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Abstract

We show that the Harris-Sevast'yanov transformation for supercritical Galton-Watson processes
with positive extinction probability q can be modified in such a way that the extinction probability
of the new process takes any value between 0 and q. We give a probabilistic interpretation for the
new process. This note is closely related to Athreya and Ney (1972), Chapter 1.12.
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I. Introduction

In this note we shall deal with the Galton-Watson branching process
(Zn)n_012 . We refer to the books of Harris (1963) and Athreya and Ney
(1972) for the basic theory. As usually we assume that Zo = 1 and interpret Zn

as the number of individuals alive in the nth generation. We use the same
notation as in Athreya and Ney (1972): pj = probability that an individual hasy
children, j = 0, 1, 2, . . . ; m = "ZJLxJPj, the offspring mean; f(s) = H.JLoPj^,
0 < s < 1, the probability generating function (p.g.f.) of the offspring distribu-
tion (or of Z,); fn(s) its nth iterate (= p.g.f. of Zn); q = P(Zn = 0 eventually) the
extinction probability of (Zn)n>0.

We are interested in the supercritical case, that is q < 1 (or 1 < m < oo). It is
well-known (see Athreya and Ney (1972), Chapter 1.10 Theorem 3) that in the
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case 1 < m < oo, there always exist positive constants (Cn)n>0, such that
Zn/Cn^ W with P(W = 0) = q and P(0 < W < oo) = 1 - q. As q is the only
fixed point of / in [0, 1[, q = 0 if and only if p0 = /(0) = 0. Many results in the
supercritical case are easily proved for the case q = 0. Harris (1948) and
Sevast'yanov found a transformation which reduces the general case to the case
q = 0: if /(0) > 0, consider

(1) As) = [/((I - q)s + q)- q]/ (1 - q), 0 < s < I,
A A

and the corresponding Galton-Watson process (Zn)n.f(s) is a p.g.f. with/0 = 0
and W has the same distribution as (1 — q)W conditioned on the set of
non-extinction of (Zn)n (see Harris (1948), Theorem 3.2 and Athreya and Ney
(1972), Chapter 1.12). It can be shown, for example, (see Athreya and Ney
(1972), Chapter 1.10 Corollary 4 and Lemma 9) that W is absolutely continuous,
and thus by the transformation above, W is absolutely continuous on the set of
non-extinction.

Athreya and Ney (1972), Chapter 1.12, give a probabilistic interpretation of
the process (Zn)n (see also Athreya and Karlin (1967), Section 511). They show
that Zn can be thought to be the number of individuals of the «th generation
which have an infinite line of descent.

In this note we shall generalize this transformation such that the extinction
probability q of (Zn)n can take any value between 0 and q and we shall again
interpret Zn in a probabilistic way. We further shall give a detailed proof for the
branching property of (Zn)n, which may be also helpful for the study of Athreya
and Ney (1972), Chapter 1.12 Theorem 1.

II. Construction of a process with smaller extinction probability

Suppose q > 0 and let 0 < q < q, then z = (q - q)/(l - q) G [0, q). We
proceed in analogy to Athreya and Ney (1972), Chapter 1.12 and construct the
graph of the new p.g.f. f(s) out of f(s) by "stretching" the square with opposite
corners (z, z) and (1, 1) in Figure 1 into the unit square, mapping (z, z) into
(0, 0). The resulting curve will be

(2 ) / ( * ) = [ / ( ( I - z)s + z) - z ] / [ l - z], 0 < s < l .
As/(0) = (/(z) - z)/(l - z) > 0, it is easily checked that/(s) is a powerseries
with non-negative coefficients (pj)j>0

 a n d as /(I) = 1, f(s) is indeed a p.g.f.
Furthermore it follows immediately that m = / '(I) = / '(I) = m, that fjjs) =
[/n((l - z)j + z) - z]/[l - z], 0 < s < 1, n = 1, 2, . . . , and that f(q) = q,
that is if (Zn)n has the offspring distribution (p&Px, . • •), then it dies out with
probability q. If q = 0, then (2) is identical to (1), and if q = q, then f(s) = f(s).
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Figure 1

Finally suppose that 1 < m < oo and that Zn/Cn~+ W. If <£(/) is the
Laplace-transform of W, then by Athreya and Ney (1972)* Chapter 1.10 Theo-
rem 3:

/(*(</ m)), or

z = ) .

This implies that for Zn/' Cn -» W there exists a constant 0 < c < oo such that W
conditioned on {Zn -^0} and c- W conditioned on {Zn -t*
distribution (see also Harris (1963), Chapter I Theorem 8.2).

have the same

III. Probabilistic interpretation

In this section we interpret the branching process (Zn)n as a model for the
development of the male part of a population, that is Zn is the number of males
in the nth generation andppj = 0, 1, . . . , is the probability that a male has./
sons. Suppose q > 0, that is p0 > 0, then decompose p0 = x + y, x,y > 0. We
construct now an extended version of the process (ZB)fl: every male in the nth
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generation stays either unmarried (and has therefore no children, in particular
no sons) with probability x, or gets married and has no sons with probability >>,
or gets married and has j sons, j = 1, 2 , . . . , with probability/^., independently
of all the other males and of the past of the process. All the sons of the males of
the nth generation form the (n + l)st generation, and we start the process with
one male in the Oth generation. Let Zn

(1) be the number of males in the nth
generation and ZB

(0) the number of married males (amongst them) which have no
sons. Obviously (Z£l\ and (Zn)n describe the same process, and we will
therefore not distinguish them. We define (ZB')n = ((Zn, Zn

(0)))n as the (extended)
Galton-Watson process with offspring distribution/;' = (x,y,p1,p2,. . . ).

