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Abstract

For complex simple Lie algebras of types B, C, and D, we provide new explicit formulas
for the generators of the commutative subalgebra z(ĝ) ⊂ U(t−1g[t−1]) known as the
Feigin–Frenkel centre. These formulas make use of the symmetrisation map as well as
of some well-chosen symmetric invariants of g. There are some general results on the
rôle of the symmetrisation map in the explicit description of the Feigin–Frenkel centre.
Our method reduces questions about elements of z(ĝ) to questions on the structure of
the symmetric invariants in a type-free way. As an illustration, we deal with type G2

by hand. One of our technical tools is the map m: Sk(g) → Λ2g ⊗ Sk−3(g) introduced
here. As the results show, a better understanding of this map will lead to a better
understanding of z(ĝ).

Introduction

Let G be a complex reductive group. Set g = LieG. As is well known, the algebra S(g)g of
symmetric g-invariants and the centre Z(g) of the enveloping algebra U(g) are polynomial alge-
bras with rk g generators. Therefore there are several isomorphisms between them. Two of these
isomorphisms can be distinguished, the one given by the symmetrisation map, which is a homo-
morphism of g-modules, and the Duflo isomorphism, which is a homomorphism of algebras. Both
of them exist for any finite-dimensional complex Lie algebra.

The symmetrisation map is defined in the infinite-dimensional case as well. However, no
analogue of the Duflo isomorphism for Lie algebras q with dim q = ∞ is known. Furthermore,
one may need to complete U(q) in order to replace Z(q) with an interesting related object, see
e.g. [Kac84]. In this paper, we are dealing with the most notable class of infinite-dimensional Lie
algebras, namely affine Kac–Moody algebras ĝ, and the related centres at the critical level.

The Feigin–Frenkel centre z(ĝ) is a remarkable commutative subalgebra of the envelop-
ing algebra U(t−1g[t−1]). The central elements of the completed enveloping algebra Ũκ(ĝ) at
the critical level κ = −h∨ can be obtained from the elements of z(ĝ) by employing the vertex
algebra structure [Fre07, § 4.3.2]. The structure of z(ĝ) is described by a theorem of Feigin and
Frenkel [FF92], hence the name. This algebra provides a quantisation of the local Hitchin sys-
tem [BD, § 2]. Elements S ∈ z(ĝ) give rise to higher Hamiltonians of the Gaudin model, which
describes a completely integrable quantum spin chain [FFR94].
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The classical counterpart of z(ĝ) is the Poisson-commutative subalgebra of g[t]-invariants
in S(g[t, t−1])/(g[t]) ∼= S(t−1g[t−1]), which is a polynomial ring with infinitely many generators
according to a direct generalisation of a Räıs–Tauvel theorem [RT92]. Explicit formulas for the
elements of z(ĝ) appeared first in type A [CT06, CM09] following Talalaev’s discovery [Tal06] of
explicit higher Gaudin Hamiltonians. Then they were extended to all classical types in [Mol13].
The construction of [Mol13] relies on the Schur–Weyl duality involving the Brauer algebra. Type
G2 is covered by [MRR16]. The subject is beautifully summarised in [Mol18].

Unlike the finite-dimensional case, no natural isomorphism between the algebras
S(t−1g[t−1])g[t] and z(ĝ) is known. Also, generally speaking, an element of z(ĝ) cannot be obtained
by the symmetrisation � from a homogeneous g[t]-invariant in S(t−1g[t−1]). At the same time,
some of the elements do come in this way, see Example 5.2, which is dealing with the Pfaffians of
so2n. In this paper, we show that for all classical Lie algebras, � can produce generators of z(ĝ).
The symmetrisation map is not a homomorphism of algebras. However, it is a homomorphism
of g[t−1]-modules and it behaves well with respect to taking various limits.

According to a striking result of Rybnikov [Ryb08], z(ĝ) is the centraliser in U(t−1g[t−1]) of
a single quadratic element H[−1], see § 1.1. This fact is crucial for our considerations.

Any Y ∈ U(t−1g[t−1]) can be expressed as a sum

�(Yk) +�(Yk−1) + · · · + Y1 + Y0 with Yj ∈ Sj(t−1g[t−1]). (0.1)

Here Yk = gr(Y) if Yk �= 0. Note that
∑

0�j�k �(Yj) is a g-invariant if and only if each Yj is a
g-invariant. In the following, we consider only elements with Y0 = 0.

A polarisation of a g-invariant F ∈ S(g) is a g-invariant in S(t−1g[t−1]), see § 1.5 for the
definition of a polarisation. However, S(t−1g[t−1])g is not generated by elements of this sort,
see (3.7) for an example.

There are finite sets of elements {S1, . . . , S�} ⊂ z(ĝ) with � = rk g, called complete sets of
Segal–Sugawara vectors, see § 1.6 for the definition, that are of vital importance for the under-
standing of z(ĝ). We prove that if g is either a classical Lie algebra or an exceptional Lie algebra
of type G2, then there is a complete set {Sk} of Segal–Sugawara vectors such that all the terms
Yj occurring in presentations (0.1) for Sk are polarisations of symmetric invariants of g. The
map m, defined in § 1.4, plays a crucial rôle in the selection of suitable g-invariants. In particu-
lar, if F [−1] ∈ Sk(gt−1) is obtained from F ∈ Sk(g)g using the canonical isomorphism gt−1 ∼= g,
then �(F [−1]) ∈ z(ĝ) if and only if m(F ) = 0, see Theorem 3.5 and the remark after it. More
generally, if H ∈ Sk(g)g is such that

md(H) = m(md−1(H)) ∈ S(g) for all 1 � d < k/2, (0.2)

then there is a way to produce an element of z(ĝ) corresponding to H, see Theorem 3.11
and (2.4).

First, for F = ξ1 . . . ξm ∈ Sm(g) and ā = (a1, . . . , am) ∈ Zm
<0, set

�(F )[ā] =
1
m!

∑
σ∈Sm

ξσ(1)t
a1 . . . ξσ(m)t

am ∈ U(t−1g[t−1]), (0.3)

then extend this notation to all elements F ∈ Sm(g) by linearity. According to Lemma 2.1,
�(F )[ā] = �(F [ā]) for the ā-polarisation F [ā] ∈ Sm(t−1g[t−1]) of F .

The expression �(τ rF [−1])·1 encodes a sum of (1/(m+ r)!)c(r, ā)�(F )[ā], where the vectors
ā ∈ Zm

<0 are such that
∑m

j=1 aj = −m− r and c(r, ā) ∈ N are certain combinatorially defined coef-
ficients, which we do not compute explicitly. It is not clear whether any interesting combinatorial
identity can be produced in this context.
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For each classical Lie algebra g, there is a set of generators {H1, . . . , H�} ⊂ S(g)g such that
m(Hk) ∈ CHj for some j depending on k, see §§ 2, 4, 7 and in particular Propositions 2.3, 4.3, 7.5.
In types A and C, we are using the coefficients of the characteristic polynomial. In the orthogonal
case, one has to work with det(In − q(Fij))−1 instead. In type An−1,

m(Δ̃k) =
(n− k + 2)(n− k + 1)

k(k − 1)
Δ̃k−2;

in type Cn,

m(Δ2k) =
(2n− 2k + 3)(2n− 2k + 2)

2k(2k − 1)
Δ2k−2;

and finally for g = son, we have

m(Φ2k) =
(n+ 2k − 3)(n+ 2k − 2)

2k(2k − 1)
Φ2k−2.

This leads to the following complete sets of Segal–Sugawara vectors:{
S̃k−1 = �(Δ̃k[−1]) +

∑
1≤r<(k−1)/2

(
n− k + 2r

2r

)
�(τ2rΔ̃k−2r[−1])·1 | 2 ≤ k ≤ n

}
in type An−1;

{
Sk = �(Δ2k[−1]) +

∑
1≤r<k

(
2n− 2k + 2r + 1

2r

)
�(τ2rΔ2k−2r[−1])·1 | 1 ≤ k ≤ n

}
in type Cn;

{
Sk = �(Φ2k[−1]) +

∑
1≤r<k

(
n+ 2k − 2

2r

)
�(τ2rΦ2k−2r[−1])·1 | 1 ≤ k < �

}
for son with n = 2�− 1

with the addition of S� = �(Pf[−1]) for son with n = 2�.
The result in type A is not new. It follows via a careful rewriting from the formulas of [CT06,

CM09]. We are not giving a new proof. Quite the contrary, we use the statement in type A in
order to extend the formula to other types.

Our formulas for son and sp2n describe the same elements as [Mol13], for the case of the
Pfaffian-type Segal–Sugawara vector, see § 5; a more general result is recently obtained in [Mol21].

The advantage of our method is that it reduces questions about elements of z(ĝ) to questions
on the structure of S(g)g in a type-free way. For example, it is possible to deal with type G2 by
hand unlike [MRR16], see (6.3). It is quite probable that other exceptional types can be handled
on a computer. Conjecturally, each exceptional Lie algebra possesses a set {Hk} of generating
symmetric invariants such that each Hk satisfies (0.2).

One of the significant applications of the Feigin–Frenkel centre is related to Vinberg’s quan-
tisation problem. The symmetric algebra S(g) carries a Poisson structure extended from the Lie
bracket on g by the Leibniz rule. To each μ ∈ g∗ ∼= g, one associates the Mishchenko–Fomenko
subalgebra Aμ ⊂ S(g), which is an extremely interesting Poisson-commutative subalgebra [MF78].
In [Vin91], Vinberg proposed to find a commutative subalgebra Cμ ⊂ U(g) such that gr(Cμ) =
〈gr(Y ) | Y ∈ Cμ〉C coincides with Aμ. Partial solutions to this problem are obtained in
[NO96, Tar00]. The breakthrough came in [Ryb06], where a certain commutative subalgebra
Ãμ ⊂ U(g) is constructed as an image of z(ĝ), cf. (8.1).

In [MY19, § 3.3], sets of generators {Hk | 1 � k � �} of S(g)g such that Ãμ is generated by
�(∂m

μ Hk), cf. (8.3), are exhibited in types B, C, and D. For the symplectic Lie algebra,Hk = Δ2k,
in the orthogonal case Hk = Φ2k with the exception of H� = Pf in type D�. Results of this paper
provide a different proof for [MY19, Theorem 3.2]. We have pushed the symmetrisation map to
the level of U(t−1g[t−1]).
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In § 8.2, we briefly consider Gaudin algebras G. If g is a classical Lie algebra, then the
two-points Gaudin subalgebra G ⊂ U(g ⊕ g) is generated by the symmetrisations of certain
bi-homogeneous g-invariants in S(g ⊕ g), see Theorem 8.4.

1. Preliminaries and notation

Let g = LieG be a non-Abelian complex reductive Lie algebra. The Feigin–Frenkel centre z(ĝ) is
the centre of the universal affine vertex algebra associated with the affine Kac–Moody algebra ĝ

at the critical level [FF92, Fre07]. There is an injective homomorphism z(ĝ) ↪→ U(t−1g[t−1]) and
z(ĝ) can be viewed as a commutative subalgebra of U(t−1g[t−1]) [Fre07, § 3.3]. Each element of
z(ĝ) is annihilated by the adjoint action of g, cf. [Mol18, § 6.2.].

1.1 The Feigin–Frenkel centre as a centraliser
We set g[b] := gtb and x[b] := xtb for x ∈ g. Furthermore, ĝ− := t−1g[t−1]. According to [Ryb08],
z(ĝ) is the centraliser in U(ĝ−) of the following quadratic element

H[−1] =
dim g∑
a=1

xa[−1]xa[−1],

where {x1, . . . , xdim g} is any basis of g that is orthonormal with respect to a fixed g-invariant
non-degenerate scalar product ( , ). In this paper, a scalar product is a symmetric bilinear form.

1.2 The symmetrisation map
For any complex Lie algebra q, let � : Sk(q) → q⊗k be the canonical symmetrisation map. Follow-
ing the usual convention, we let � stand also for the symmetrisation map from S(q) to U(q). Let
gr(X) ∈ S(q) be the symbol of X ∈ U(q). Then gr(�(Y )) = Y for Y ∈ Sk(q) by the construction.

1.3 The antipode
Let us define the anti-involution ω on U(ĝ−) to be the C-linear map such that ω(y[k]) = −y[k]
for each y ∈ g and

ω(y1[k1]y2[k2] . . . ym[km]) = (−ym[km]) . . . (−y2[k2])(−y1[k1]).

Let also ω be the analogues anti-involution on U(q) for any complex Lie algebra q.
Clearly, ω(H[−1]) = H[−1]. Therefore ω acts on z(ĝ). For Yj ∈ Sj(ĝ−), we have ω(�(Yj)) =

(−1)j�(Yj). A non-zero element Y ∈ U(ĝ−) presented in the form (0.1) is an eigenvector of ω if
and only if either all Yj with even j or all Yj with odd j are zero.

1.4 The map m
For glN = glN (C) = End(CN ) and 1 � r � k, consider the linear map

mr : gl⊗k
N → gl

⊗(k−r+1)
N that sends ξ1 ⊗ · · · ⊗ ξk to ξ1ξ2 . . . ξr ⊗ ξr+1 ⊗ · · · ⊗ ξk.

Note that clearly
mr ◦ ms = mr+s−1. (1.1)

Via the adjoint representation of g, the map mr leads to a map g⊗k → End(g) ⊗ g⊗(k−r), which
we denote by the same symbol. Explicitly, the map

mr : g⊗k → End(g) ⊗ g⊗(k−r) sends y1 ⊗ · · · ⊗ yk to ad(y1)ad(y2) . . . ad(yr) ⊗ yr+1 ⊗ · · · ⊗ yk.

Observe that

ad(y1)ad(y2) . . . ad(y2r+1) + ad(y2r+1) . . . ad(y2)ad(y1) ∈ so(g) ∼= Λ2g,
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where so(g) = {ξ ∈ End(g) | (ξ(x), y) = −(x, ξ(y))∀x, y ∈ g}; the isomorphism Λ2g ∼= so(g) is
given by

(y1 ∧ y2)(x) = (y2, x)y1 − (y1, x)y2

for y1, y2, x ∈ g.
We embed Sk(g) in g⊗k via �. Set m = m3. Then m : Sk(g) → Λ2g ⊗ Sk−3(g). For example,

if Y = y1y2y3 ∈ S3(g), then

m(Y ) = 1
6(ad(y1)ad(y2)ad(y3) + ad(y3)ad(y2)ad(y1) + ad(y1)ad(y3)ad(y2)

+ ad(y2)ad(y3)ad(y1) + ad(y2)ad(y1)ad(y3) + ad(y3)ad(y1)ad(y2)) ∈ so(g).

Similarly one defines m2r+1 : Sk(g) → Λ2g ⊗ S(k−2r−1)(g) for each odd 2r + 1 � k. Note that each
m2r+1 is G-equivariant. It is convenient to put m(Sk(g)) = 0 for k � 2.

Suppose that g is simple. There is a G-stable decomposition Λ2g = g ⊕ V . This V will be
called the Cartan component of Λ2g. If g is not of type A, then V is irreducible. For certain
elements H ∈ Sk(g), we have m(H) ∈ g ⊗ Sk−3(g). Note that the embedding g ↪→ so(g) is canon-
ical: it is given by the adjoint action of g. If m(H) ∈ Sk−2(g), then m2r+1(H) = m2r−1 ◦ m(H),
because of (1.1). Since (Λ2g)g = 0, we have m(S3(g)g) = 0.

1.5 Polarisations and fully symmetrised elements
For elements y1, . . . , ym ∈ g and a vector ā = (a1, . . . , am) ∈ Zm

<0, set Υ[ā] =
∏m

i=1 yi[ai] ∈ S(ĝ−).
If we consider the product Y =

∏
i yi ∈ Sm(g), then there is no uniquely defined sequence of

factors yi. However, the ā-polarisation Y [ā] := (1/m!)
∑

σ∈Sm
Υ[σ(ā)] of Y is well defined. We

extend this notion to all elements of Sm(g) by linearity. Linear combinations of the elements

�(Y [ā]) ∈ U(ĝ−)

are said to be fully symmetrised. Note that �(H) is fully symmetrised if H ∈ Sm(gt−1). If ai = a
for all i, then Υ[ā] = Y [ā] and we denote it simply by Y [a].

The evaluation Ev1 at t = 1 defines an isomorphism Ev1 : S(g[a]) → S(g) of g-modules.
For F ∈ S(g), let F [a] stand for Ev−1

1 (F ) ∈ S(g[a]). Then �(F )[a] := �(F [a]) is fully
symmetrised.

1.6 Segal–Sugawara vectors
Set τ = −∂t. According to [FF92], z(ĝ) is a polynomial algebra in infinitely many variables with
a distinguished set of ‘generators’ {S1, . . . , S�} such that � = rk g and

z(ĝ) = C[τm(Sk) | 1 � k � �,m � 0].

We have gr(Sk) = Hk[−1] with Hk ∈ S(g)g and C[H1, . . . , H�] = S(g)g. The set {Sk} is said to be
a complete set of Segal–Sugawara vectors. The symbols of τm(Sk) generate S(ĝ−)g[t] in accordance
with [RT92].

