
Surface-based shared and distinct resting
functional connectivity in attention-deficit
hyperactivity disorder and autism
spectrum disorder
Minyoung Jung, Yiheng Tu, Joel Park, Kristen Jorgenson, Courtney Lang, Wenwen Song and Jian Kong

Background
Both attention-deficit hyperactivity disorder (ADHD) and autism
spectrum disorder (ASD) are neurodevelopmental disorders with
a high prevalence. They are often comorbid and both exhibit
abnormalities in sustained attention, yet common and distinct
neural patterns of ASD and ADHD remain unidentified.

Aims
To investigate shared and distinct functional connectivity pat-
terns in a relatively large sample of boys (7- to 15-year-olds) with
ADHD, ASD and typical development matched by age, gender
and IQ.

Method
We applied machine learning techniques to investigate patterns
of surface-based brain resting-state connectivity in 86 boys with
ASD, 83 boys with ADHD and 125 boys with typical development.

Results
We observed increased functional connectivity within the limbic
and somatomotor networks in boys with ASD compared with
boys with typical development. We also observed increased

functional connectivity within the limbic, visual, default mode,
somatomotor, dorsal attention, frontoparietal and ventral
attention networks in boys with ADHD compared with boys with
ASD. In addition, using a machine learning approach, we were
able to discriminate typical development from ASD, typical
development from ADHD and ASD from ADHD with accuracy
rates of 76.3%, 84.1%, and 79.3%, respectively.

Conclusions
Our results may shed new light on the underlyingmechanisms of
ASD and ADHD and facilitate the development of new diagnostic
methods for these disorders.
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Attention-deficit hyperactivity disorder (ADHD) is a neurodeve-
lopmental disorder characterised by inattention and abnormal
hyperactivity and impulsivity, affecting nearly 6% of children.1

Autism spectrum disorder (ASD) is another highly prevalent
neurodevelopmental disorder characterised by difficulties in social
communication and social interaction.2 ADHD and ASD are
often comorbid,3,4 with about 30% of patients with ASD having
comorbid ADHD characterised by age-inappropriate inattention,
impulsiveness and hyperactivity. Neuroimaging studies have
shown that both disorders are associated with abnormal resting-
state functional brain connectivity.5–12 For instance, studies have
suggested that compared with typical development, (a) children
with ADHD showed disrupted functional connectivity patterns in
brain regions involved in attention and sensory processing7,8 and
(b) children with ASD displayed increased resting-state functional
connectivity in the posterior cingulate cortex and salience
network, and the strength of functional connectivity was linked to
severity of social interaction deficits.5,9,12 These studies have signifi-
cantly enhanced the neurophysiological understanding of ADHD
and ASD. Nevertheless, the mechanisms underlying the comorbid-
ity and distinction between the two disorders remain unclear.

In this study, taking advantage of the Autism Brain Imaging
Data Exchange (ABIDE) and ADHD200 data-set (http://fcon_1000.
projects.nitrc.org/indi/adhd200/), we investigated shared and distinct
functional connectivity patterns in a relatively large sample of boys
(7- to 15-year-olds) with ADHD, ASD and typical development
matched by age, gender and IQ. For better functional alignment
across participants, the FreeSurfer image analysis suite was
applied to generate a cortical surface for each participant.13 We

hypothesised that (a) children with ASD and ADHD would be
associated with altered functional connectivity compared with
children with typical development, and the altered patterns
may be associated with symptoms of ASD and ADHD; and
(b) machine learning techniques could be used to identify distinct
and common functional connectivity features for both ASD and
ADHD.

Method

Participants

We used an independent sample of individuals with ASD and indi-
viduals with typical development from ABIDE and individuals with
ADHD from the ADHD200 data-set (http://fcon_1000.projects.
nitrc.org/indi/adhd200/). The inclusion criteria were as follows:
(a) full-scale IQ (F-IQ) scores >80; (b) aged between 7 and 15 years
to minimise potential developmental effects;14 (c) scanned in a 3T
magnetic resonance imaging (MRI) scanner to increase between-site
reliability;15 (d) right-handed; (e) diagnosis of ASD based on DSM-
IV-TR16 and assessed with the Autism Diagnostic Observation
Schedule,17 the Autism Diagnostic Interview–Revised (ADI-R),18 or
both; (f) children with ASD do not have comorbid ADHD and
children with ADHD do not have comorbid ASD based on the
data-set; (g) diagnosis of ADHD based on DSM-IV-TR without
Axis I disorders. Individuals with ASD completed the Social
Responsiveness Scale (SRS), a 65-item rating measure that quantifies
severity of ASD.19 In total, 294 participants fitted the above criteria
and were included in the present study.
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In total, 55 children with ASD (64%), 61 children with ADHD
(73%) and all children with typical development were psychotropic
medication-naive. Among children with ADHD, 44 met criteria for
combined type ADHD, 3 met criteria for hyperactive/impulsive type
ADHD and 36 met criteria for predominantly inattentive type
ADHD. Each site was required to confirm that their local Institutional
Review Board or ethics committee had approved both the initial data
collection and sharing the data-sets. Details of site-specific protocols,
informed consent, and ethical approval at the time of the scan for
each data-set can be found at http://fcon_1000.projects.nitrc.org.

