent types. GF has inherited its type theory from ALF (Magnusson

& Nordström, 1994), which uses metavariables, whereas NuPRL (Constable, 1986),

Coq (The Coq Development Team, 1999), and LEGO (Luo & Pollack, 1992) use

tactics. All these systems support some amount of user-defined syntactic sugar, such

as infix declarations, but are of course far from natural language syntax. For Coq,

a natural-language interface exists (Coscoy et al., 1995). It works in the direction of

linearization only and cannot be extended by the user; however, it has some built-in

optimizations that are not possible in compositional linearization. Even more in

this direction is the proof explanation system PRex (Fiedler, 2001), which uses AI

methods to adapt proof texts for individual users.

WYSIWYM (“What you see is what you mean”) is a multilingual authoring

system for software manuals (Power & Scott, 1998). The user edits an abstract

object which is reflected by “feedback texts” in English, French, and Italian. The

grammars are hard-wired in the system and work in the direction of linearization

only; the research emphasis is clearly on interaction rather than on grammars.

11 Conclusion

We have defined a grammar formalism GF on top of a logical framework with

dependent types. The formalism is a special-purpose functional programming lan-

guage, which adds the known advantages of functional languages (type checking,

high abstraction level, succinctness of expression) to a simple computational model.

GF grammars can be used for both parsing and generation of languages. The

formalism is able to describe semantic conditions and intricate natural-language

structures. It differs from earlier grammar formalisms by being based on func-

tional programming and by having a powerful type system. The most important

remaining problem is the inefficiency of the parsers generated from some GF

grammars.

The main applications of GF are in domain-specific fragments of natural language,

which have a semantic model that can be described in type theory. GF grammars

provide natural-language interfaces to such models and make it possible to translate

domain-specific language reliably via the model. GF supports interaction: it can

be used as a multilingual authoring system in which texts are created in many
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languages simultaneously. For future developments, an important task is to develop

libraries of domain-independent resource grammars.

GF has been implemented in the functional language Haskell. The implementation

follows the Haskell 98 standard and is portable to different operating systems. In

addition to the separate program, GF functionalities can be accessed from other

Haskell programs through an API module.
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Coscoy, Y., Kahn, G. and Théry, L. (1995) Extracting text from proofs. In: Dezani-Ciancaglini,

M. & Plotkin, G. (eds.), Proc. Second Int. Conf. on Typed Lambda Calculi and Applications:

LNCS 902, pp. 109–123. Springer-Verlag.

Curry, H. B. (1963) Some logical aspects of grammatical structure. In: Jakobson, R. (ed.),

Structure of Language and its Mathematical Aspects: Proceedings of the Twelfth Symposium

in Applied Mathematics, pp. 56–68. American Mathematical Society.

de Bruijn, N. G. (1994) Mathematical Vernacular: a Language for Mathematics with Typed

Sets. xIn: Nederpelt, R. (ed.), Selected Papers on Automath, pp. 56–68. North-Holland.

Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B. and Lévy, J. J. (1975) A structure-
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