Suppose that we have S̃k ∈ z(ĝ) with 1 � k � � and gr(Sk) = H̃k[−1], where H̃k ∈ S(g)g, for
each k. The structural properties of z(ĝ) imply that {S̃k} is a complete set of Segal–Sugawara
vectors if and only if the set {H̃k} generates S(g)g.
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1.7 Symmetric invariants
For a finite-dimensional Lie algebra q, we have S(q) ∼= C[q∗]. For any reductive Lie algebra, there
is an isomorphism of g-modules g ∼= g∗. For ξ ∈ (gln)∗, write

det(qIn − ξ) = qn − Δ1(ξ)qn−1 + · · · + (−1)kΔk(ξ)qn−k + · · · + (−1)nΔn(ξ). (1.2)

Then S(gln)gln = C[Δ1, . . . ,Δn].
Let f ⊂ g be a reductive subalgebra. Then there is an f-stable subspace m ⊂ g such that

g = f ⊕ m, whereby also g∗ ∼= f∗ ⊕ m∗. Identifying f with f∗, one defines the restriction H|f of
H ∈ S(g) to f. This is the image of H in S(g)/mS(g) ∼= S(f).

In cases n = 2�, f = sp2� and n = 2�+ 1, f = son, the restrictions Δ2k|f with 1 � k � � form
a generating set in S(f)f. In the case f = son with n = 2�, the restriction of the determinant Δ2�

is the square of the Pfaffian and has to be replaced by the Pfaffian in the generating set.
Explicit formulas for basic symmetric invariants of the exceptional Lie algebras are less

transparent.
Let g be simple. The inclusions g ⊂ S(g) are ruled by the symmetric invariants. The key point

here is that S(g) is a free module over S(g)g [Kos63]. If {H1, . . . , H�} ⊂ S(g)g is a generating set
consisting of homogeneous elements and degHi = di + 1, then to each i corresponds a primitive
copy of g in Sdi(g). The non-primitive copies are obtained as linear combinations of the primitive
ones with coefficients from S(g)g.

1.8 Miscellaneousness
Let h ⊂ g be a Cartan subalgebra, we let � stand for dim h = rk g and W = W (g, h) stand
for the Weyl group of g. The fundamental weights of a simple Lie algebra g are πk with
1 � k � � and V (λ) stands for an irreducible finite-dimensional g-module with the highest weight
λ =

∑�
k=1 ckπk. Please keep in mind that the Vinberg–Onishchik numbering [VO88, Tables] of

simple roots (and fundamental weights) is used. If α ∈ h∗ is a positive root, then {eα, hα, fα} ⊂ g

is an sl2-triple associated with α.
An automorphism σ ∈ Aut(g) extends to g[t−1] by setting σ(t−1) = t−1. In this context,

σ stands also for the corresponding automorphism of S(g[t−1]). If we take a σ-invariant product
( , ), then σ(H[−1]) = H[−1]. Therefore σ acts on z(ĝ).

If σ ∈ Aut(g) is of finite order m, then it leads to a Z/mZ-grading g = g0 ⊕ g1 ⊕ . . .⊕ gm−1.
In the case m = 2, we have g1 = {ξ ∈ g | σ(ξ) = −ξ}.

Throughout the paper:

• {xi} is an orthonormal basis of g;
• in the sums

∑
i xi or

∑
i,j xixj , the ranges are from 1 to dim g for i and for j;

• b̄ = (b1, b2) ∈ Z2
<0 and H[b̄] stands for

∑
i xi[b1]xi[b2] ∈ U(ĝ−) and also for the symbol of this

sum (in the sense of § 1.2);
• Gξ stands for the stabiliser of ξ and it is always clear from the context, which G-action is

considered, gξ = LieGξ;
• q stands for an arbitrary unspecified complex Lie algebra;
• if A ⊂ U(q) is a subalgebra, then gr(A) := 〈gr(x) | x ∈ A〉C ⊂ S(q).

2. Explicit formulas in type A

In type A, there are several explicit formulas for the Segal–Sugawara vectors [CT06, CM09], see
also [Mol18, § 7.1]. One of them actually uses symmetrisation. One can form the matrix

E[−1] + τ = (Eij [−1]) + τIn

590

https://doi.org/10.1112/S0010437X22007485 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007485


Symmetrisation and the Feigin–Frenkel centre

with Eij ∈ gln and calculate its column determinant and symmetrised determinant. Due to the
fact that this matrix is Manin, see [Mol18, Definition 3.1.1, p. 48, Lemma 7.1.2], the results
are the same. The symmetrised version is more suitable for our purpose. The elements Sj are
coefficients of τn−j in

det
sym

(E[−1] + τ) = �(Δn[−1]) +�(τΔn−1[−1]) + · · · +�(τn−2Δ2[−1]) +�(τn−1Δ1[−1]) + τn.

Assume the conventions that

τx[a] − x[a]τ = [τ, x[a]] = τ(x[a]) = −ax[a− 1]

and τ ·1 = 0. This leads for example to τx[−1]·1 = x[−2]. Note that � acts on the summands of
τn−kΔk[−1] as on products of n factors. It permutes τ with elements of gln[−1].

Let θ be a Weyl involution of g, i.e. there is a θ-stable Cartan subalgebra h ⊂ g such that
θ|h = −idh. As is well known, θ(Δk) = (−1)kΔk if g = gln. In particular, θ(H[−1]) = H[−1] and
θ acts on z(ĝ). Hence one can always modify the Segal–Sugawara vectors in such a way that they
become eigenvectors of θ. The resulting simplified forms are

Sn = �(Δn[−1]) +�(τ2Δn−2[−1])·1 + · · · +�(τ2rΔn−2r[−1])·1 + · · ·

+�(τn−uΔu[−1])·1 with u = n− 2
[
n− 1

2

]
, (2.1)

Sk = �(Δk[−1]) +
∑

1�r<k/2

(
n− k + 2r

2r

)
�(τ2rΔk−2r[−1])·1. (2.2)

We will see that there is a direct connection with the symmetrisation and that one could
have used ω instead of θ in order to simplify the formulas. The following two lemmas are valid
for all Lie algebras.

Lemma 2.1. Take Y = y1 . . . ym ∈ Sm(g) and ā = (a1, . . . , am) ∈ Zm
<0. Then in U(ĝ−), we have

Y[ā] :=
∑

σ∈Sm

yσ(1)[a1] . . . yσ(m)[am] = �

( ∑
σ∈Sm

y1[aσ(1)] . . . ym[aσ(m)]
)

= m!�(Y [ā])

in the notation of § 1.5.

Proof. It suffices to show that Y[ā] is invariant under all ti = (i i+ 1) ∈ Sm with 1 � i < m.
For each σ ∈ Sm, both monomials

yσ(1)[a1]. . .yσ(i)[ai]yσ(i+1)[ai+1]. . .yσ(m)[am] and yσ(1)[a1]. . .yσ(i+1)[ai]yσ(i)[ai+1]. . .yσ(m)[am]

appear in Y[ā] with the same coefficient 1. Let s(σ, i) stand for their sum. Then

s(σ, i) − ti(s(σ, i)) = · · · [yσ(i)[ai], yσ(i+1)[ai+1]] · · · + · · · [yσ(i+1)[ai], yσ(i)[ai+1]] · · · = 0,

because [yσ(i)[ai], yσ(i+1)[ai+1]] = [yσ(i), yσ(i+1)][ai + ai+1] = −[yσ(i+1)[ai], yσ(i)[ai+1]]. Since
Y[ā] = 1

2

∑
σ s(σ, i) for each i, we are done. �

Lemma 2.2. Take F ∈ Sm(g) and r � 1. Then �(τ rF [−1])·1 is fully symmetrised and therefore
is an eigenvector of ω corresponding to the eigenvalue (−1)m.

Proof. Notice that �(τ r(F + F ′)[−1])·1 = �(τ rF [−1])·1 +�(τ rF ′[−1])·1 for any F ′ ∈ Sm(g).
Hence we may assume that F = y1 . . . ym with yj ∈ g. By the construction, �(τ rF [−1])·1 is the
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sum of terms
1

(m+ r)!
c(r, ā)

∑
σ∈Sm

yσ(1)[a1] . . . yσ(m)[am] with c(r, ā) ∈ N,

taken over all vectors ā = (a1, . . . , am) ∈ Zm
<0 such that

∑
aj = −(m+ r). The scalars c(r, ā)

depend on (m, r, ā) in an elementary combinatorial way. Each summand here is a fully
symmetrised element by Lemma 2.1. Hence the desired conclusion follows. �

Let z = (1/n)In be a central element of g = gln and let Δ̃k ∈ Sk(sln) denote the restriction
of Δk to sln. Then

Δk = Δ̃k + (n− k + 1)zΔ̃k−1 +
(
n− k + 2

2

)
z2Δ̃k−2 + · · · +

(
n− 2
k − 2

)
zk−2Δ̃2 +

(
n

k

)
zk. (2.3)

Fix h = 〈Eii | 1 � i � n〉C. Let εi ∈ h∗ be a linear function such that εi(Ejj) = δi,j . For Eii ∈ g,
set Ẽii = Eii − z.

Proposition 2.3. In type A, we have

m2r+1(Δ̃k) =
(2r)!(k − 2r)!

k!

(
n− k + 2r

2r

)
Δ̃k−2r

if k − 2r > 1 and m(Δ̃3) = m(Δ3) = 0.

Proof. Notice that the centre of g plays a very specific rôle in m, since ad(z) = 0. In particular,
m(S3(gln)) = m(S3(sln)) ⊂ Λ2sln. Furthermore,

m(Δk) ∈ m(Δ̃k) + Λ2sln ⊗ zSk−4(g),

where one can use the multiplication in either End(gln) or End(sln) for the definition of m.
Therefore we can work either with sln or with gln, whichever is more convenient.

Suppose that Y = EijElsEup is a factor of a monomial of Δk. Then

i �∈ {l, u}, j �∈ {s, p}, l �= u, and s �= p.

The h-weight of Y cannot be equal to either 2ε1 − εn − εn−1 or ε1 + ε2 − 2εn. These are the
highest weights of the Cartan component of Λ2sln. Hence m(Δk) ∈ (sln ⊗ Sk−3(g))g. The image
in question is a polynomial function on (sln ⊕ g)∗ ∼= sln ⊕ g of degree 1 in sln and degree k − 3
in g. Note that m(Δ3) is a gln-invariant in sln and is thereby zero. Suppose that n � k > 3.

Fortunately, G(sln ⊕ h) is a dense subset of sln ⊕ g. We calculate the restriction

f = m(Δk)|sln⊕h

of m(Δk) to sln ⊕ h. Write f =
∑L

ν=1 ξν ⊗ Hν with ξν ∈ sln and pairwise different monomials
Hν ∈ Sk−3(h) in {Eii}. Since m(Δk) is an element of h-weight zero, ξν ∈ h for each ν. Thus
one can say that f is an invariant of the Weyl group W (g, h) ∼= Sn. Without loss of generality
assume that H1 = y4 . . . yk with ys = Ess for all s � 4. In order to understand f , it suffices to
calculate ξ1. Let F be the polynomial obtained from Δ3 by setting Eij = 0 for all (i, j) such that
i or j belongs to {4, . . . , k}. Then ξ1 = (3!(k − 3)!/k!)m(F ).

Now take Y as above with {i, l, u} = {j, s, p} = {1, 2, 3}. Then:

• m(Y )(E14) = 0 if i = j or l = s or u = p;
• m(Y )(E14) = 1

6E14 if Y = E13E32E21;
• m(Y )(E14) = 1

6E14 if Y = E12E23E31.
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Besides, m(Y )(Evw) = 0 if v, w � 4. In the self-explanatory notation, η = m(Δ(1,2,3)
3 ) is an invari-

ant of (gl3 ⊕ gln−3) and η acts on gl3 = 〈Evw | 1 � v, w � 3〉C as zero. Since Δ(1,2,3)
3 is a linear

combination of Y = EijElsEup with {i, l, u} = {j, s, p} = {1, 2, 3}, the element η acts on g as
1
3(E11 + E22 + E33). This implies that η = 1

3(Ẽ11 + Ẽ22 + Ẽ33). By the construction of F , we
now have m(F ) =

(
n−k+2

2

) ∑
l �∈{4,...,k}

1
3Ẽll and hence

ξ1 ⊗ H1 =
3!(k − 3)!

k!
1
3

(
n− k + 2

2

)( ∑
l �∈{4,...,k}

Ẽll

)
⊗ E44 . . . Ekk.

From this one deduces that up to the scalar

k − 2
3

3!(k − 3)!
k!

(
n− k + 2

2

)
,

the restriction of m(Δ̃k) to sln ⊕ h coincides with the restriction Δ̃k−2|sln⊕h, where we regard
Δ̃k−2 as an element of sln ⊗ Sk−3(g). In particular, m(Δ̃k) is a symmetric invariant. More
explicitly,

m(Δ̃k) =
(k − 2)

3
3!(k − 3)!

k!

(
n− k + 2

2

)
Δ̃k−2 =

2(k − 2)!
k!

(
n− k + 2

2

)
Δ̃k−2.

Iterating the map m, we obtain the result. �
Remark. Strictly speaking, m(Δk) is not an element of Sk−2(gln). This is the reason for working
with sln.

Now we can exhibit formulas for Segal–Sugawara vectors of t-degree k that are independent of
n, i.e. these formulas are valid for all n � k. First of all notice that in view of (2.3), Formula (2.2)
produces an element of z(ŝln) if we replace each Δk−2r with Δ̃k−2r. (This statement can be
deduced from (2.1) as well.) Making use of Proposition 2.3, one obtains that for H = Δ̃k,

S̃k−1 = �(H[−1]) +
∑

1�r<(k−1)/2

(
k

2r

)
�(τ2rm2r+1(H)[−1])·1 (2.4)

is a Segal–Sugawara vector.

3. Commutators and Poisson brackets

In this section, we prove that Formula (2.4) is universal, i.e. that it is valid in all types, providing
m2r+1(H) is a symmetric invariant for each r � 1.

For F ∈ Sm(g), set XF [−1] := [H[−1], �(F )[−1]] . Note that

ω(H[−1]�(F )[−1]) = (−1)m+2�(F )[−1]H[−1].

Hence ω multiplies XF [−1] with (−1)m+1. This implies that the symbol of XF [−1] has degree
m+ 1 − 2d with d � 0. Let H[−1] stand also for

∑
i xi[−1]xi[−1] ∈ S2(g[−1]).

The symmetric algebra S(q) of a Lie algebra q is equipped with the standard Poisson bracket
{ , } such that {x, y} = [x, y] for x, y ∈ q. Using the standard filtration on U(q), one can state
that

{gr(X), gr(Y )} = [X,Y ] + Ul+m−2(q) if X ∈ Ul(q)\Ul−1(q), Y ∈ Um(q)\Um−1(q).

The fact that {H[−1], F [−1]} = 0 for F ∈ Sm(g)g follows from [FF92]. For convenience, we
present a short proof here.
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Lemma 3.1. Take two arbitrary g-invariants F, F ′ in S(g). Then {F [−1], F ′[−1]} = 0.

Proof. The Poisson bracket of two polynomial functions can be calculated by

{f1, f2}(γ) = [dγf1, dγf2](γ) for γ ∈ (ĝ−)∗. (3.1)

In the case of F [−1] and F ′[−1], the differentials dγF [−1], dγF
′[−1] at γ depend only on the

(−1)-part of γ. More explicitly, if γ(x[−1]) = γ̃(x) with γ̃ ∈ g∗, then dγF [−1] = (dγ̃F )[−1] and
the same identity hods for F ′. We have dγ̃F, dγ̃F

′ ∈ (gγ)gγ , since F and F ′ are g-invariants.
Hence [dγ̃F, dγ̃F

′] = 0 and also [dγF [−1], dγF
′[−1]] = 0 for any γ ∈ (ĝ−)∗. �

If [g, g] is not simple, then the following assumption on the choice of the scalar product on g

is made in order to simplify the calculations.

( �) There is a constant C ∈ C such that
∑dim g

i=1 ad(xi)2(ξ) = Cξ for each ξ ∈ [g, g].

The constant C depends on the scalar product in question.
From now on, assume that g is semisimple. As the next step we examine the difference

XF [−1] := XF [−1] −�({H[−1], F [−1]})
and more general expressions, where the commutator is taken with H[b̄]. Our goal is to present
XF [−1] in the form (0.1). For any F1,F2 ∈ U(ĝ−), the symbol gr([F1,F2]) is equal to the Poisson
bracket {gr(F1), gr(F2)} if this Poisson bracket is non-zero.