Data preprocessing

Anatomical image data were processed using FreeSurfer, version
5.3.0 software package (http://surfer.nmr.mgh.harvard.edu/).20 To
increase anatomical validation across individuals with ADHD,
ASD, and typical development, FreeSurfer was used for segmenta-
tion of subcortical structures and automatic tessellation of the
cortical surface because cortical surface variability is considerably
improved by segmentation. The preprocessing of anatomical data
was as follows: (a) motion correction and non-uniformity correc-
tion, (b) automatic Talairach transformation, (c) intensity normal-
isation, (d) skull strip and segmentation of the subcortical white
matter and grey matter, (e) tessellation of the white matter and
grey matter, (f) surface smoothing and inflation, (g) topology cor-
rection and (h) parcellation. Automated segmentation and parcella-
tion results were reviewed for quality and corrected by two trained
experts (M.J. and W.S.) as necessary.

Resting-state functional MRI (fMRI) data-sets were processed
with the CONN functional connectivity toolbox (http://www.nitrc.
org/projects/conn).21 Preprocessing involved (a) realignment to the
mean image, (b) removal of volumes with a mean intensity >1.5%
of the mean global signal or 0.5 mm/repetition rate framewise dis-
placement to reduce the effect of head movement, (d) CompCor cor-
rection to reduce physiological and other noise artefacts,22 (e) entering
segmented cerebrospinal fluid and white matter as confounding
regressors at the participant-level in FreeSurfer, and (f) band-pass
filtering of the functional image (0.01–0.08 Hz).

Regions of interest (ROIs) and connectivity analysis

We used 162 ROIs adopted from the Desikan–Killiany parcellation
atlas in FreeSurfer23 (supplementary Table 1 and supplementary
Fig. 1 available at https://doi.org/10.1192/bjp.2018.248). Mean
time series were obtained for each participant by averaging the
fMRI time series over all voxels in each of the 162 ROIs.
Functional connectivity was estimated based on these regional
mean time series by calculating the pairwise Pearson correlation
coefficient between all possible (162 × 161/2 = 13 041) ROI pairs.
A symmetric connectivity matrix was constructed to represent
these connections. Correlation coefficients were Fisher z-trans-
formed to increase normality for statistical analyses.

Classification analysis: discriminating typical
development, ASD and ADHD

To investigate diagnostic features between ADHD and ASD, a
feature-selection approach combining a univariate t-test and multi-
variate support vector machine-recursive feature elimination
(SVM-RFE) was performed.24 To avoid the risk of overfitting, all
analyses were performed using ten-fold cross-validation.25

In the first step, we analysed group-level differences of features
between groups. Significant differences for each pair of ROIs were
assessed using a mass univariate two sample t-test with a threshold
of P<0.001 and false discovery rate (FDR) correction. Features
showing significant difference were retained for the remaining

analyses. Our logic was that these features would be the most
likely to contribute to the discrimination between groups.

In the second step, we used SVM-RFE to select the features with
the most discriminative power for the classifier itself. SVM-RFE was
used to train the classification model and obtain weights for each
feature. The features were ranked according to the absolute values of
weights, and the lowest ranking feature was discarded. Then the clas-
sification model was trained using the new feature set (i.e. without the
discarded feature). This procedure was repeatedly performed until the
feature set was empty. We conducted a full backward elimination pro-
cedure to further select the features with the highest classification
accuracy. Since we used a ten-fold cross-validation strategy to estimate
the performance of the classifiers and feature ranking and each iter-
ation was based on a slightly different data-set, the selected feature
sets differed slightly from iteration to iteration.