3.1 Commutators, the first approximation
Fix m � 1. Then set ǰ = m− j for 1 � j < m.

Lemma 3.2. For Y = ŷ1 . . . ŷm ∈ S(ĝ−) with ŷj = yj [aj ], set

XY = XY,b̄ = [H[b1, b2], �(Y )] −�({H[b1, b2], Y }).
Then

XY =
m∑

l=1

∑
σ∈S̃m−1

∑
j<p

∑
i,u

(m(yσ(p) ⊗ yl ⊗ yσ(j))(xi), xu)

× (c2,3(j, p)ŷσ(1) . . . ŷσ(j−1)xi[b1 + aσ(j)]ŷσ(j+1) . . . ŷσ(p−1)xu[b2 + al + aσ(p)]ŷσ(p+1) . . . ŷσ(m−1)

+ c2,3(j, p)ŷσ(1) . . . ŷσ(j−1)xi[b2 + aσ(j)]ŷσ(j+1) . . . ŷσ(p−1)xu[b1 + al + aσ(p)]ŷσ(p+1) . . . ŷσ(m−1)

+ (−1)c3,2(j, p)ŷσ(1) . . . ŷσ(j−1)xi[b1 + aσ(j) + al]ŷσ(j+1) . . . ŷσ(p−1)xu[b2 + aσ(p)]ŷσ(p+1) . . . ŷσ(m−1)

+ (−1)c3,2(j, p)ŷσ(1) . . . ŷσ(j−1)xi[b2+ aσ(j)+ al]ŷσ(j+1) . . . ŷσ(p−1)xu[b1+ aσ(p)]ŷσ(p+1) . . . ŷσ(m−1)),

where S̃m−1 stands for the set of bijective maps from {1, . . . ,m− 1} to {1, . . . ,m}\{l} and we
have 1 � j < p � m− 1. The constants c2,3(j, p), c3,2(j, p) ∈ Q do not depend on Y , they depend
only on m. Besides,

c2,3(j, p) = c3,2(p̌, ǰ),

c2,3(j, p) � 0 for all j < p, and c2,3(j, p) < 0 if in addition ǰ � p.

Proof. Set Ŷ = ŷ1 . . . ŷm ∈ U(t−1g[t−1]). Let x̂(1)
i stand for xi[b1] and x̂(2)

i for xi[b2]. Then

[H[b1, b2], Ŷ ] =
j=m,i=dim g∑

j=1,i=1

(ŷ1 . . . ŷj−1x̂
(1)
i [x̂(2)

i , ŷj ]ŷj+1 . . . ŷm + ŷ1 . . . ŷj−1[x̂
(1)
i , ŷj ]x̂

(2)
i ŷj+1 . . . ŷm).
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Furthermore,

[H[b1, b2], �(Y )] =
1
m!

∑
σ∈Sm

[H[b1, b2], σ(Ŷ )]. (3.2)

Each summand of [H[b1, b2], σ(Ŷ )] we regard as a formal non-commutative product. The sym-
metrisation of PY = {H[b1, b2], Y } resembles (3.2), but with a rather significant difference: the
factor x̂(υ)

i , which is not involved in [x̂(ν)
i , ŷσ(j)], does not have to stay next to [x̂(ν)

i , ŷσ(j)] (here we
have {ν, υ} = {1, 2}). The idea behind the computation of XY is to modify each term of �(PY )
in such a way that the wayward factor x̂(υ)

i gets back to its place as in [H[b1, b2], �(Y )]. In this
process, other commutators ±[x̂(υ)

i , ŷl] will appear. It is convenient to consider the differences

Xσ(Ŷ ) = [H[b1, b2], σ(Ŷ )] − 1
m+ 1

m∑
j=1

2∑
υ=1

x̂
(υ)
i at different places︸ ︷︷ ︸

ŷσ(1). . .ŷσ(j−1)[x̂
(ν)
i , ŷσ(j)]ŷσ(j+1) . . . ŷσ(m−1)ŷσ(m),

where for each fixed j and υ, we add m+ 1 different formal products with x̂(υ)
i standing in m+ 1

different places. Then XY = (1/m!)
∑

σ∈Sm
Xσ(Ŷ ).

While modifying �(PY ), one obtains products of the form

X(σ, i, υ, ν; j, p) = ŷσ(1) . . . ŷσ(j−1)[x̂
(υ)
i , ŷσ(j)]ŷσ(j+1) . . . ŷσ(p−1)[x̂

(ν)
i , ŷσ(p)]ŷσ(p+1) . . . ŷσ(m)

with some coefficients; one also has to commute x̂(υ)
i with [x̂(ν)

i , ŷj ]. The total sum of the products
that correspond to XŶ and contain a double commutator [x̂(υ)

i , [x̂(ν)
i , ŷj ]] as a factor is

Xdcom(id, j, i) :=
1

m+ 1
ŷ1 . . . ŷj−1(j[x̂

(2)
i , [x̂(1)

i , ŷj ]] + (m− j + 1)[[x̂(2)
i , ŷj ], x̂

(1)
i ])ŷj+1 . . . ŷm.

Observe that
[x̂(2)

i , [x̂(1)
i , ŷj ]] + [[x̂(2)

i , ŷj ], x̂
(1)
i ] = [[x̂(2)

i , x̂
(1)
i ], ŷj ] = 0.

Applying σ to all ŷp with 1 � p � m, we obtain Xdcom(σ, j, i) from Xdcom(id, j, i). Set Xdcom =∑m
j=1

∑
σ∈Sm

∑
iXdcom(σ, j, i). We have gr(Xdcom) = 0, since

gr(Xdcom(id, j, i)) + gr(Xdcom(ϑ,m− j + 1, i)) = 0

for the transposition ϑ = (j(m− j + 1)).
Now consider expressions [[x̂(υ)

i , [x̂(ν)
i , ŷj ]], ŷl]. In view of ( �),∑

i

ad(x̂(1)
i )ad(x̂(2)

i )(yj [aj ]) =
∑

i

ad(x̂(2)
i )ad(x̂(1)

i )(yj [aj ]) = Cyj [aj + b],

where b = b1 + b2. This leads to∑
i

[[x̂(υ)
i , [x̂(ν)

i , ŷj ]], ŷl] = [Cyj [aj + b], ŷl] = C[yj , yl][aj + al + b]. (3.3)

Thus
∑

iXdcom(id, j, i) −�(gr(
∑

iXdcom(id, j, i))) = C
∑

l �=j c(j,l)X
[j,l]
dcom(id), where

X
[j,l]
dcom(id) =

{
ŷ1 . . . ŷl−1[yj , yl][aj + al + b]ŷl+1 . . . ŷj−1ŷj+1 . . . ŷm if l < j

ŷ1 . . . ŷj−1ŷj+1 . . . ŷl−1[yj , yl][aj + al + b]ŷl+1 . . . ŷm if l > j;

furthermore c(j,l) ∈ Q. Set σ = (j l). The difference∑
i

Xdcom(σ, j, i) −�

(
gr

(∑
i

Xdcom(σ, j, i)
))
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has a summand

Cc(j,l)X
[j,l]
dcom(σ) = −Cc(j,l)X [j,l]

dcom(id).

This proves that
∑

σ∈Sm,j,iXdcom(σ, j, i) = 0, i.e. the expressions containing double commutators

[x̂(υ)
i , [x̂(ν)

i , ŷj ]] as factors have no contribution to XY .
In the modification of (m+ 1)XŶ , a term

X(id, i, υ, ν; j, l) = ŷ1 . . . ŷj−1[x̂
(υ)
i , ŷj ]ŷj+1 . . . ŷl−1[x̂

(ν)
i , ŷl]ŷl+1 . . . ŷm

appears j times with the coefficient 1 (these are the instances, where x̂(υ)
i is the wayward factor);

it also appears (m− l + 1) times with the coefficient (−1) from the instances, where x̂(ν)
i is the

wayward factor. Thereby

Xσ(Ŷ ) =
1

m+ 1

∑
j<l

∑
υ

∑
i

(j + l −m− 1)X(σ, i, υ, ν; j, l).

Set j′ = m− j + 1. Then j + j′ = m+ 1. Assume that l �= j′ and l > j. For any σ ∈ Sm, the
symbol of X(σ, i, υ, ν; j, l) is the same as the symbol of X(σ̃, i, υ, ν; l′, j′), where

σ̃(Ŷ ) = ŷσ(1) . . . ŷσ(l′−1)ŷσ(j)ŷσ(l′+1) . . . ŷσ(j′−1)ŷσ(l)ŷσ(j′+1) . . . ŷσ(m);

furthermore, these two expressions appear inXY with opposite coefficients. This shows thatXY ∈
Um−1(ĝ−). In order to get a better understanding of XY , we modify the terms X(σ, i, υ, ν; j, l),
which we consider as formal products.

Each X(σ, i, υ, ν; j, l) has factors of two sorts: elements ŷp (depicted as points in the diagram
below) and two commutators [x̂(υ)

i , ŷσ(j)], [x̂(υ)
i , ŷσ(l)], which are depicted as stars. We move the

commutator that is closer to the middle point of the product until the expression obtains a
central symmetry. In the case l � m/2, this looks as follows:

· · · · � · · · · · · · � · · · · ·| · · · · · · · · · · · · · · · · · · · modification� · · · · � · · · · · · · · · · · · · | · · · · · · · · · · · · · � · · · · .

See also Example 3.3 below. The commutator [x̂(υ)
i , ŷσ(l)] is moving if and only if l < j′. After

the modification, the products of m factors annihilate each other and XY is now a Q-linear
combination of products of m− 1 factors, where in each term, m− 3 factors are elements ŷw,
one is a commutator [x̂(υ)

i , ŷj ], and another one is a commutator [[x̂(ν)
i , ŷl], ŷp]. A possible example

in the case σ = id, is

ŷ1 . . . ŷj−1[x̂
(υ)
i , ŷj ]ŷj+1 . . . ŷl−1ŷl+1 . . . ŷp−1[[x̂

(ν)
i , ŷl], ŷp]ŷp+1 . . . ŷm.

It appears only if l < j′. First we deal with these expressions ‘qualitative’ and after that describe
the coefficients.

Observe that for y ∈ g and a ∈ Z<0, we have y[a] =
∑

i(xi, y)xi[a]. Assume for simplicity
that {j, p, l} = {1, 2, 3}, disregard for the moment the other factors, and ignore the t-degrees of
the elements. Consider the sum∑

i

[xi, y1][y3, [y2, xi]] =
∑
i,j,u

([xi, y1], xj)xj([y3, [y2, xi]], xu)xu

=
∑
i,j,u

(xi, [y1, xj ])xj(xi, ad(y2)ad(y3)(xu))xu
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=
∑
i,j,u

((ad(y2)ad(y3)(xu), xi)xi, [y1, xj ])xjxu

=
∑
j,u

(ad(y2)ad(y3)(xu), [y1, xj ])xjxu

=
∑
j,u

(ad(y3)ad(y2)ad(y1)(xj), xu)xjxu. (3.4)

Note that ad(y3)ad(y2)ad(y1)(xj) = m(y3 ⊗ y2 ⊗ y1)(xj). If we recall the t-degrees, then the
product xjxu has to be replaced with xj [bυ + a1]xu[bν + a2 + a3] in (3.4). The other factors ŷw

do not interfere with the transformations in (3.4).
In the process of changing the sequence of factors of X(id, i, υ, ν; j, l) with j < l < j′,

the term · · · [x̂(υ)
i , ŷj ] · · · [[x̂(ν)

i , ŷl], ŷp] · · · appears with the negative coefficient (j + l −m− 1)
as long as l < p � j′. This shows that indeed the constants c2,3(j, p) do not depend on Y , they
depend only on m. Moreover, c2,3(j, p) = 0 if p > ǰ and c2,3(j, p) < 0 if p � ǰ.

The symmetry c2,3(j, p) = c3,2(p̌, ǰ) is justified by the fact that ω(XY ) = (−1)m−1XY . A more
direct way to see this, is to notice that if a factor [x̂(ν)

i , ŷl] moves from a place v to j′ in some
term, then j < v < j′ and there is a term with the apposite coefficient, where [x̂(ν)

i , ŷl] moves
from v′ to j. The first type of moves produces

(coeff.)(m(yσ(p) ⊗ yl ⊗ yσ(j))(xi), xu) . . . xi[bυ + aσ(j)] . . . xu[bν + al + aσ(p)] . . .

and the second

(the same coeff.)(xu,m(yσ(p′) ⊗ yl ⊗ yσ(j′))(xi)) . . . xu[bν + al + aσ(p′)] . . . xi[bυ + aσ(j′)] . . . .

We have (xi,m(yσ(j) ⊗ yl ⊗ yσ(p))(xu)) = −(m(yσ(p) ⊗ yl ⊗ yσ(j))(xi), xu) and the scalar product
( , ) is symmetric. These facts confirm the symmetry of the constants and justifies the minus
signs in front of c3,2(j, p) in the answer. �
Example 3.3. Consider the case m = 6. One obtains that

XY =
1
7!

∑
σ∈S6,i

(4X(σ, i, 1, 2; 5, 6) − 4X(σ, i, 1, 2; 1, 2) + 3X(σ, i, 1, 2; 4, 6) − 3X(σ, i, 1, 2; 1, 3)

+ 2X(σ, i, 1, 2; 3, 6) − 2X(σ, i, 1, 2; 1, 4) + 2X(σ, i, 1, 2; 4, 5) − 2X(σ, i, 1, 2; 2, 3)

+X(σ, i, 1, 2; 2, 6) −X(σ, i, 1, 2; 1, 5) +X(σ, i, 1, 2; 3, 5) −X(σ, i, 1, 2; 2, 4))

+ (the similar expression for (υ, ν) = (2, 1)).

Take σ = id. Performing the modification

X(id, i, 1, 2; 5, 6) = ŷ1ŷ2ŷ3ŷ4[x̂
(1)
i , ŷ5][x̂

(2)
i , ŷ6]

modification� [x̂(1)
i , ŷ5]ŷ1ŷ2ŷ3ŷ4[x̂

(2)
i , ŷ6],

we move the factor [x̂(1)
i , ŷ5] to the first place producing commutators with ŷ4, ŷ3, ŷ2, ŷ1 on the

way. In the same manner,

X(id, i, 1, 2; 1, 2) = [x̂(1)
i , ŷ1][x̂

(2)
i , ŷ2]ŷ3ŷ4ŷ5ŷ6

modification� [x̂(1)
i , ŷ1]ŷ3ŷ4ŷ5ŷ6[x̂

(2)
i , ŷ2]
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and for σ̃ = (1 5 3)(2 6 4),

X(σ̃, i, 1, 2; 1, 2) = [x̂(1)
i , ŷ5][x̂

(2)
i , ŷ6]ŷ1ŷ2ŷ3ŷ4

modification� [x̂(1)
i , ŷ5]ŷ1ŷ2ŷ3ŷ4[x̂

(2)
i , ŷ6].

Performing the modification

X(id, i, 1, 2; 4, 5) = ŷ1ŷ2ŷ3[x̂
(1)
i , ŷ4][x̂

(2)
i , ŷ5]ŷ6

modification� ŷ1[x̂
(1)
i , ŷ4]ŷ2ŷ3[x̂

(2)
i , ŷ5]ŷ6,

we move the factor [x̂(1)
i , ŷ4] to the second place producing commutators with ŷ3 and ŷ2. The

non-zero constants c−(j, p) := −c2,3(j, p) are

c−(1, 2) =
4
7!
, c−(1, 3) =

7
7!
, c−(1, 4) =

9
7!
, c−(1, 5) =

10
7!
, c−(2, 3) =

2
7!
, c−(2, 4) =

3
7!
.

Instead of the usual symmetrisation map, one can consider a weighted ‘symmetrisation’ or
rather shuffle, where each permutation is added with a scalar coefficient assigned by a certain
function Ψ. We will need only a very particular case of this construction. Let Ψ: Sk+2 → Q be a
weight function, satisfying the following assumptions:

(A) Ψ(σ) depends only on j = σ(k + 1) and p = σ(k + 2), i.e. Ψ(σ) = Ψ(j, p);
(B) Ψ(j, p) = Ψ(j′, p′) if j′ = k + 3 − j.

Then set

�wt(y1 . . . yk ⊗ yk+1 ⊗ yk+2) =
∑

σ∈Sk+2

Ψ(σ) yσ(1) ⊗ · · · ⊗ yσ(k+2)

for yj ∈ q. Let also �wt stand for the corresponding map from Sk(q) ⊗ q ⊗ q to U(q). Condition
(B) guaranties that ω(�wt(F )) = (−1)k�wt(F ) for each F ∈ Sk(q) ⊗ q ⊗ q. In the case Ψ(σ) =
1/(k + 2)!, the map �wt coincides with �. Keep in mind that each appearing �wt may have its
own weight function.

Suppose that Y ∈ Sm(g), ā ∈ Zm
<0, and we want to merge them in order to obtain an element

of Sm(ĝ−). The only canonical way to do so is to replace ā with the orbit Smā, add over this
orbit, and divide by |Smā| as we have done in § 1.5. The result is the ā-polarisation Y [ā] of Y .
Set

XY [ā] = [H[b1, b2], �(Y [ā])] −�({H[b1, b2], Y [ā]}).

For different numbers u, v, l ∈ {1, . . . ,m}, let āu,v,l ∈ Zm−3
<0 be the vector obtained from ā by

removing au, av, and al. Let 〈u, v, l〉 be a triple such that l < v and u �= l, v. Write m(Y ) =∑L
w=1 ξw ⊗Rw with ξw ∈ Λ2g, Rw ∈ Sm−3(g).

Proposition 3.4. The element XY [ā] is equal to∑
w

∑
〈u,v,l〉

∑
υ

∑
i,j

(ξw(xi), xj)�wt(Rw[āu,v,l] ⊗ xi[bυ + au] ⊗ xj [bν + al + av]),

where Ψ(j, p) = 2c2,3(j, p) if j < p and Ψ(j, p) = 2c3,2(p, j) if j > p for the weight function Ψ.

Proof. Using the linearity, we may assume that Y = y1 . . . ym. The symmetry in t-degrees
allows one to add the expressions appearing in the formulation of Lemma 3.2 over the
triples (ye[aσ(p)], yf [al], eg[aσ(j)]) with {e, f, g} = {σ(p), l, σ(j)} while keeping xi[bυ + aσ(j)],
xu[bν + al + aσ(p)] and xi[bυ + aσ(j) + al], xu[bν + aσ(p)] at their places. In this way the
coefficient m(yσ(p) ⊗ yl ⊗ yσ(j)) is replaced with m(yσ(p)ylyσ(j)) and thereby ξw with
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1 � w � L come into play. It remains to count the scalars and describe the weight
function.

Suppose that j < p. Then

2
m!

3!c2,3(j, p) =
3!
m!

Ψ(j, p)

and thereby Ψ(j, p) = 2c2,3(j, p). Analogously, Ψ(p, j) = 2c3,2(j, p). �
Theorem 3.5. For F ∈ Sm(g)g with m � 4, the symmetrisation �(F )[−1] is an element of the
Feigin–Frenkel centre if and only if m(F ) = 0.

Proof. According to [Ryb08], �(F )[−1] ∈ z(ĝ) if and only if it commutes with H[−1]. In view
of Lemma 3.1, this is the case if and only if XF [−1] = 0. Lemma 3.2 describes this element.
It states that c2,3(j, p), c3,2(j, p) � 0 and c2,3(j, p) < 0 if p � ǰ as well as c3,2(j, p) < 0 if p̌ � j.
Since �(F )[−1] is fully symmetrised, we can use Proposition 3.4. It immediately implies that if
m(F ) = 0, then XF [−1] = 0.

Suppose that m(F ) �= 0. Write m(F ) =
∑L

w=1 ξw ⊗Rw with ξw ∈ Λ2g and linearly indepen-
dent Rw ∈ Sm−3(g). If ξ ∈ Λ2g is non-zero, then there are i, j such that (ξ(xi), xj) �= 0.

Set c = 2
∑

j<p(c2,3(j, p) + c3,2(j, p)). According to Lemma 3.2, c < 0. Hence

m!
(m− 3)!

c

w=L∑
w=1

∑
i,j

(ξw(xi), xj)xi[−2]xj [−3]Rw[−1]

is a non-zero element of S(ĝ−). In view of the same lemma, this expression is equal to gr(XF [−1]).
Thus XF [−1] �= 0. This completes the proof. �
Remark. If g is simple, then gg is equal to zero and S2(g)g is spanned by H =

∑
i x

2
i . By our con-

vention, m(Sm(g)) = 0 if m � 2. Furthermore, m(S3(g)g) ⊂ (Λ2g)g = 0. Therefore Theorem 3.5
holds for m � 3 as well.

We will be using weighted shuffles �wt of Poisson half-brackets. If Y = ŷ1 . . . ŷm ∈ S(ĝ−),
then

�wt(Y, b1, b2) :=
j=m,i=dim g∑

j=1,i=1

�wt(Y/ŷj ⊗ xi[b1] ⊗ [xi[b2], ŷj ]). (3.5)

Strictly speaking, here �wt is a linear map from Sm(ĝ−) in U(ĝ−) depending on (b1, b2) and the
choice of a weight function Ψ. The absence of wt in the lower index indicates that we are taking
the usual symmetrisation.

3.2 Iterated shuffling
Another general fact about Lie algebras q will be needed. Suppose that Y = y1 . . . ym ∈ Sm(q)
and x ∈ q. Write Y = (1/m)

∑
1�j�m yj ⊗ Y (j) with Y (j) = Y/yj . Then∑

1�j�m

[x, yj ]Y (j) = {x, Y }. (3.6)

Proposition 3.6. Let F[ˇ̄a] = �(F [ā]) ∈ U(ĝ−) be a fully symmetrised element corresponding to
a polynomial F ∈ Sm(g) and a vector ā = (a1, . . . , am) ∈ Zm

<0. Suppose that m2r+1(F ) ∈ Sm−2r(g)
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for all m/2 > r � 1. Then:

(i) XF [ā] = [H[b̄],F[ˇ̄a]] −�({H[b̄], F [ā]}) is a sum of weighted symmetrisations

�wt(m(F )[āl,j ], b1 + al, b2 + aj), �wt(m(F )[āl,j ], b2 + al, b1 + aj),

where l �= j and āl,j is obtained from ā by removing al and aj ;
(ii) for every weight function Ψ, there is a constant c ∈ Q, which is independent of F , such that

PF [ā] = �wt(F [ā], b1, b2) − c�(F [ā], b1, b2) is a sum of �wt(m(F )[ā(1)], bυ + γυ, bν + γν) with

different weight functions, whereby ā(1) is a subvector of ā with m− 2 entries and γ̄ ∈ Z2
<0

is constructed from the complement ā\ā(1) of ā(1);
(iii) XF [a] = [H[b1, b2],F[ˇ̄a]] is a sum of

C(ā(r), γ̄)�(m2r+1(F )[ā(r)], bυ + γυ, bν + γν),

where 0 � r < m/2, ā(r) is a subvector of ā with m− 2r entries, γ̄ ∈ Z2
<0 is constructed

from ā\ā(r), and the coefficients C(ā(r), γ̄) ∈ Q are independent of F .

Proof. Since we are working with a fully symmetrised element, Proposition 3.4 applies. In the
same notation, write m(F ) =

∑L
w=1 ξw ⊗Rw. By our assumptions, m(F ) ∈ Sm−2(g). In particu-

lar, ξw ∈ g for each w. Observe that∑
i,j

(ξw(xi), xj)xi[bυ]xj [bν ] =
∑
i,j

xi[bυ]([ξw, xi], xj)xj [bν ] =
∑

i

xi[bν ][ξw, xi[bυ]].

Thereby part (i) follows from Proposition 3.4 in view of (3.6).
(ii) Note that ω(PF [ā]) = (−1)m+1PF [ā], because of the assumption (B) imposed on all

weight functions. By the construction, the image of �wt(F [ā], b1, b2) in Sm+1(ĝ−) is equal to
c
∑

i{xi[b2], F [ā]}xi[b1] for some c ∈ Q. This constant c depends only on the weight function Ψ.
For this c, we have deg gr(PF [ā]) � m.

The element PF [ā] is a linear combination of products, where each product contains m+ 1
linear factors. Let us symmetrise the summands of PF [ā] by changing the sequence of factors
in them. Note that there is no need to commute factors ŷj = yj [aσ(j)] and ŷl = yl[aσ(l)], since

PF [ā] is symmetric in the ŷp. There is no sense in commuting x̂
(1)
i and x̂

(2)
i either. After this

symmetrisation all products of m+ 1 factors annihilate each other and PF [ā] becomes a linear
combination of products containing m factors. Now we symmetrise these new products. Because
of the antipode symmetry, they disappear after the symmetrisation and now PF [ā] is a linear
combination of products containing m− 1 factors. Furthermore, each non-zero summand must
contain certain factors according to one of the types listed below:

(1) [x̂(ν)
i , yj ] and [[x̂(υ)

i , ŷl], ŷp];
(2) [ŷp, [ŷl, [ŷj , x̂

(υ)
i ]]] = ad(yp)ad(yl)ad(yj)(xi[bυ + aσ(p) + aσ(l) + aσ(j)]) and x̂(ν)

i ;

(3) [[ŷp, x̂
(υ)
i ], [ŷl, x̂

(ν)
i ]] = [[yp, xi], [yl, xi]][aσ(p) + aσ(l) + b1 + b2];

(4) [ŷp, [x̂
(υ)
i , [x̂(ν)

i , ŷj ]]];
(5) [x̂(υ)

i , [ŷp, [ŷj , x̂
(ν)
i ]]] = [[x̂(υ)

i , ŷp], [ŷj , x̂
(ν)
i ]] − [ŷp, [x̂

(υ)
i , [x̂(ν)

i , ŷj ]]].

The terms of type (4) disappear if we add over all i and permute p and j, because of the properties
of H[b̄], cf. (3.3). The terms of type (3) disappear if we permute l and p. Therefore the terms of
type (5) disappear as well.

One can deal with the terms of types (1) and (2) in the same way as in Lemma 3.2
and Proposition 3.4. They lead to γ = (aj , al) and γ = (aj + al, 0) as well as γ = (0, aj + al).
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Note that the commutators of type (2) are easier to understand, since there is no need to
permute the t-degrees, and at the same time they give rise to half-brackets.

(iii) We are presenting XF [ā] in the form (0.1) and can state at once that it has terms of
degrees m+ 1 − 2d only. Note that [H[b̄],F[ˇ̄a]] can be viewed as a weighted symmetrisation
�wt(F [ā], b1, b2) if we choose Ψ(j, j + 1) = Ψ(j + 1, j) = 1 and Ψ(j, l) = 0 in the case |l − j| > 1.
The term of degree m+ 1 is the Poisson bracket {H[b̄], F [ā]}. Here r = 0 and γ̄ = 0. In degree
m− 1, we obtain images in Sm−1(ĝ−) of the weighted symmetrisations described in part (i).
Further terms, which are of degrees m− 3,m− 5,m− 7, and so on, are described by the iterated
application of part (ii). At all steps, we obtain combinatorially defined rational coefficients, which
are independent of F . �
Example 3.7. Suppose that F ∈ S4(g)g and that g is simple. Here we have m(F ) ∈ (Λ2g ⊗ g)g and
dim(Λ2g ⊗ g)g = 1. This subspace is spanned by H =

∑
x2

i . Hence m(F ) = H up to a scalar. As
we will proof in § 3.3, S = �(F [−1]) + 6�(τ2m(F )[−1])·1 is a Segal–Sugawara vector. Making
use of the fact that τ2(H[−1]) ∈ z(ĝ), one can write S as a sum �(F [−1]) +BH[−2] for some
scalar B ∈ C.

The only possible vector γ̄ that can appear in Proposition 3.6(iii) is (−1,−1). Therefore
the commutator [H[−1], �(F [−1])] is equal to B�({H[−2],H[−1]}) = B[H[−2],H[−1]]. In the
orthonormal basis {xi}, we have

{H[−2],H[−1]} = 4
∑
i,j,s

([xi, xj ], xs)xs[−3]xi[−2]xj [−1]. (3.7)

3.3 Poisson (half-)brackets
Suppose that Ŷ = ŷ1 . . . ŷm ∈ Sm(ĝ−) and ŷj = yj [aj ]. Then PŶ := {H[b̄], Ŷ } = PŶ (b1, b2) +
PŶ (b2, b1), where

PŶ (bυ, bν) =
j=m,i=dim g∑

j=1,i=1

[xi[bν ], ŷj ]xi[bυ]Ŷ /ŷj =
∑
j,i,u

([xu, xi], yj)xu[bν + aj ]xi[bυ]Ŷ /ŷj .

Note that in the case bν + aj = bυ, each summand ([xu, xi], yj)xu[bν + aj ]xi[bυ]Ŷ /ŷj is annihi-
lated by ([xi, xu], yj)xi[bν + aj ]xu[bυ]Ŷ /ŷj . Hence

PŶ (b1, b2) =
∑

j: aj �=b1−b2

∑
i,u

([xi, xu], yj)xi[b2 + aj ]xu[b1]Ŷ /ŷj . (3.8)

The product ( , ) extends to a non-degenerate g-invariant scalar product on S(ĝ−). We will
assume that (g[a], g[d]) = 0 for a �= d, that (x[a], y[a]) = (x, y) for x, y ∈ g, and that

(ξ1 . . . ξk, η1 . . . ηm) = δk,m

∑
σ∈Sk

(ξ1, ησ(1)) . . . (ξk, ησ(k))

if ξj , ηj ∈ S(ĝ−), m � k. Let B be a monomial basis of S(ĝ−) consisting of the elements v̂1 . . . v̂k,
where v̂j = vj [dj ] and vj ∈ {xi}. Then B is an orthogonal, but not an orthonormal basis. For
instance, if Ξ = xγ1

1 . . . xγk
k with k � dim g, then (Ξ,Ξ) = γ1! . . . γk!.

Set M := m+ 1, B(M) := B ∩ SM (ĝ−), and write

PŶ (b1, b2) =
∑

V∈B(M)

A(V)V withA(V) ∈ C,

expressing each Ŷ /ŷj in the basis B.
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Lemma 3.8. If A(V) �= 0 and V = v̂1 . . . v̂M , then p := {p | dp = b1} �= ∅. Furthermore,

A(V) =
∑

p∈p,l �∈p

(V,V)−1

(
Ŷ ,

V

v̂lv̂p
[vl, vp][dl − b2]

)
. (3.9)

Proof. The first statement is clear, cf. (3.8). It remains to calculate the coefficient of V in
PŶ (b1, b2). Pick a pair (p, l) with p ∈ p and l �∈ p. If we take into account only those sum-
mands of PŶ (b1, b2), where Vp,l = V/(v̂pv̂l) is a summand of Ŷ /ŷj for some j, the factor v̂l is
xu[aj + b2], and v̂p appears as xi[b1], then the coefficient is

m∑
j=1

(ŷj , [vl, vp][dl − b2])(Ŷ /ŷj ,V
p,l)(Vp,l,Vp,l)−1 = (Vp,l,Vp,l)−1(Ŷ ,Vp,l[vl, vp][dl − b2]).

If one adds these expressions over the pairs (p, l), then certain instances may be counted more
than once. If v̂p = v̂p′ for some p′ �= p or v̂l = v̂l′ for some l′ �= l, then (p, l′) or (p′, l) has to be
omitted from the summation. In other words, it is necessary to divide the contribution of (p, l)
by the multiplicities γp and γl of vp[dp], vl[dl] in V. Since (V,V) = γpγl(Vp,l,Vp,l), the result
follows. �

The Poisson bracket PŶ is not multi-homogeneous with respect to ĝ− =
⊕

d�−1 g[d]. If b1 �=
b2, then in general the ‘halves’ of PŶ have different multi-degrees and neither of them has to be
multi-homogeneous. We need to split PŶ (b1, b2) into smaller pieces. For ā ∈ Zm

<0, set Sā(ĝ−) =∏m
j=1 g[aj ] ⊂ S(ĝ−).

Let ᾱ = {αr1
1 , . . . , α

rs
s } be a multi-set such that αi �= αj for i �= j, αj ∈ Z<0 for all 1 � j � s,∑s

j=1 rj = M , and rj > 0 for all j. Set Sᾱ(ĝ−) :=
∏s

j=1 Srj (g[αj ]), B(ᾱ) := B ∩ Sᾱ(ĝ−). Fix dif-
ferent i, j ∈ {1, . . . , s}. Assume that a monomial V = v̂1 . . . v̂M ∈ B(ᾱ) with v̂l = vl[dl] is written
in such a way that dl = αi for 1 � l � ri and dl = αj for ri < l � ri + rj . Finally suppose that
F ∈ Sm(g). In this notation, set

W[F, ᾱ, (i, j)] :=
∑

V∈B(ᾱ)

A(V)V with

A(v̂1 . . . v̂M ) = (V,V)−1
∑

1�l�ri,
ri<p�ri+rj

(
F, [vl, vp]

∏
u �=p,l

vu

)
. (3.10)

Clearly, W[F, ᾱ, (j, i)] = −W[F, ᾱ, (i, j)].

Proposition 3.9. Let F ∈ Sm(g)g be fixed. Then the elements W[ᾱ, (i, j)] = W[F, ᾱ, (i, j)]
satisfy the following ‘universal’ relations:∑

j:j �=i

W[ᾱ, (i, j)] = 0 for each i � s.

These relations are independent of F .

Proof. Follow the notation of (3.10). Note that for each 1 � l � ri,(
F,

∑
w: w �=l

[vl, vw]
∏

u: u �=l,w

vu

)
=

(
{F, vl},

∏
w: w �=l

vw

)
= 0.
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Of course, here we are adding also over the pairs (l, w) with v̂w ∈ g[αi] if ri > 1. However,
[vl, vw] = −[vw, vl] and hence the coefficient of V in

∑
j �=i W[ᾱ, (i, j)] is equal to

(V,V)−1
∑

1�l�ri

(
F,

∑
w: w �=l

[vl, vw]
∏

u: u �=l,w

vu

)
=

∑
1�l�ri

0 = 0.

This completes the proof. �
Proposition 3.10. For Y [ā] with Y = y1. . .ym ∈ Sm(g) and ā ∈ Zm

<0 (see § 1.5 for the notation),
the rescaled Poisson half-bracket

P [ā] := |Smā|PY [ā](b1, b2) = |Smā|
∑

u

{xu[b2], Y [ā]}xu[b1]

is equal to the sum of W[Y, ᾱ, (i, j)] with i < j over all multi-sets ᾱ as above such that the multi-
set {a1, . . . , am} of entries of ā can be obtained from ᾱ by removing one αj = b1 and replacing
one αi with αi − b2.

Proof. For each multi-homogeneous component of P [ā], the multi-set of t-degrees is obtained
from the entries of ā by appending b1 and replacing one al with al + b2. Moreover, here b1 �=
al + b2, cf. (3.8). This explains the restrictions on ᾱ.