To determine the most discriminative features, a consensus dis-
crimination map that aggregated features selected in all cross-valid-
ation iterations was used. Regional weight, which represents the
contribution of each feature for discriminating different groups,
was denoted by the number of ROI occurrences in the consensus
discrimination map.26 The discriminative power of each feature
was denoted by the average of its classification weights across all itera-
tions. We conducted linear regression analyses of group-level differ-
ences to select features based on SVM-RFE and core symptom
severity in ASD (total SRS scores), adjusting for data-collection site,
F-IQ and age using SPSS. Regression analyses were corrected for
multiple comparisons using FDR correction (P < 0.05).

Features with the most discriminative power were fed to an SVM
with a linear kernel, which was implemented using LIBSVM. The
classification (ASD versus typical development; ADHD versus
typical development; ADHD versus ASD) was also based on
ten-fold cross-validation, and the performance of the classifier was
evaluated by accuracy, sensitivity and specificity. Non-parametric
permutation tests (1000 times) were used to estimate the statistical
significance of the observed classification accuracy. We randomly
permuted the class labels of the data prior to training. Cross-validation
was then performed on the permuted data-set and the procedure was
repeated 1000 times. If a classifier trained on real class labels had an
accuracy exceeding the 95% confidence interval generated from the
accuracies of the classifiers trained on randomly relabelled class
labels, this classifier was considered to be well-performing.

Results

Demographic and clinical characteristics

In total, 294 participants (86 boys withASD, 83 boys withADHD and
125 boys with typical development) were included in the study. There
were no significant differences between the three groups for F-IQ
(P = 0.51) and age (P = 0.27). Demographic and clinical characteris-
tics for all participants included in the analyses are presented in
Table 1. There was a significant difference between ASD and
typical development groups for SRS total scores (P<0.0001).

Diagnostic features of ROI-to-ROI functional
connectivity analysis

Comparison of the typical development and ASD groups showed 72
ROI-to-ROI increased connectivities in the ASD group compared
with the typical development group (Fig. 1). The ASD group
showed increased connectivity in brain areas associated with
the limbic, visual, default mode, somatomotor, dorsal attention,
frontoparietal and ventral attention networks. The typical develop-
ment group only showed nine ROI-to-ROI increased connectivities
in brain areas associated with the visual, default mode, dorsal
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attention, frontoparietal and ventral attention networks compared
with the ASD group. The classification accuracy of discriminating
typical development from ASD was 76.3% (P < 0.001; Table 2).

Comparison of the typical development and ADHD groups
showed eight ROI-to-ROI increased connectivities in the ADHD
group compared with the typical development group (Fig. 2).
Specifically, the ADHD group showed increased connectivity in
brain areas associated with the limbic, ventral attention, visual and
default mode networks. In addition, the typical development group
showed two ROI-to-ROI increased connectivities in brain areas asso-
ciated with the default mode and visual networks compared with the
ADHD group. The classification accuracy of discriminating typical
development from ADHD was 84.1% (P < 0.001; Table 2).

Comparison of the ASD and ADHD groups showed nine ROI-to-
ROI increased connectivities in the ADHD group compared with the
ASD group (supplementary Fig. 2). Specifically, the ADHD group
showed increased functional connectivity between brain regions asso-
ciated with the limbic, visual, default mode, somatomotor, dorsal
attention, frontoparietal and ventral attention networks. In addition,
we found that the ASD group showed increased functional connectiv-
ity in the left middle occipital sulcus and right precentral sulcus asso-
ciated with the somatomotor and dorsal attention networks compared
with the ADHD group. The classification accuracy of discriminating
ADHD from ASD was 79.3% (P < 0.001; Table 2).

Association between functional connectivity and core
symptom severity

Regression analysis showed a positive association between increased
connectivity in the ASD group compared with the typical

development group and SRS scores, specifically (a) with the right
insula and post transverse collateral sulcus functional connectivity
(P = 0.0004, P = 0.01 FDR corrected; r = 0.376) and (b) with the
right orbital gyrus and right horizontal ramus of the lateral sulcus
functional connectivity (P = 0.0076, P = 0.025 FDR corrected; r =
0.309) (supplementary Fig. 3 and supplementary Table 2).

Discussion

Main findings

In this study, we investigated shared and distinct patterns of func-
tional dysconnectivity in boys with ASD and ADHD. We found
that (a) children with ASD showed increased functional connectiv-
ity compared with children with typical development, and children
with ADHD showed increased functional connectivity compared
with children with ASD and children with typical development;
and (b) machine learning approaches can discriminate ASD and
ADHD with accuracies of: 76.3% (ASD from typical development),
84.1% (ADHD from typical development) and 79.3% (ADHD from
ASD). Our results may deepen our understanding of the neuro-
physiological mechanisms underlying the comorbidity and distinc-
tion between ADHD and ASD.