For ᾱ and (i, j) satisfying the assumptions of the proposition, we have to compare the coef-
ficients A(V) of V ∈ B(ᾱ) given by (3.10) and (3.9). The key point here is the observation that
(Y [ā],V) = |Smā|−1(Y, v1 . . . vm) for any V = v̂1 . . . v̂m ∈ B ∩ Sā(ĝ−).

In a more relevant setup, suppose that a summand (yσ(1), [vl, vp])
∏

w �=1,u �=l,p(yσ(w), vu) of the
scalar product on the right hand side of (3.10) is non-zero for some σ ∈ Sm and some l, p. Then
there is exactly one choice, prescribed by (d1, . . . , dM ), of the t-degrees for a monomial of Y [ā]
such that the corresponding summand

(yσ(1)[αi − b2], [vl, vp][dl − b2])
∏

w �=1,u �=l,p

(yσ(w)[du], v̂u)

of the scalar product on the right hand side of (3.9) is non-zero as well. By our assumptions on
the scalar product, these summands are equal. �
Theorem 3.11. Suppose that m2r+1(H) with H ∈ Sk(g)g is a symmetric invariant for each
r � 1. Then (2.4) provides a Segal–Sugawara vector S associated with H.

Proof. Since m2l+1(H) ∈ S(g) for any l, we can say that m2r+1(H) = mr(H), cf. (1.1). By
Lemma 2.2, each �(τ2rmr(H)[−1])·1 is a fully symmetrised element. It can be written as a
sum of c̃(r, ā)�(mr(H)[ā]), where ā ∈ Zk−2r

<0 and the coefficients c̃(r, ā) ∈ Q depend only on k,
r, and ā. The coefficients of (2.4) depend only on k and r. Combining this observation with
Propositions 3.6(iii) and 3.10, we obtain that

[H[−1], S] =
∑

C(r, ᾱ, i, j)�(W[m2r+1(H), αr1
1 , . . . , α

rs
d , (i, j)]) ,

where again the coefficients C(r, ᾱ, i, j) ∈ Q do not depend on H. For a given degree k, one
obtains a bunch of (r, ᾱ), which depends only on k, and each appearing coefficient depends on k,
r, ᾱ, and (i, j). In type A, for each k � 2, we find the invariant Δ̃k such that the corresponding
commutator [H[−1], S̃k−1] vanishes, cf. (2.4).

For each F ∈ Sm(g)g, the elements W[F, ᾱ, (i, j)] are linearly dependent. They satisfy the
‘universal’ relations, see Proposition 3.9. At the same time, for m = k − 2r, the coefficients
C(r, ᾱ, i, j) provide a relation among W[Δ̃m, ᾱ, (i, j)]. Our goal is to prove that this rela-
tion holds for W[mr(H), ᾱ, (i, j)] as well. To this end, it suffices to show that the terms
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W[Δ̃m, ᾱ, (i, j)] = W[(i, j)] with fixed m and fixed ᾱ do not satisfy any other linear relation,
not spanned by the ‘universal’ ones.

We consider the complete simple graph with s vertices 1, . . . , s and identify pairs (i, j) with
the corresponding (oriented) edges. Now one can say that a linear relation among the polynomials
W[(i, j)] is given by its coefficients on the edges. Note that if s = 2, then W[F, ᾱ, (1, 2)] = 0 for
each F ∈ Sm(g)g, cf. Example 3.12(i) below. Therefore assume that s � 3.

Suppose there is a relation and that the coefficient of W[(i, j)] is non-zero. We work in the
basis

{Euv[d], (E11 + · · · + Eww − wE(w+1)(w+1))[d] | u �= v, d < 0}.

Choose ŷ1 = E12[αi], ŷ2 = E21[αj ] and let all other factors ŷl with 2 < l �M be elements of
t−1h[t−1]. Assume that ŷ3 = (E11 − E22)[αp] with p �= i, j and that (E11 − E22, yl) = 0 for all
l > 3. Then the monomial ŷ1 . . . ŷM appears with a non-zero coefficient only in W[(i, j)], W[(i, p)],
and W[(p, j)]. This means that in the triangle (i, j, p) at least one of the edges (i, p) and (j, p)
has a non-zero coefficient as well.

We erase all edges with zero coefficients on them. Now the task is to modify the relation or,
equivalently, the graph, by adding scalar multiplies of the universal relations in such a way that
all edges disappear.

If a vertex l is connected with j, remove the edge (j, l) using the universal relation ‘at l’. In
this way j becomes isolated. This means that there is no edge left. �
Example 3.12. Keep the assumption F ∈ Sm(g)g.

(i) Suppose that s = 2. Then W(F, ᾱ, (1, 2)) = 0 according to the universal relation. This
provides a different proof of Lemma 3.1.

Also in the case of ā = (−3, (−1)m−1), we have {H[−1], F [ā]} ∈ g[−3]g[−2]Sm−1(g[−1]).
(ii) Now suppose that s = 3. Then W(F, ᾱ, (1, 2)) = −W(F, ᾱ, (1, 3)) = W(F, ᾱ, (2, 3)).

4. Type C

There is a very suitable matrix realisation, where sp2n ⊂ gl2n is the linear span of the elements
Fij with i, j ∈ {1, . . . , 2n} such that

Fij = Eij − εi εj Ej′i′ , (4.1)

with i′ = 2n− i+ 1 and εi = 1 for i � n, εi = −1 for i > n. Of course, Fij =±Fj′i′ . Set

h=〈Fjj | 1 � j � n〉C.
The symmetric decomposition gl2n = sp2n ⊕ p leads to explicit formulas for symmetric invari-

ants of sp2n. One writes Eij = 1
2Fij + 1

2(Eij + εi εj Ej′i′), expands the coefficients Δk of (1.2)
accordingly, and then sets (Eij + εi εj Ej′i′) = 0. Up to the multiplication with 2k, this is equiv-
alent to replacing each Eij with Fij in the formulas for Δk ∈ S(gl2n). As is well known, the
restriction of Δ2k+1 to sp2n is equal to zero for each k.

Until the end of this section, Δ2k stands for the symmetric invariant of g = sp2n that is equal
to the sum of the principal (2k × 2k)-minors of the matrix (Fij).

Lemma 4.1. For each k � 2, we have m(Δ2k) ∈ (g ⊗ Sk−3(g))g.

Proof. Note that Λ2g = V (2π1 + π2) ⊕ g. In the standard notation [VO88, Ref. Chapter, § 2], we
have 2π1 + π2 = 3ε1 + ε2. Assume that y1y2y3 is a factor of a summand of Δ2k of weight 3ε1 + ε2
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and ys ∈ {Fij} for each s. Then:

• either F1(2n) ∈ {y1, y2, y3} and some yj �= F1(2n) lies in the first row or the last column;
• or all three elements ys must lie in the union of the first row and the last column.

Each of the two possibilities contradicts the definition of Δ2k. Thus, m(Δk) ∈ (g ⊗ S2k−3(g))g. �
Lemma 4.2. We have:

(i) m(Δ6) = ((n− 2)(2n− 3)/15)Δ4; and
(ii) m(∂F11Δ4) = −1

3 (2n− 1)(2n− 2)F11.

Proof. According to Lemma 4.1, m(Δ6) ∈ (g ⊗ S3(g))g. Observe that S3(g) contains exactly two
linearly independent copies of g: one is equal to {ξΔ2 | ξ ∈ sp2n}, the other is primitive. Therefore

(g ⊗ S3(g))g = S4(g)g = 〈Δ4,Δ2
2〉C.

By the construction, Δ2
2 contains the summand F 4

11. Since F 3
11 cannot be a factor of a summand

of Δ6, we conclude that m(Δ6) is proportional to Δ4.
Let y ⊗ F 2

11F22 be a summand of m(Δ6). Then y ∈ CF22. Also y = (−3!3!/6!)m(∂F22Δ
[1]
4 ),

where Δ[1]
4 ∈ S4(sp2n−2) stands for Δ4 of sp2n−2 ⊂ gF11 . Next we compute η = m(∂F22Δ

[1]
4 )(F12).

This will settle part (ii). So far we have shown that

�(∂F11Δ4) ∈ U(g) acts as cF11 on g and on C2n (4.2)

and part (ii) describes this constant c, which is to be computed.
Recall that F12 = −F(2n−1)2n. The terms of Δ[1]

4 have neither 1 nor 2n in the indices.

Therefore a non-zero action on F12 comes only from the following summands of Δ[1]
4 :

F22F(2n−1)jFjsFs(2n−1), −F22F(2n−1)sFs′s′Fs(2n−1), (4.3)

F(2n−1)(2n−1)Fj2FsjF2s, −F(2n−1)(2n−1)Fs2Fs′s′F2s. (4.4)

One easily computes that

m(F(2n−1)jFjsFs(2n−1))(F12) =

⎧⎨⎩
1
6F12 if j �= s′,

1
3F12 if j = s′, because Fs′s = 2Es′s,

and that m(F(2n−1)sFs′s′Fs(2n−1))(F12) = −1
6F12. There are 2n− 4 choices for s in line (4.3). If

s is fixed, then there are 2n− 5 possibilities for j, since j �= s, but the choice j = s′ has to be
counted twice. Applying the symmetry Fuv = ±Fv′u′ , we see that the terms in line (4.4) are the
same as in (4.3). Now

η =
1
3
((2n− 4)2 + (2n− 4))F12 =

(2n− 4)(2n− 3)
3

F12.

Hence y = ((n− 2)(2n− 3)/30)F22. Since ((n− 2)(2n− 3)/30)F11 ⊗ F11F
2
22 is also a summand

of m(Δ6), we obtain m(Δ6) = ((n− 2)(2n− 3)/15)Δ4. �
Proposition 4.3. We have

m2r+1(Δ2k) =
(2k − 2r)!(2r)!

(2k)!

(
2n− 2k + 2r + 1

2r

)
Δ2k−2r.

Proof. First we have to show that m(Δ2k) ∈ S2k−2(g). By Lemma 4.1, m(Δ2k) is a G-invariant
polynomial function on g ⊕ g. We use again the fact that G(g ⊕ h) is dense in g ⊕ g.
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Examine first the summands of Δ2k that lie in S3(g)S2k−3(h). Such a summand has the
form y1y2y3(Fi1i1 . . . Fisis)2Fj1j1 . . . Fjuju . Here ja �= jb, j

′
b if a �= b and the product y1y2y3 is an

element of weight zero lying in S3(f), where f is a subalgebra of g isomorphic either to sp6 or sp4.
Furthermore, the numbers ib, i′b with 1 � b � s do not appear among the indices of the elements
of f and at most three different numbers jb with 1 � b � u can appear among the indices of the
elements of f.

If u > 3, we can change at least one Fjbjb
to Fj′bj

′
b

= −Fjbjb
without altering the other

factors and produce a different summand of Δ2k. These two expressions annihilate each other.
Therefore u = 3 or u = 1. Suppose u = 3 and that there is no way to annihilate the term via
Fjbjb

�→ Fj′bj
′
b
. Then f ∼= sp6 and y1y2y3Fj1j1Fj2j2Fj3j3 is a summand of the determinant

Δ(f)
6 ∈ S6(f). Since m(Δ6) is proportional to Δ4 by Lemma 4.2 and Fj1j1Fj2j2Fj3j3 cannot appear

in Δ4, we conclude that terms y ⊗ (Fi1i1 . . . Fisis)2Fj1j1 . . . Fjuju with u > 1 do not appear in
m(Δ2k).

Fix an element H = F11F
2
22 . . . F

2
ll with l = k − 1. We compute the coefficient of H in m(Δ2k).

This coefficient is equal to (−1)k(3!(2k − 3)!/(2k)!)m(∂F11Δ
(l)
4 ), where Δ(l)

4 is Δ4 of the sp2n−2k+4-
subalgebra generated by Fij with i, j �∈ {2, 2′, . . . , l, l′}. According to Lemma 4.2, m(∂F11Δ

(l)
4 ) =

−1
3 (2n− 2k + 3)(2n− 2k + 2)F11. Making use of the action of the Weyl group W (g, h) on h ⊕ h,

we conclude that m(Δ2k) is proportional to Δ2k−2, more explicitly

m(Δ2k) =
2(k − 1)(2n− 2k + 3)(2n− 2k + 2)(2k − 3)!

(2k)!
Δ2k−2

and with some simplifications

m(Δ2k) =
(2n− 2k + 3)(2n− 2k + 2)

2k(2k − 1)
Δ2k−2 =

(
2k
2

)−1(2n− 2k + 3
2

)
Δ2k−2.

Iterating the map m, one obtains the result. �
Theorem 4.4. For g = sp2n and 1 � k � n,

Sk = �(Δ2k[−1]) +
∑

1�r<k

(
2n− 2k + 2r + 1

2r

)
�(τ2rΔ2k−2r[−1])·1

is a Segal–Sugawara vector.

5. Several exceptional examples

There are instances, where our methods work very well.

Example 5.1. Suppose that g = so8. Then Aut(g)/Inn(g) = S3, where Inn(g) is the group of inner
automorphisms. There are two Segal–Sugawara vectors, say S2 and S3, such that their symbols
are g-invariants of degree 4 in S(g[−1]). Assume that S2 and S3 are fixed vectors of ω. Then
each of them is a sum �(Y4) +�(Y2), cf. (0.1). Each element in S2(ĝ−)g is proportional to H[b̄]
for some b̄. Hence it is also an invariant of S3. Without loss of generality we may assume that
the symbols of S2 and S3 are Pfaffians Pf2[−1], Pf3[−1] related to different matrix realisations
of so8. Then for each of them there is an involution σ ∈ S3 such that σ(Y4) = −Y4. Replacing
Sj with Sj − σ(Sj), we see that S̃2 = �(Pf2[−1]) and S̃3 = �(Pf3[−1]) are also Segal–Sugawara
vectors. In view of Theorem 3.5, this implies that m(Pf2) = m(Pf3) = 0.

Automorphisms of g make themselves extremely useful. We will see the full power of this
devise in § 7, which deals with the orthogonal case. At the moment notice the following thing,
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any σ ∈ Aut(g) acts on S(g) in the natural way and induces a map σ(m) : Sm(g) → Sm(g).
Let vm ⊗ g be the isotypic component of Sm(g) corresponding to g. Then σ acts on vm and
for this action, we have σ(v) ⊗ σ(x) = σ(m)(v ⊗ x), where v ∈ vm, x ∈ g.

An interesting story is related to Pfaffians in higher ranks.

Example 5.2 (The Pfaffians). Take g = so2n. If n < 4, these algebras appear in type A. In the
case n = 4, the Pfaffian-like Segal–Sugawara vectors are examined in Example 5.1. Suppose
that n > 4 and that so2n ⊂ gl2n consists of the skew-symmetric with respect to the antidiagonal
matrices. The highest weight of the Cartan component of Λ2g is π1 + π3 = 2ε1 + ε2 + ε3. Assume
that π1 + π3 appears as the weight of a factor y1y2y3 for a summand y1 . . . yn of the Pfaffian Pf.
Then up to the change of indices, we must have

y1 = (E1i − Ei′1′), y2 = (E1j − Ej′1′),

where i′ = 2n+ 1 − i. If this is really the case, then the determinant Δ2n ∈ S2n(gl2n) has a
summand E1iE1j . . ., a contradiction.

Thus m(Pf) ∈ (g ⊗ Sn−3(g))g. If n is odd, then there is no copy of g in Sn−3(g) and we
conclude at once that the image of the Pfaffian under m is zero.

Suppose that n is even. Then we can rely on the fact that G(g ⊕ h) is dense in g ⊕ g.
Fix a factor H ∈ Sn−3(h) of a summand of Pf. Without loss of generality assume that
H =

∏
s>3(Ess − Es′s′). Let Pf(3) be the Pfaffian of the subalgebra spanned by

Eij − Ej′i′ , Eij′ − Eji′ , Ei′j − Ej′i with i, j � 3.

Since this subalgebra is isomorphic to so6
∼= sl4 write also Δ̃(4)

3 for Pf(3). By the construction,
(3!(n− 3)!/n!)m(Pf(3)) ⊗ H is a summand of m(Pf). For a Weyl involution θ of sl4, we have
θ(Δ̃(4)

3 ) = −Δ̃(4)
3 . Therefore �(Δ̃(4)

3 ) acts as zero on any irreducible self-dual sl4-module, in par-
ticular, on sl4 and on Λ2C4 = C6. Now we can conclude that m(Pf(3)) = 0 and hence m(Pf) = 0.
Thus �(Pf)[−1] is a Segal–Sugawara vector for each n.

Keep the assumption that n is even. Another way to see that m(Pf) = 0 is to use an outer
involution σ ∈ Aut(so2n) such that σ(Pf) = −Pf. Here σ(v) = −v for v ∈ vn−1 such that v ⊗ g

is the primitive copy of g that gives rise to Pf and also σ(m(Pf)) = −m(Pf). At the same time,
σ acts as id on vn−3. Therefore σ acts as id on (g ⊗ Sn−3(g))g. Since m(Pf) ∈ (g ⊗ Sn−3(g))g, it
must be zero.

Explicit formulas for the Pfaffian-type Segal–Sugawara vector PfF [−1] ∈ U(so2n[t−1]) are
given in [Mol13, Roz14]. In the basis {F ◦

ij = Eij − Eji | 1 � i < j � 2n} for so2n, the vector
PfF [−1] is written as a sum of monomials with pairwise commuting factors, see [Mol13]
and [Mol18, Equation (8.11)]. Hence it coincides with the symmetrisation of its sym-
bol, in our notation, PfF [−1] = �(Pf)[−1]. Example 5.2 provides a different proof for
[Mol18, Proposistion 8.4].

Another easy to understand instance is provided by the invariant of degree 5 in type E6.

Example 5.3. Suppose that g is a simple Lie algebra of type E6. Let H ∈ S(g)g be a homogeneous
invariant of degree 5. Then m(H) ∈ (Λ2g ⊗ S2(g))g. Here Λ2g = V (π3) ⊕ g and S2(g) = V (2π6) ⊕
V (π1 + π5) ⊕ C. Therefore m(H) = 0.

Recall that we are considering only semisimple g now and that ( , ) is fixed in such a way
that H ∈ U(g) acts on g as Cidg for some C ∈ C.

Lemma 5.4. There is c1 ∈ C depending on the scalar product ( , ) such that
∑

i xi[ξ, xi] = c1ξ
in U(g) for any ξ ∈ g. Furthermore, H(ξ) =

∑
i ad(xi)2(ξ) = −2c1ξ, i.e. C = −2c1.
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Proof. For each ξ ∈ g, set ψ1(ξ) =
∑

i xi[ξ, xi] =
∑

i xiξxi − Hξ. Since [H, ξ] = 0, we have then
ω(ψ1(ξ)) = −ψ1(ξ). Note that

ψ1(ξ) =
∑

i

[xi, [ξ, xi]] +
∑

i

[ξ, xi]xi = −H(ξ) + ω(ψ1(ξ)) = −H(ξ) − ψ1(ξ).

Thereby 2ψ1(ξ) = −H(ξ) = −Cξ. �
Lemma 5.5. Let g be a simple Lie algebra of rank at least 2. Then m(H3) �∈ g ⊗ S3(g).

Proof. Choose an orthogonal basis of h such that at least one element in it is equal to hα for a
simple root α. If the root system of g is not simply laced, suppose that α is a long root. Suppose
further that either α = α1 or α = α�. Changing the scalar product if necessary, we may assume
that hα ∈ {xi}. Consider the summand ξ ⊗ h3

α of m(H3). We have

ξ =
3!3!
6!

(6m(hαH) + 8m(h3
α)).

Set ξ0 = m(hαH). Note that hαH ∈ U(g) acts on g as a scalar multiple of ad(hα). In view of
Lemma 5.4, the sum

∑
i xihαxi acts on g as another multiple of ad(hα). Hence ξ0 ∈ g.

It remains to show that η = ad(hα)3 is not an element of g ⊂ so(g). Let α′ be the unique
simple root not orthogonal to α. Observe that η(eα) = 8eα and η(eα′) = −eα′ . Set γ = α+ α′.
Then eγ �= 0 and η(eγ) = eγ . Since 1 �= 8 − 1, we conclude that indeed η �∈ g. �
Proposition 5.6. Let g be an exceptional simple Lie algebra. Suppose that H ∈ S6(g)g. Then
there is b ∈ C such that m(H − bH3) ∈ CH2 ⊂ S4(g).

Proof. Let V be the Cartan component of Λ2g. A straightforward calculation shows that
V appears in S3(g) with multiplicity one as in the following table.

Type The highest weight of V S3(g)

E6 π3 V (3π6) ⊕ V (π1 + π5 + π6) ⊕ V (π3) ⊕ V (π1 + π5) ⊕ g

E7 π5 V (3π5) ⊕ V (π2 + π6) ⊕ V (π5) ⊕ V (2π1) ⊕ g

E8 π2 V (3π1) ⊕ V (π1 + π7) ⊕ V (π2) ⊕ g

F4 π3 V (3π4) ⊕ V (2π1 + π4) ⊕ V (π3) ⊕ V (π2) ⊕ g

G2 3π1 V (3π1) ⊕ V (2π1 + π2) ⊕ V (3π2) ⊕ V (π1) ⊕ g

We have m(H) ∈ (V ⊗ S3(g))g ⊕ (g ⊗ S3(g))g. The first summand here is one-dimensional.
Since m(H3) �∈ g ⊗ S3(g) by Lemma 5.5, there is b ∈ C such that m(H̃) ∈ g ⊗ S3(g) for
H̃ = H − bH3.

The degrees of basic symmetric invariants {Hk | 1 � k � l} indicate that S3(g) contains
exactly one copy of g. (This is also apparent in the table above.) Hence (g ⊗ S3(g))g =
S4(g)g = CH2. �
Corollary 5.7. Keep the assumption that g is exceptional. Then H̃ = H − bH3 of
Proposition 5.6 satisfies (0.2) and there are R(1), R(2) ∈ C such that

S2 = �(H̃)[−1] +R(1)�(τ2H2[−1])·1 +R(2)�(τ4H[−1])·1 (5.1)

is an element of z(ĝ).

Proof. The first statement follows from Proposition 5.6 and Example 3.7. More explicitly,
m(H̃) ∈ CH2, since there is no other symmetric invariant of degree four. Now the existence
of R(1) and R(2) follows from Theorem 3.11. �
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6. Type G2

Let g be a simple Lie algebra of type G2. Then � = 2. The algebra S(g)g has two generators,
H and Δ6 ∈ S6(g). In this section, we compute the constant b of Proposition 5.6 for H = Δ6 and
R(1), R(2) of (5.1). All our computations are done by hand. A computer-aided explicit formula
for a Segal–Sugawara vector of t-degree 6 is obtained in [MRR16].

First we choose a matrix realisation of g ⊂ so7. The embedding ι : sl3 → so7 is fixed by

ι(Eij) = Eij − E(7−j)(7−i)

for i �= j. We choose a basis of h ⊂ sl3 as {h1, h2} with h1 = diag(1,−1, 0), h2 = diag(1, 1,−2)
and extend it to a basis of sl3 by adding ei, fi with 1 � i � 3 in the semi-standard notation, e.g.
e3 = E13, f1 = E21, f3 = E31. Let εi ∈ h∗ with 1 � i � 3 be the same as in § 2. Now it remains
to describe the complement of sl3 = (so6 ∩ g), which is isomorphic to C3 ⊕ (C3)∗.

Matrix (6.1) presents an element of C3 ⊕ (C3)∗ ⊂ so7:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β γ 0
√

2a
α 0 −γ √

2b
0 −α β

√
2c

b −a 0
√

2γ
−c 0 a

√
2β

0 c −b √
2α

−√
2α −√

2β −√
2γ −√

2c −√
2b −√

2a 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.1)

With a certain abuse of notation, we denote the elements of the corresponding basis by the same
symbols, for instance,

a =
√

2E17 − E42 + E53 −
√

2E76

as a vector of C3.
The scalar product ( , ) is such that H = Δ2 with

Δ2 = 2e1f1 + 2e2f2 + 2e3f3 + 1
2h

2
1 + 1

6h
2
2 − 2

3(aα+ bβ + cγ).

The basic invariant of degree 6, Δ6, is chosen as the restriction to g of the coefficient Δ(7)
6 of

degree 6 in (1.2) written for gl7. In this case, the restriction of Δ6 to sl3 is equal to −Δ̃2
3, where

Δ̃3 is the determinant of sl3. For future use, we record

[a, α] = diag(−2, 1, 1) ∈ sl3, [b, β] = diag(1,−2, 1) ∈ sl3, [c, γ] = h2,

[α, c] = 3f3, [β, c] = 3f2, [a, b] = −2γ, [γ, β] = 2a, [b, c] = −2α, [β, a] = 3e1.

The decomposition g = (C3)∗ ⊕ g ⊕ C3 is a Z/3Z-grading induced by an (inner) automor-
phism σ of g. Note that our basis for g consists of eigenvectors of σ.

Recall that S2 is given by (5.1) and that we are computing the constants occurring there.
There is an easy part of the calculation. It concerns the projection of m(Δ3

2) on (V ⊗ S3(g))g.
As we already know, the highest weight of V is 3π1. Next choose a monomial of weight 3π1, for
instance, e23f1.

Lemma 6.1. Let ξ ⊗ e23f1 be a summand of m(Δ3
2). Then ξ(e3) = 6

5f2.

Proof. Observe that in Δ3
2, the factor e23f1 appears only in the summand 24e23f

2
3 e1f1. By the

construction, we have

ξ =
24 × 3! × 3!

6!
m(f2

3 e1) =
6
5
m(f2

3 e1).
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Note that [e1, e3] = 0. Hence

5
6ξ(e3) = 1

6(2ad(e1)ad(f3)2 + 2ad(f3)ad(e1)ad(f3))(e3)

= 1
6(−2ad(f2)ad(f3) − 4ad(f3)ad(f2))(e3) = −[f2, [f3, e3]] = f2

and the result follows. �
In the above computation, we did not see the projection of m(Δ3

2) on (g ⊗ S3(g))g, which
is equally important. Set h3 = [e3, f3]. Note that {f3, h3, e3} is an sl2-triple associated with the
highest root of g. In the following lemma, sl2 means 〈f3, h3, e3〉C.

Lemma 6.2. Let η ⊗ e23f3 be a summand of m(Δ3
2). Then η acts as 48

5 ad(f3) on 〈e3, f3, h3〉C and
as 42

5 ad(f3) on the 11-dimensional sl2-stable complement of this subspace.

Proof. In this case, one has to pay a special attention to the summand 8e33f
3
3 of Δ3

2. In the product
(e3f3)(e3f3)(e3f3), there are six choices of (e3, e3, f3) such that f3 and one of the elements e3
belong to one and the same copy of Δ2; there are also three other choices. These first six choices
are absorbed in (3!3!/6!)24m(f3Δ2). Note that (3! × 3! × 24)/6! = 6

5 . The contribution to η of
the three other choices is (3!3!/6!)24m(e3f2

3 ). Hence η = 6
5(m(f3Δ2) + m(e3f2

3 )).
The element �(Δ2) ∈ U(g) acts on g as a scalar. That scalar is 8 in our case. According

to Lemma 5.4, the sum
∑

i xif3xi ∈ U(g) is equal to Hf3 − 4f3. Thus, m(f3Δ2) = (8 − 4
3)ad(f3)

and 6
5m(f3Δ2) = 8ad(f3).

Now consider η0 = (e3f2
3 + f2

3 e3 + f3e3f3) ∈ U(sl2). Clearly, η0 acts as zero on a trivial
sl2-module; for the defining representation on C2 = 〈v1, v2〉C with e3v1 = 0, one obtains η0(v1) =
v2 and η0(v2) = 0. This suffices to state that 6

5m(e3f2
3 ) acts as 2

5ad(f3) on the sl2-stable com-
plement of 〈f3, h3, e3〉C. Finally, η0(f3) = 0 by the obvious reasons, η0(e3) = −2h3 − 2h3 =
4ad(f3)(e3) and η0(h3) = 4ad(f3)(h3) as well, since η0 acts on g as an element of so(g). All
computations are done now and the proof is finished. �

Let pr : so7 → g be the orthogonal projection. In order to work with Δ6, one needs to compute
the images under pr of Fij = Eij − E(8−j)(8−i) ∈ so7. For the elements of gl3 ⊂ so6, this is easy,
the task reduces to Fii with 1 � i � 3, where we have

pr(F11) = 1
6(3h1 + h2), pr(F22) = 1

6(−3h1 + h2), pr(F33) = −1
3 h2.

The elements of Fij ∈ so6 with 1 � i � 3, 4 � j � 6 project with the coefficient 1
3 on the corre-

sponding letters in (6.1), e.g, pr(F14) = −1
3 β, pr(F15) = 1

3γ, and so on. The elements Fi7 project
with the coefficient

√
2

3 on the corresponding letters, e.g, pr(F17) =
√

2
3 a. Finally, the elements F7i

project with the coefficient −√
2

3 on the corresponding letters, e.g, pr(F71) = −√
2

3 α. An explicit
formula for Δ6 can be obtained by replacing first Eij with Fij in Δ(7)

6 ∈ S6(gl7) and then replacing
Fij with pr(Fij). We write down some of the terms of Δ6:

Δ6 = −Δ̃2
3 − 4

27c
3e23f1 − 4

9cβf3e
2
3f1 + 2

3cαf2e
2
3f1 + 1

9cαh1f3e
2
3 − 1

27cαh2f3e
2
3

− 4
9bαf2f3e

2
3 + · · · .

With this knowledge we can attack the computation of m(Δ6). The first challenge is to
understand the term ξ̃ ⊗ e23f1.

Lemma 6.3. For ξ̃ as above, we have ξ̃(e3) = 5
18f2.
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Proof. Once again, we rely on a direct computation. The terms of Δ̃3 containing e3 as a factor
are e3f1f2 and e3f3(1

2h1 − 1
6h2). Thereby the contribution of −Δ̃2

3 to ξ̃ is
1
20m

(−2f1f
2
2 − 2f2f3

(
1
2h1 − 1

6h2

))
and this element of End(g) maps e3 to 3

20f2.
Since σ(Δ6) = Δ6, the summands of Δ6 that contain e23f1 as a factor are of tri-degrees (3, 3, 0)

or (1, 4, 1) with respect to the Z/3Z-grading g = (C3)∗ ⊕ sl3 ⊕ C3. By the weight considerations,
the first possibility occurs only for the monomial c3e23f1. Record that

ad(c)3(e3) = ad(c)2(−a) = [c, 2β] = −6f2.

The coefficient of c3e23f1 in Δ6 is equal to −4
27 . The monomials of the tri-degree (1, 4, 1) are

cβf3e
2
3f1 and cαf2e

2
3f1. Their coefficients are −4

9 and 2
3 , respectively.

Next

m(cβf3)(e3) = 1
6(ad([β, c])ad(f3) + 2ad(f3)ad([β, c]))(e3) = 3

2ad(f2)ad(f3)(e3) = −3
2f2

and

m(cαf2)(e3) = 1
2(ad(f2)ad(c)ad(α) + ad(f2)ad(α)ad(c))(e3) = 1

2 [diag(1,−2, 1), f2] = 3
2f2.

Summing up, we have

ξ̃(e3) = 1
20

(
3 + 8

9 + 2
3 + 1

)
f2 = 1

20

(
5 + 5

9

)
f2 = 1

4

(
1 + 1

9

)
f2 = 5

18f2,

and we are done. �
Corollary 6.4. We have b = 25

108 and the invariant H̃ of Proposition 5.6 is equal to
Δ6 − 25

108Δ3
2.

Proof. By the definition of b, we must have (ξ̃ − bξ)(e3) = 0. From Lemmas 6.1 and 6.3 we obtain
that b = 5

18 × 5
6 = 25

108 . �
Next we deal with η̃ for the summand η̃ ⊗ e23f3 of m(Δ6).

Lemma 6.5. For η̃ as above, we have

η̃(a) = 1
20

(−2
9 − 28

9 − 4
3 + 2

9

)
ad(f3)(a) = −2

9 ad(f3)(a)

and

η̃(h3) = 1
20

(
1
3 + 8

27 + 4
9 + 1

27

)
ad(f3)(h3) = 10

9×20ad(f3)(h3) = 1
18ad(f3)(h3).

Proof. We go through the relevant summands of Δ6. In −Δ̃2
3, these are −1

36 e
2
3f

2
3 (3h1 − h2)2 and

−1
3 e

2
3f1f2f3(3h1 − h2). The corresponding contributions to η̃ are

−1
18 m(f3(3h1 − h2)2) and −1

3 m(f1f2(3h1 − h2))

multiplied by 1
20 . We are going to keep the factor 1

20 in the background. Note that m(f3(3h1 −
h2)2) acts on a as 4ad(f3), and hence we add −2

9 . Since 2 − 4 + 2 = 0, the second of the above
elements acts on a as zero. If we consider the action on h3 instead, then the contribution of the
first term is zero and m(f1f2(3h1 − h2)) acts as ad([f1, f2]) = −ad(f3).

On account of σ, the other relevant terms have tri-degrees (3, 3, 0), (0, 3, 3), (1, 4, 1), where
the former two possibilities occur for 4

27c
2be23f3 and 4

27α
2βe23f3. Here

m(c2b)(h3) = 1
3(ad(b)ad(c)ad(c) + ad(c)ad(b)ad(c))(h3)

= 1
3(−2ad(α)ad(c) − 4ad(c)ad(α))(h3) = (−2ad(f3) − 2ad(c)ad(α))(h3).
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Since [α, h3] = α and [c, α] = −3f3, the contribution in question is 4
27ad(f3). Similarly,

m(α2β)(h3) = 1
3(ad(β)ad(α)ad(α) + ad(α)ad(β)ad(α))(h3)

= 1
3(2ad(c)ad(α) + 4ad(α)ad(c))(h3) = (2ad(α)ad(c) − 2ad(f3))(h3).

Since [c, h3] = c, [α, c] = 3f3, we obtain again 4
27ad(f3). A slightly different story happens at a,

namely,

m(c2b)(a) = (−2ad(f3) − 2ad(c)ad(α) + ad(c)ad(c)ad(b))(a)

= (−2ad(f3) − 2ad(f3) + 4ad(f3))(a) = (−4 + 4)ad(f3)(a) = 0,

m(α2β)(a) = (2ad(α)ad(c) − 2ad(f3) + ad(α)ad(α)ad(β))(a)

= (8 − 2 − 6)ad(f3)(a) = 0.