Comparison with findings from other studies

Our findings of increased functional connectivity patterns within
the limbic regions and the somatomotor network in ASD compared
with typical development are consistent with previous studies.12 For

Table 1 Demographic and clinical characteristics

Autism spectrum
disorder (n = 86)

Typical
development group

(n = 125)

Attention-deficit
hyperactivity
disorder group

(n = 83) Group comparisons

Measure Mean s.d. Mean s.d. Mean s.d. F-value t-test P

Age (years) 11.4 2.1 10.9 1.6 11.2 1.8 1.32 – 0.267
Full IQ 110.4 13.2 111.7 9.7 109.9 13.1 0.67 – 0.512
ADI–R

Social 18.9 4.9 – – – – – – –

Non-verbal 8.34 3.1 – – – – – – –

Verbal 14.9 4.3 – – – – – – –

SRS total scores 91.8 25.7 19.2 12.4 – – – 26.3 <0.0001

ADI-R, Autism Diagnostic Interview–Revised; SRS, Social Responsiveness Scale.

Limbic lobe

Typical development > ASD ASD > Typical development

Frontal lobe

Temporal lobe

Parietal lobe

Occipital lobe

Limbic network

Default mode network

Dorsal attention network

Ventral attention network

Visual network

Somatomotor network

Frontoparietal network

Fig. 1 Region of interest (ROI)-to-ROI functional connectivity analysis between typical development and autism spectrum disorder (ASD).

The ASD group showed predominantly higher connectivity than the typical development group. Coloured circles indicate brain regions. Coloured lines indicate networks. L., left; R.,
right; see supplementary Table 1 for details of the other abbreviations used in this figure.
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instance, Cerliani and colleagues found increased functional con-
nectivity in the limbic area and sensory-motor area in male patients
with ASD.12 Likewise, the DSM-5 manual also includes abnormal
responses to sensory stimulation as a diagnostic criterion of ASD.
Our results suggest that increased functional connectivity in the
limbic and sensory-motor areas might reflect this abnormal
response. The finding of increased functional connectivity patterns
in children with ADHD compared with typical development is also
consistent with previous studies on ADHD.6 Studies have suggested
that the default network and limbic area are associated with regula-
tion of attention,27 self-cognition28 and external cognition.29 We
thus speculate that increased functional connectivity may underlie
impairments in ‘sharing attention with other people,’ which is a
core symptom of ADHD.

We also found increased functional connectivity in the frontal
lobe, temporal lobe, occipital lobe, parietal lobes, frontoparietal
network and ventral attention network in the ADHD group com-
pared with the typical development group. Rubia et al found that
temporal lobe and parietal lobe dysfunction in boys with ADHD
during an attention allocation task was associated with symptoms
of ADHD.30 We believe that abnormal functional connectivity in
the temporal lobe and parietal lobe might disrupt or delay matur-
ation of the regulation of attention in ADHD.

Nonetheless, our findings are inconsistent with other studies
indicating that ADHD is related to decreased functional connectiv-
ity in the posterior cingulate cortex7 and increased functional con-
nectivity within frontal regions of the executive control network8 as
compared with typical development. These conflicting findings may
be the result of inconsistent methodologies or variability in the
ADHD sample population. For instance, Kyeong et al7 used graph
theory analysis to estimate degree centrality in stratifying ADHD
subgroups with mild symptom ADHD and severe symptom
ADHD. Francx et al8 used independent component analysis to
detect components or networks in persistent ADHD subgroups
and remittent ADHD subgroups. These discrepancies illustrate

the importance of methodology and clinical subgroup differences
during the interpretation of neuroimaging study findings.

Interpretation of our findings

We found that children with ASD showed increased functional con-
nectivity between the left middle occipital sulcus and right precen-
tral sulcus compared with ADHD. The occipital lobe and parietal
lobe are involved in communication processing, including
emotion perception31 and face discrimination,32 as well as the
pathophysiology of autism.33 A previous study indicated that ASD
involves a different cognitive process during social interactions.34

We speculate that this may be because of the increased functional
connectivity between the occipital and parietal lobes compared
with ADHD and typical development. These results may provide
an explanation for the altered communication processing at the
neural level in individuals with ASD.