Now consider the terms of the tri-degree (1, 4, 1). Let εi − εj be the weight of the fourth
element from sl3. Assume first that i �= j. Then ε3 − ε1 = (εi − εj) + εs − εl for some s and l.
One of the possibilities is i = 3, j = 1, and s = l. The other two come from the decomposition
ε1 − ε3 = (ε1 − ε2) + (ε2 − ε3).

In the case s = l, the relevant term is 4
9e

2
3f

2
3bβ and its contribution to η̃ is 8

9m(f3bβ). Since
both b and β commute with f3 and h3, we see that m(f3bβ)(h3) = 0. Furthermore,

m(f3bβ)(a) = ad(b)ad(β)(c) − 1
2c = −3c− 1

2c = −7
2 ad(f3)(a).

In this way the summand −28
9 appears in the first formula of the lemma.

In the case s �= l, the relevant terms are −4
9 bαf2f3e

2
3 and −4

9 cβf1f3e
2
3. On h3, each of the

elements m(bαf2), m(cβf1) acts as −1
2 ad(f3). Thus, 4

9 appears in the second formula. Further,

m(bαf2)(a) = 1
6(ad(f2)ad(b)ad(α) + 2ad(α)ad(f2)ad(b))(a)

= 1
6(ad(c)ad(α) + 2ad(α)ad(c))(a) = 1

2ad(f3)(a) + ad(f3)(a) = 3
2ad(f3)(a).

In the same fashion m(cβf1)(a) = 3
2ad(f3)(a). This justifies −4

3 in the first formula.
The final term, which is 1

27cα(3h1 − h2)f3e
2
3, fulfils the case i = j, s = 3, l = 1. Here we have

m((3h1 − h2)cα)(a) = 6ad(f3)(a), hence the last summand in the first formula is 2
9 . Similarly,

m((3h1 − h2)cα)(h3) = 1
6(2ad((α)ad(c) − 2ad(c)ad(α))(h3) = ad(f3)(h3).

This justifies 1
27 in the second formula. �

Lemma 6.5 provides a different way to compute b. Namely, η̃ − bη has to act on g as a scalar
multiple of ad(f3). Check(

η̃ − 25
108

η

)
(a) =

(
− 2

9
− 25

108
× 42

5

)
ad(f3)(a) =

−13
6

ad(f3)(a), (6.2)(
η̃ − 25

108
η

)
(h3) =

(
1
18

− 5 × 48
108

)
ad(f3)(h3) =

−39
18

ad(f3)(h3) =
−13
6

ad(f3)(h3).

In order to compute R(1) and R(2), state first that according to (6.2), −13
6 ad(f3) ⊗ e23f3 is a

summand of m(H̃). This indicates that if m(H̃) is written as an element of S4(g), then it has a
term −13

3 e23f
2
3 , which is a summand of −13

12 Δ2
2. Thus m(H̃) = −13

12 Δ2
2. In terms of Lemma 5.4, we

have

m(H2) =
3!
4!

× 4
(
− 2c1 +

1
3
c1

)
H =

20
3

H,

612

https://doi.org/10.1112/S0010437X22007485 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007485


Symmetrisation and the Feigin–Frenkel centre

since c1 = −4 in our case. Making use of Theorem 3.11, we obtain the main result of this section:

S2 = �
(
Δ6 − 25

108Δ3
2

)
[−1] − 65

4 �(τ2Δ2
2[−1])·1 − 325

3 �(τ4Δ2[−1])·1 (6.3)

is an element of z(ĝ). Furthermore, S1 = H[−1] and S2 form a complete set of Segal–Sugawara
vectors for g.

7. The orthogonal case

Now suppose that g = son ⊂ gln with n � 7. A suitable matrix realisation of g uses the elements
Fij = Eij − Ej′i′ with i, j ∈ {1, . . . , n}, i′ = n− i+ 1. We will be working with the coefficients
Φ2k ∈ S2k(g)g of

det(In − q(Fij))−1 = 1 + Φ2q
2 + Φ4q

4 + · · · + Φ2kq
2k + · · · .

The generating invariants of this type appeared in [MY19, § 3] in connection with the
symmetrisation map and they can be used in (2.4) as well. In [Mol18, MY19], the elements
Φ2k are called permanents, but they are not the permanents of matrices in the usual sense.
Set h = 〈Fjj | 1 � j � �〉C.

In general, det(In − qA)−1 = det(In + qA+ q2A2 + · · · ) for A ∈ gln. In particular, Φ2k|h is
equal to the homogeneous part of degree 2k of

�∏
j=1

(1 + F 2
jj + F 4

jj + F 6
jj + · · · ).

By the construction, m(Φ2k) is a polynomial function on (Λ2g ⊕ g)∗ ∼= Λ2g ⊕ g. Set

f = m(Φ2k)|Λ2g⊕h and write f =
L∑
ν

ξν ⊗ Hν ,

where Hν ∈ S2k−3(h) are linearly independent monomials in {Fjj} and ξν ∈ Λ2g. Note that each
Φ2k is an invariant of Aut(g). Since Φ2k is an element of h-weight zero, each ξν is also of weight
zero. Hence one can say that f is an invariant of W (g, h).

Let σ ∈ Aut(g) be an involution such that g0 = gσ ∼= son−1, σ(F11) = −F11, i.e. F11 ∈ g1, and
σ(Fss) = Fss for � � s > 1. Then g0,F11 := (g0)F11

∼= son−2. Such an involution σ is not unique
and we fix it by assuming that

g1 = 〈F1i + Fi′1 | 1 < i < n〉C ⊕ CF11. (7.1)

The centraliser g1,F11 of F11 in g1 is equal to CF11. This property defines an involution of rank
one. Set h0 = 〈Fss | � � s > 1〉C.

By the construction, the map m is Aut(g)-equivariant. Here the group Aut(g) ⊂ GL(g) acts
on so(g) ⊂ gl(g) via conjugation. In particular, σ acts as −id on g0 ∧ g1 ⊂ so(g) and as id on the
subspaces Λ2g0 and Λ2g1. For the future use, record: m(F 3

ii) = Fii and if i �= j, j′, then m(FiiF
2
jj)

acts as id on Fij = −Fj′i′ , Fij′ = −Fji′ , as −id on Fji = −Fi′j′ , Fj′i = −Fi′j , and as zero on all
other elements Fuw. In particular, m(FiiF

2
jj) �∈ g if i �∈ {j, j′}.

Lemma 7.1. Suppose that Hν = F β1
11 . . . F

β�
�� and ξν �= 0. Then there is exactly one odd βj with

1 � j � �. Furthermore, if β1 is odd, then

ξν ∈ 〈(F1i − Fi′1) ∧ (F1i′ + Fi1) | 1 < i < n〉C ⊕ 〈F11 ∧ Fss | 1 < s � �〉C.
Proof. Without loss of generality assume that βj is odd for j � u and is even for j > u. Let σj ∈
Aut(g) with 2 � j � u be an involution of rank one such that σj(Fjj) = −1 and σj(Fss) = Fss
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for s �= j, j′. Following the case of σ1 = σ, fix σj by setting

σj(Fji + Fi′j) = −Fji − Fi′j for i �∈ {j, j′}.
As we have already mentioned, σj(Φ2k) = Φ2k for each j. Thereby m(Φ2k) is a σj-invariant
as well. At the same time σj(Hν) = −Hν by the construction. Hence σj(ξν) = −ξν for each
1 � j � u.

The above discussion has clarified, how involutions σj act on Λ2g = m(S3(g)). In particular,
we must have ξν ∈ g0 ∧ g1. We know also that ξν is an element of h-weight zero and that F11 ∈ h.
Recall that g1,F11 = CF11. The decomposition g0 = g0,F11 ⊕ [F11, g1] indicates that

ξ ∈ g0,F11 ∧ F11 ⊕ [F11, g1] ∧ g1.

Both summands here are h-stable. Furthermore, (g0,F11 ∧ F11)h is spanned by Fss ∧ F11 with
� � s > 1.

The subspace [F11, g1] is spanned by F1i − Fi′1, where 1 < i < n. For each i, the element of
the opposite h0-weight in g1 is F1i′ + Fi1. Note that (F1i + Fi′1) ∧ (F1i′ − Fi1) is an eigenvector
of F11 if and only if i = i′. Thus, ([F11, g1] ∧ g1)h is a linear span of

Ξ(i) := (F1i + Fi′1) ∧ (F1i′ − Fi1) + (F1i′ + Fi1) ∧ (F1i − Fi′1)

with 1 < i � i′.
If u > 1, then u � 3. The involution σ2 acts on F1i ± Fi′1 as id if 2 < i < n− 1. Therefore ξν

has to be a linear combination of F22 ∧ F11 and Ξ(2). At the same time, σ3 acts as id on both
these vectors. This contradiction proves that u = 1. �
Remark. Lemma 7.1 is valid for any homogeneous Φ ∈ S(g)Aut(g).

Now fix H = Hν = F 2b1−1
11 F 2b2

22 . . . F 2b�
�� with bj ∈ Z�0 and b1 � 1. The task is to compute

ξ = ξν . Set bj′ = bj for j � �. In type B, set also b�+1 = 0. Below we list the terms Y3 such that
Y3H is a summand of Φ2k:

F 3
11, F11F

2
jj , 2(b1 + 1)(bj + 1)F11F1jFj1, (bi + 1)(bj + 1)F11FijFji,

2b1(bj + 1)F1jFj1Fjj , 2b1(bi + 1)(bj + 1)F1iFijFj1,
(7.2)

where 1 < i, j < n and i �∈ {j, j′}, and also in Fjj we have 1 < j � �. When computing m, one has
to take into account the additional coefficients appearing from the powers of Fii. For instance, in
the case of F 3

11, this coefficient is
(
2b1+2

3

)
, for 2b1(bj + 1)F1jFj1Fjj , the additional scalar factor

is 2bj + 1.
We will show that ξ acts on Fij as c(i, j)F11 for some constant c(i, j) ∈ C, compute these

constants and see that all of them are equal. Note that [F11, Fij ] = 0 if i, j �∈ {1, n}.
Lemma 7.2. We have ξ(F11) = 0, furthermore ξ(Fij) = 0 if i, j �∈ {1, n}.
Proof. By a direct computation, we show that indeed ξ(F11) = 0. Some expressions in (7.2) act
on F11 as zero by obvious reasons. If one takes into account that F1jF11Fj1 + Fj1F11F1j acts as
[Fj1, Fj1], this covers the first line of (7.2). The same argument takes care of m(FjjF1jFj1). It
remains to calculate η = m(F1iFijFj1)(F11). Here we have 6η = (F11 − Fii) + (Fjj − F11). If we
switch i and j, then the total sum is zero.

Since (Fss ∧ F11)(F11) = Fss up to a non-zero scalar, Lemma 7.1 now implies that

ξ ∈ 〈(F1i − Fi′1) ∧ (F1i′ + Fi1) | 1 < i < n〉C.
Hence ξ(Fij) = 0 if i, j �∈ {1, n}. �

614

https://doi.org/10.1112/S0010437X22007485 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007485


Symmetrisation and the Feigin–Frenkel centre

Lemma 7.3. Suppose that n = 2�. Assume that 1 < u < n. Then

ξ(F1u) =
3!(2k − 3)!

(2k)!
C(1)F1u

and C(1) is equal to(
2b1 + 2

3

)
+

2
3
b1

�∑
j=2

(2bj + 1)(bj + 1) +
8
3
b1(b1 + 1)

�∑
j=2

(bj + 1) +
8
3
b1

∑
1<i<j��

(bi + 1)(bj + 1).

Proof. Recall that m(F 3
11) = F11. This leads to the summand

(
2b1+2

3

)
of C(1). Consider

ξ
(j)
1 = m(F11F

2
jj) + m(F1jFj1Fjj − F1j′Fj′1Fjj)

with 1 < j � �. Here ξ
(j)
1 (F1u) = 1

3F1u for u �∈ {j, j′} and ξ
(j)
1 (F1j) = (1 − 2

3)F1j as well as
ξ
(j)
1 (F1j′) = (1 − 2

3)F1j′ . In C(1), we have to add 1
3 with the coefficients

2b1

(
2bj + 2

2

)
= 2b1(bj + 1)(2bj + 1).

The next terms are ξ(j)2 = m(F11F1jFj1) with 1 < j < n. Here ξ(j)2 (F1u) = 1
3F1u for u �∈ {j, j′}.

Furthermore, ξ(j)2 (F1j) = 2
3F1j and ξ

(j)
2 (F1j′) = 0. Adding ξ(j)2 and ξ

(j′)
2 with j � � and recalling

the coefficient of ξ(j)2 , we obtain the summands 8
3(b1 + 1)b1(bj + 1).

Fix 1 < i, j < n with i �∈ {j, j′} and consider

ξi,j
3 = m(F1iFijFj1), ξi,j

4 = m(F11FijFji).

An easy observation is that ξi,j
4 (F1u) = 0 if u �∈ {i, i′, j, j′}. Also ξi,j

3 (F1u) = 1
6F1u in this case.

Furthermore, ξi,j
4 (F1i) = 1

2F1i and ξi,j
4 (F1i′) = 1

2F1i′ . A more lengthy calculation brings

ξi,j
3 (F1i) = 1

6F1i − 1
6((ad(F1i)ad(Fj1) + ad(Fj1)ad(F1i))(F1j) = 1

6F1i − 1
6F1i = 0;

ξi,j
3 (F1j) = 1

6F1j + 1
6ad(Fij)(F1i) = 0; ξi,j

3 (F1j′) = 1
6ad(F1i)ad(Fj1)(F1i′) = −1

6F1j′ ;

ξi,j
3 (F1i′) = 1

6ad(Fij)ad(F1i)(Fji′) = 1
6ad(Fij)(Fjn) = −1

6F1i′ .

Note that ξi,j
4 = ξj,i

4 = ξi′,j′
4 . Now fix 1 < i < j � � and consider

ξi,j
5 = ξi,j

3 + ξj,i
3 + ξi′,j

3 + ξj,i′
3 + ξi,j′

3 + ξj′,i
3 + ξi′,j′

3 + ξj′,i′
3 + ξi,j

4 + ξi′,j
4 + ξi,j′

4 + ξi′,j′
4 .

Here 2b1(bi + 1)(bj + 1)ξi,j
5 is a summand of ((2k)!/3!(2k − 3)!)ξ. Moreover, ξi,j

5 (F1s) = 4
3F1s for

each 1 < s < n. This justifies the last summand of C(1). �
Rearranging the expression for C(1), one obtains

C(1) =
2
3
b1

( �∑
j=1

(bj + 1)(2bj + 1) + 4
∑

1�i<j��

(bi + 1)(bj + 1)
)
. (7.3)

Lemma 7.4. Suppose that n = 2�+ 1. Assume that 1 < u < n. Then

ξ(F1u) =
3!(2k − 3)!

(2k)!
C̃(1)F1u

and C̃(1) is equal to

C(1) +
4
3
b1(b1 + 1) +

4
3
b1

∑
1<i��

(bi + 1) = C(1) +
4
3
b1

∑
1�j��

(bj + 1).
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Proof. We have to take care of the instances, where j = �+ 1 = j′. Here Fjj = 0, thereby also
ξ
(j)
1 = 0. By a direct calculation, ξ(j)2 (F1u) = 1

3F1u for each u. Recall that ξ(j)2 corresponds to
Y3 = 2(b1 + 1)(bj + 1)F11F1jFj1 in (7.2) and that the additional scalar factor in this case is 2b1.
Since b�+1 = 0, we have to add 4

3b1(b1 + 1) to C(1).
The calculations for ξi,j

3 , ξj,i
3 , and ξi,j

4 have to be altered. The modifications are:

ξi,j
4 (F1j) = F1j , ξi,j

3 (F1j) = −1
3F1j , ξj,i

3 (F1j) = −1
3F1j ,

and ξi,j
5 with 1 < i < j = l + 1 has a simpler form, here

ξi,j
5 = ξi,j

3 + ξj,i
3 + ξi′,j

3 + ξj,i′
3 + ξi,j

4 + ξi′,j
4 .

The coefficient of this ξi,j
5 in ((2k)!/3!(2k − 3)!)ξ is 2b1(bi + 1) and ξi,j

5 (F1u) = 2
3F1u for all u.

This justifies the second additional summand. �
Proposition 7.5. For g = son, we have m(Φ2k) = R(k)Φ2k−2, where

R(k) =
1

k(2k − 1)

((
n

2

)
+ 2n(k − 1) + (k − 1)(2k − 3)

)
.

Proof. According to Lemmas 7.3 and 7.4, there is c(1) ∈ C such that ξ(F1u) = c(1)F1u for each
1 < u < n. Since ξ ∈ so(g), we have also ξ(Fu1) = −c(1)Fu1. Taking into account Lemma 7.2, we
conclude that ξ = c(1)F11.

Simplifying (7.3) and using Lemma 7.4, we obtain that

c(1) =
2
3
b1

3!(2k − 3)!
(2k)!

(
2
( �∑

j=1

bj

)2

+ (4�− 1)
( �∑

j=1

bj

)
+ �+ 2�(�− 1)

)

=
b1

k(2k − 1)(k − 1)
(2(k − 1)2 + (4�− 1)(k − 1) + �(2�− 1))

in type D and that

c(1) =
b1

k(2k − 1)(k − 1)
(2(k − 1)2 + (4�− 1)(k − 1) + �(2�− 1) + 2(k − 1) + 2�)

in type B. In both cases, the scalars c(1)/b1 depend only on k and �. Making use of the action
of W (g, h), we can conclude now that m(Φ2k) is a symmetric invariant and that it is equal to
R(k)Φ2k−2 with R(k) ∈ Q. More explicitly, R(k) is equal to 2(k − 1)(c(1)/2b1) = (k − 1)c(1)/b1.

In type D, we have 2(k − 1)2 + (4�− 1)(k − 1) = 2n(k − 1) + (k − 1)(2k − 3) and
�(2�− 1) =

(
n
2

)
. Quite similarly, in type B, we have �(2�− 1) + 2� = �(2�+ 1) =

(
n
2

)
and

2(k − 1)2 + (4�− 1)(k − 1) + 2(k − 1) = 2n(k − 1) + (k − 1)(2k − 3).

Therefore multiplying c(1) with (k − 1)/b1 we obtain the desired formula for R(k). �
We have

R(k) =
1

k(2k − 1)

((
n

2

)
+ 2n(k − 1) + (k − 1)(2k − 3)

)
=

1
k(2k − 1)

(
(k − 1)(n+ 2k − 3) +

n

2
(2k − 2 + n− 1)

)
=

(n+ 2k − 3)(n+ 2k − 2)
2k(2k − 1)
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and then(
2k
2r

) r−1∏
u=0

R(k − u) =
(

2k
2r

) r∏
u=1

(n+ 2k − 2u)(n+ 2k − 2u− 1)
(2k − 2u+ 2)(2k − 2u+ 1)

=
(
n+ 2k − 2

2r

)
.

Iterating the map m, sf. (2.4) and Theorem 3.11, we obtain the following result.

Theorem 7.6. For any k � 2,

Sk = �(Φ2k)[−1] +
∑

1�r<k

(
n+ 2k − 2

2r

)
�(τ2rΦ2k−2r[−1]) · 1

is a Segal–Sugawara vector.

8. Applications and open questions

The Feigin–Frenkel centre can be used in order to construct commutative subalgebras of the
enveloping algebra in finite-dimensional cases. There are two most remarkable instances.

8.1 Quantum Mishchenko–Fomenko subalgebras
Recall the construction from [Ryb06]. For any μ ∈ g∗ and a non-zero u ∈ C, the map

�μ,u : U(t−1g[t−1]) → U(g), xtd �→ udx+ δd,−1μ(x), x ∈ g, (8.1)

defines a Gμ-equivariant algebra homomorphism. The image of z(ĝ) under �μ,u is a commutative
subalgebra Ãμ of U(g), which does not depend on u [Ryb06, FFTL10]. Moreover, gr(Ãμ) contains
the Mishchenko–Fomenko subalgebra Aμ ⊂ S(g) associated with μ, which is generated by all
μ-shifts ∂m

μ H of the g-invariants H ∈ S(g). The main property of Aμ is that it is Poisson-
commutative, i.e. {Aμ,Aμ} = 0 [MF78]. If μ ∈ g∗ ∼= g is regular, i.e. if dim gμ = rk g, then Aμ is
a maximal with respect to inclusion Poisson-commutative subalgebra of S(g) [PY08] and hence
gr(Ãμ) = Aμ. Several important properties and applications of (quantum) MF-subalgebras are
discussed e.g. in [Vin91, FFR10].

Mishchenko–Fomenko subalgebras were introduced in [MF78], before the appearance of the
Feigin–Frenkel centre. In [Vin91], Vinberg posed a problem of finding a quantisation of Aμ.
A natural idea is to look for a solution given by the symmetrisation map �. For g = gln, the
elements �(∂m

μ Δk) ∈ U(g) with 1 � k � n, 0 � m < k commute and therefore produce a solution
to Vinberg’s quantisation problem [Tar00, FM15, MY19].

Consider F[ā] = �(F )[ā] ∈ U(ĝ−) corresponding to F ∈ Sm(g)g in the sense of (0.3). Set
p = |{i | ai = −1}|. Then

〈�μ,u(F[ā]) | u ∈ C\{0}〉C = 〈�(∂l
μF ) | 0 � l � p〉C. (8.2)

Combining (8.2) with (2.2), we conclude immediately that for g = gln, the algebra Ãμ is generated
by �(∂m

μ Δk). This observation is not new, see [MY19, § 3] and in particular § 3.2 there for a
historical overview and a more elaborated proof.

In [MY19, § 3.3], sets of generators {Hi | 1 � i � �} of S(g)g such that

Ãμ = alg〈�(∂m
μ Hi) | 1 � i � �, 0 � m < degHi〉 (8.3)

are exhibited in types B, C, and D. We rejoice to say that in type C, Hk = Δ2k in the notation of
§ 4. In the even orthogonal case, the set {Hi} includes the Pfaffian. The other generators in types
B and D are Φ2k of § 7. Thus Theorems 4.4 and 7.6 provide a new proof of [MY19, Theorem 3.2].

In conclusion, we show that Proposition 5.6 confirms Conjecture 3.3 of [MY19] in type G2.
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Proposition 8.1. Let g be a simple Lie algebra of type G2. Let H̃ ∈ S6(g) be a g-invariant
satisfying (0.2), cf. Corollaries 5.7 and 6.4. Then Ãμ is generated by μ,H, and �(∂m

μ H̃) with
0 � m � 5.

Proof. We work with μ as with an element of g. Clearly ∂μH = 2
∑

(xi, μ)xi = 2μ and

�μ,u(H[b1, b2]) = ub1+b2H + (ub2δb1,−1 + ub1δb2,−1)μ+ δb1,−1δb2,−1(μ, μ).

Let S2 be the Segal–Sugawara vector provided by (5.1) and (6.3). Set also S1 = H[−1]. Then
{S1, S2} is a complete set of Segal–Sugawara vectors. A general observation is that Ãμ is gen-
erated by {�μ,u(Sν) | u ∈ C

×
, ν = 1, 2} [Mol18, Corollary 9.2.3]. We have already computed

the images of S1 and also of �(τ4H[−1])·1. Similarly to (8.2), the images of �(H̃)[−1] span
〈�(∂m

μ H)〉C. It remains to deal with

Y = �μ,u(�(τ2H2[−1])·1) = u−6Y4 + u−5Y3 + u−4Y2 + u−3Y1.

Here Y1 is proportional to μ; the term Y2 is a linear combination of H and μ2. Furthermore, Y3

is a linear combination of μH and
∑

i xiμxi, therefore of μH and μ, cf. Lemma 5.4. Finally, Y4

is a linear combination of H2 and
∑

i,j xixjxjxi =
∑

i xiHxi = H2,∑
i,j

xixjxixj = H2 +
∑

j

c1xjxj = H2 + c1H.

This completes the proof. �

8.2 Gaudin algebras
Recall that elements S ∈ z(ĝ) give rise to higher Hamiltonians of the Gaudin models, which
describe completely integrable quantum spin chains [FFR94].

The underlying space of a Gaudin model is the direct sum of n-copies of g, and the
Hamiltonians are the following sums

Hk =
∑
j �=k

∑
i x

(k)
i x

(j)
i

zk − zj
, 1 � k � n,

where z1, . . . , zn are pairwise different complex numbers. Here {x(k)
i | 1 � i � dim g} is an

orthonormal basis for the k’th copy of g. These Gaudin Hamiltonians can be regarded as ele-
ments of U(g)⊗n or of S(g ⊕ · · · ⊕ g). They commute (and hence Poisson-commute) with each
other. Higher Gaudin Hamiltonians are elements of U(g)⊗n that commute with all Hk.

The construction of [FFR94] produces a Gaudin subalgebra G, which consists of Gaudin
Hamiltonians and contains Hk for each k. Let ΔU(ĝ−) ∼= U(ĝ−) be the diagonal of U(ĝ−)⊗n.
Then a vector z̄ = (z1, . . . , zn) ∈ (C

×
)n defines a natural homomorphism ρz̄ : ΔU(ĝ−) → U(g)⊗n.

In this notation, G = G(z̄) is the image of z(ĝ) under ρz̄. By the construction, G ⊂ (U(g)⊗n)g.
Since z(ĝ) is homogeneous in t, it is clear that G(z̄) = G(cz̄) for any non-zero complex number c.

Gaudin subalgebras have attracted a great deal of attention, see e.g. [CFR10] and refer-
ences therein. They are closely related to quantum Mishchenko–Fomenko subalgebras and share
some of their properties. In particular, for a generic z̄, the action of G(z̄) on an irreducible
finite-dimensional (g ⊕ · · · ⊕ g)-module V (λ1) ⊗ · · · ⊗ V (λn) is diagonalisable and has a simple
spectrum on the subspace of highest weight vectors of the diagonal g [Ryb20]. Applying ρz̄,
one obtains explicit formulas for higher Gaudin Hamiltonians from explicit formulas for the
generators of z(ĝ). In the following, we discuss which generators of z(ĝ) one has to consider.
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Let {S1, . . . , S�} with gr(Sk) = Hk[−1] be a complete set of Segal–Sugawara vectors as in
§ 1.6. Set degHk =: dk. Assume that zk �= zj for k �= j and that zk �= 0 for all k. According to
[CFR10, Proposition 1], G(z̄) has a set of algebraically independent generators {F1, . . . , FB(n)},
where B(n) := ((n− 1)/2)(dim g + �) + �, see also [Ryb06, Theorems 2&3]. Moreover, exactly
(n− 1)dk + 1 elements among the Fj belong to 〈ρz̄(τm(Sk)) | m � 0〉C [CFR10, Proposition 1].
Note that

∑�
k=1 dk equals (dim g + �)/2. Furthermore, the symbols gr(Fj) are algebraically

independent as well and deg gr(Fj) = dk if Fj ∈ 〈ρz̄(τm(Sk)) | m � 0〉C, see the proof of
[CFR10, Proposition 1(2)] and [Ryb06, § 4].

Remark 8.2. If A ⊂ (S(g)⊗n)g is a Poisson-commutative algebra, then tr.deg A � B(n) by
[MY19, Proposition 1.1]. Combining this with [BK76, Satz 5.7], we obtain that tr.deg Ã � B(n)
for a commutative subalgebra Ã ⊂ (U(g)⊗n)g. Thus G has the maximal possible transcendence
degree. Arguing in the spirit of [PY08] and using the results of [Ryb06], one can show that G is
also a maximal commutative subalgebra of (U(g)⊗n)g with respect to inclusion.

In the case n = 2, the application of our result looks particularly nice. Besides, this two points
case has several features. Suppose that n = 2. Set l = g ⊕ g. For H ∈ Sd(l), ξ(1) in the first copy
of g, η(2) in the second, and a non-zero c ∈ C, write

H(ξ(1) + cη(2)) = Hd,0(ξ(1)) + cHd−1,1(ξ(1), η(2)) + · · · + cd−1H1,d−1(ξ(1), η(2))

+ cdH0,d(η(2)). (8.4)

Here Hd,0 belongs to the symmetric algebra of the first copy of g. The symbol of ρz̄(τm(Sk)) lies
in 〈(Hk)dk−j,j | 0 � j � dk〉C. Since we must have dk + 1 linearly independent elements among
these symbols, gr(G) is freely generated by (Hk)dk−j,j with 1 � k � �, 0 � j � dk.

The Lie algebra l has the following symmetric decomposition

l = l0 ⊕ l1, where l1 = {(ξ,−ξ) | ξ ∈ g} (8.5)

and l0 = Δg = {(ξ, ξ) | ξ ∈ g} is the diagonal. Similarly to (8.4), one polarises H ∈ Sd(l) with
respect to the decomposition (8.5). Let H[j,d−j] with 0 � j � d be the arising components. Then
〈Hj,d−j | 0 � j � d〉C = 〈H[j,d−j] | 0 � j � d〉C.

On the one side, the polynomials (Hk)j,dk−j generate gr(G), on the other, the polynomials
(Hk)[j,dk−j] generate a Poisson-commutative subalgebra Z ⊂ S(l) related to the symmetric pair
(l, l0), which has many interesting properties [PY21]. Thus, our discussion results in the following
statement.

Corollary 8.3 (cf. [PY21, Example 6.5]). The two-points Gaudin subalgebra G(z1, z2) is a
quantisation of the Poisson-commutative subalgebra Z associated with the symmetric pair
(g ⊕ g,Δg).

Let us give more information on the issue of Corollary 8.3. Observe that G(z1, z2) = G(z1 −
b, z2 − b) if b ∈ C\{z1, z2}, see [CFR10, Proposition 1]. Hence

G(z̄) = G

(
z1 − z2

2
,
z2 − z1

2

)
= G(1,−1).

For ρ = ρ1,−1, we have ρ(ξtk) = ξ(1) + (−1)kξ(2), i.e. g[−1], as well as any g[−2k − 1], is mapped
into l1 and each g[−2k] is mapped into Δg. One can understand ρ as the map from U(ĝ−) to
U(ĝ−)/(t2 − 1) ∼= U(l).

It is not difficult to see that gr(ρ(Sk)) = (Hk)[0,dk], gr(ρ(τ(Sk))) = (Hk)[1,dk−1], and in general

gr(ρ(τm(Sk))) ∈ m!(Hk)[m,dk−m] + 〈(Hk)[j,dk−j] | j < m〉C
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as long as m � dk. This shows that indeed gr(G) = Z and that

G = alg〈ρ(τm(Sk)) | 1 � k � �, 0 � m � dk〉. (8.6)

Suppose that H1, . . . , H� are homogeneous generators of S(g)g and for each k there is k′

such that 0 � k′ < k and m(Hk) ∈ CHk′ , where H0 = 0. If g is simple and classical, then explicit
descriptions of such sets are contained in §§ 2, 4, 7.

Theorem 8.4. If we keep the above assumption on the set {Hk}, then the two-points Gaudin
subalgebra G ⊂ U(l) is generated by �((Hk)dk−j,j) with 1 � k � �, 0 � j � dk.

Proof. For each k, let Sk be the Segal–Sugawara vector obtained from Hk by (2.4). We will show
that Vsym := 〈�((Hk)dk−j,j) | 1 � k � �, 0 � j � dk〉C is equal to

VG := 〈ρ(τm(Sk)) | 1 ≤ k ≤ �, 0 ≤ m ≤ dk〉C.
Since dimVG = dimVsym, it suffices to prove the inclusion VG ⊂ Vsym. We argue by induction on
k. If k = 1, then S1 = �(H1[−1]). Hence 〈ρ(τm(S1)) | 0 � m � d1〉C is equal to

〈�((H1)d1−j,j) | 0 � j � d1〉C.
If k � 2 and m � dk, then according to the structure of (2.4) and our condition on {H1, . . . , H�},
we have

ρ(τm(Sk)) ∈ m!�((Hk)[m,dk−m]) + Vm,k,

where

Vm,k = 〈�((Hk)[j,dk−j]) | j < m〉C ⊕ 〈�((Hk′)j,dk′−j) | k′ < k, 0 � j < dk′〉C.
Thus ρ(τm(Sk)) ∈ Vsym and we are done. �

8.3 Further directions
For all classical types, we find families of generators {Hk} that behave well in terms of (0.2).
The general picture is not complete yet, since the following question remains open.

Question 8.5. Does any exceptional Lie algebra g poses a set of generators {Hk} ⊂ S(g)g such
that each Hk satisfies (0.2)?

Proposition 5.6 takes care of type G2. We have seen also some partial positive answers in
other types.

Question 8.6. Are there homogeneous generators {Hk} of S(g)g such that m(Hk) = 0 for each k?

The calculations in § 6 prove that in type G2, the answer is negative. I would expect that
the answer is negative in general.

As Example 3.7 shows, a set of generators {Hk}, where each Hk satisfies (0.2), is not unique.
For the classical Lie algebras, there is a freedom of choice in degree 4 and there is also some
freedom in degree 6.

It is quite possible that the condition (8.3) on the set {Hk} is less restrictive than (0.2).
However, we have no convincing evidence to this point.

Remark 8.7. Probably there are some intricate combinatorial identities hidden in (2.4). In order
to reveal them, one has to understand the natural numbers c(r, ā) appearing in the proof of
Lemma 2.2, the rational constants c2,3(j, p) of Lemma 3.2, as well as the scalars C(ā(r), γ̄) of
Proposition 3.4.

620

https://doi.org/10.1112/S0010437X22007485 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007485


Symmetrisation and the Feigin–Frenkel centre

Acknowledgements

I am grateful to Alexander Molev for his enlightening explanations on the subjects of
Segal–Sugawara vectors and vertex algebras. A special thank you is due to Leonid Rybnikov
for bringing Gaudin subalgebras to my attention.

Part of this work was done during my visit to the Mathematical Institute of Cologne
University. It is a pleasure to thank Peter Littelmann for his hospitality and many inspiring
conversations about mathematics in general as well as Kac–Moody algebras in particular.

References

BD A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke
eigensheaves, Prepint, http://math.uchicago.edu/∼drinfeld/langlands/QuantizationHitchin.
pdf, accessed 10 May 2020.
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