Our machine-learning algorithms confirmed common classifi-
cation features between ASD and ADHD in the limbic, ventral
attention, visual and default mode networks. This finding is consist-
ent with previous studies that found abnormal functional connect-
ivity in these networks in both ASD and ADHD.5,6,35 Recent studies
indicate that ADHD may be associated with difficulties in social
interaction.36 Symptoms of ADHD (e.g. attention deficits, impulse
control and hyperactivity) are also frequently observed in ASD,
demonstrating that the two disorders share some common mani-
festations. Taken together, the common classification features
between ASD and ADHD may reflect shared neural mechanisms
and clinical manifestations in the two disorders.

Translational neuroimaging studies have provided a basis for
identifying neurophysiological features of ASD and showed poten-
tial clinical utility.35 Specifically, advanced machine learning techni-
ques have been introduced to extract meaningful features from
neuroimaging data and subsequently make an objective diagnosis
for ASD. Anderson and colleagues used univariate t-tests to

Table 2 Results of machine learning analysis

Method Accuracy Sensitivity Specificity
Positive likelihood

ratio Negative likelihood ratio

Typical development_autism spectrum disorder 76.3 79.2 63.9 2.19 0.33
Typical development_attention-deficit hyperactivity disorder 84.1 88.8 76.1 3.72 0.15
Autism spectrum disorder_attention-deficit hyperactivity

disorder
79.3 75.6 83.1 4.47 0.29

Limbic lobe

Typical development > ADHD ADHD > Typical development

Frontal lobe

Temporal lobe

Parietal lobe

Occipital lobe

Limbic network

Default mode network

Dorsal attention network

Ventral attention network

Visual network

Somatomotor network

Frontoparietal network

Fig. 2 Region of interest (ROI)-to-ROI functional connectivity analysis between typical development and attention-deficit hyperactivity disorder
(ADHD).

The ADHD group showed predominantly higher connectivity than the typical development group. Coloured circles indicate brain regions. Coloured lines indicate networks. L., left; R.,
right; see supplementary Table 1 for details of the other abbreviations used in this figure.
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exclude irrelevant functional connectivities and achieved an accur-
acy of 79%.37 Nielsen et al used a leave-one-out classifier with a
general linear model on the multisite ABIDE data-set and obtained
accuracies of up to 60% for different sites.38

More recently, Yahata and his colleagues developed a machine
learning algorithm combining L1-regularised sparse canonical cor-
relation analysis and sparse logistic regression for selecting a
subset of functional connectivities to obtain a classification accuracy
of around 85% in a Japanese data-set, but generalisation for inde-
pendent cohorts using two independent validation cohorts obtained
from the ABIDE data-set showed lower accuracy (75%).39 In the
present study, we combined univariate t-tests and multivariate
SVM-RFE to identify the most discriminative features between
ASD, ADHD and typical development using seven independent
cohorts and obtained accuracies of 76.3% between typical develop-
ment and ASD, 84.1% between typical development and ADHD,
and 79.3% between ASD and ADHD. Our results demonstrated
that a classifier developed using surface-based functional connectiv-
ity also showed high classification for ASD and ADHD across other
independent cohorts.

We found that the increased functional connectivity in the right
insula and right orbital cortex was associated with SRS scores.
Functional and structural imaging studies of ASD have identified
abnormalities in the insula, explaining the emotion dysregulation
and social avoidance symptoms of ASD.40,41 The orbital cortex, a
critical brain region in social cognition, has been associated with
high levels of autistic traits.42 Taken together, these results suggest
that atypical connectivity in the insula and orbital cortex are
related to emotion dysregulation and social cognition.

Limitations

There are several limitations in this study. First, our analyses were
performed on boys with ASD who did not have comorbid ADHD
and boys with ADHD who did not have comorbid ASD based on
the data-set. Yet, we did not have ADHD symptom scores for par-
ticipants with ASD or ASD scores for participants with ADHD. We
thus cannot exclude the possibility that the disorders were
comorbid. Further research including both ASD and ADHD
symptom scores is needed. Second, this study only included boys
with typical development, ASD and ADHD; thus, the results may
not be generalisable to girls. Future studies including both boys
and girls with ASD and ADHD are needed.

Implications

In summary, we found that boys with ASD are associated with
increased functional connectivity in the limbic area, while boys
with ADHD are associated with increased functional connectivity
in the frontal and temporal areas. Machine learning-derived classi-
fication methods hold the potential to uncover neuroimaging bio-
markers for ASD and ADHD.
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