Let ($2, Sr, P) be a probability space which is large enough to accomodate the
process (Zn')n. (The construction is obvious and can be left to the reader).

DEFINITION. A male (alive in any generation) is called a 5-male, if the
(extended) Galton-Watson process formed by his male-descendants dies out and
all male-descendants without sons are unmarried, that is each line of descent
ends with a bachelor. Otherwise he is called an A -male, that is the process of his
male-descendants either never dies out (that is infinite line of descent), or at
least one of his male-descendants is married but has no sons.

Let / be the male of the Oth generation, and no(u) = max{/i|Zn(w) > 0},
w e fi, that is n0 = oo on {Zn -» oo}. We define

A = {/ is an v4-male} = {n0 = oo or Zn
(0) > 0 for some «};

B = {lisa B-m&le} = {«„ < oo and Zn
(0) = 0 for all n);

A U B = Q.
Let z = P(B), then P(A) = 1 - z and z < q. For j > 1: P(B n {Z, =j}) =
P(B\ZX =j)pj = zJpp and lot j = 0: P(B n {Z, = 0}) = P(I stays unmarried)
= x. Hence z - P(B) = 2 j l 0 P(B n {Z, = j}) = x + 2°°_, Pjz\ or

(3) x=po-f(z) + z and y = p0 - x = /(z) - z.

REMARK. That p0 > f(z) - z follows also from z > z2°l {p} > Sj l i PjZJ

K*) ~ Po-

We define Zn as the number of A -males amongst the Zn males of the «th
generation. Obviously Zn = 0 on B.
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THEOREM 1. Conditioned on A, (Zn),,_01 is a Galton- Watson process whose
offspring distribution has the p.g.f.f(s), defined in (2).

REMARK. By (3), x undy can graphically be found as indicated in Figure 1.

Before we prove the theorem we need the following lemma which can be
checked easily.

LEMMA. Suppose Ex, . . . ,En are mutually exclusive events and for another event

D, P(D\Ei) = P(D\EJ = ... = P(D\En) = pD, then also

(4) P(D\EXU ••• uEn)=pD

PROOF OF THEOREM 1. Obviously Zo = 1 on A.

Step 1. We shall show that, conditioned on^4 n {Zn = j}, Z n + 1 is distributed
like the sum of j i.i.d. random variables whose distribution does not depend on
n, that is (Zn)n is a Galton-Watson process.

On (Zn = k), k > 0, let / „ . . . , Ik be the k males of the nth generation and
Mj the number of sons of /„ which are .4-males (Mf = 0, 1, 2, . . . ). Let further

_ | 1 if 7, is married and has no sons,

^ {0 otherwise,

/ = 1, . . . , k, (that is Tjj, = 1 =» M,, = 0). V, is an A-male if and only if Af, > 0 or
TJ, = 1. The branching property of (Zn')n implies that

j , i?,-))i <;<* are i.i.d., do not depend on n, and

(5) . *
Zn+l= Y.M, on{Zn = k).

Let 1 < j < k. For / > 0 and 1 < i, < i2 < • • • < '} < *» let 1 < ij+l

< • • • < ik < k be such that {/„ . . . , ik) = {1, . . . , k] and define

Ei,, ...,.; = { zn = k> Ay • • • - h, a r e ̂ -males, Iij+i, . . ., Iik are 5-males},

j k

= Pi { ^ > 0 o r ^ = l}n n
r-l r-j+l
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The Eit ,'s are mutually exclusive and by (5), P{D\Eii ,) = pD indepen-
dent of /„ . . . , ij. Hence, employing (4) and (5),

/ * \
PI 2 Mi• = l\Zn = k andj of these males are A -males j

W £ M ; = /| U^ ^ E,t J - P( 2 «i -/|£, ,)

2 A/, = /|£, y) = PJ 2 Mi = l\Mr > Oori), = 1 for 1 < r < j

' J \
2 Nj•. — I J, where Nx, . . . ,Nj are i.i.d. with distribution

P(A^ = r) = P(A ,̂. = r\Mt > 0 or T\,, = 1), r = 0, 1,

As fory > 1, {Zn = j} c A,

p{zn+x = /|(zn -y ) nA) = p(zn+l = /|zB =y)

= 2 P{Zm+l = /|Zn =7, Zn = A:)P(Zn =

-At N, = /) f *^ = 1̂̂  -7) = A t V =
\,-_l /fc-y \ , - l

On {Zn = 0} n A, Zn consists only of 5-males and hence Zn+1 consists only of
2?-males, that is

p(zn+l = o\(zn =

Hence on A, Zn+i is distributed like 2^ . , A7,, that is (Zn)n is a Galton-Watson
process.

Step 2. It is left to show that (Zn)n conditioned on A has the offspring
distribution which corresponds to f(s). It is enough to calculate the p.g.f. of Z,
conditioned on A.

P(A) = 1 - z; P((Z, = 0) n A) = P(J is married but has no sons)

= y = f(z)-z by 0).
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For 1 <j < k: P{ZX = j\Zx = k) = P(J of the k males are A -males) =

<*X1 - zYzk~J' by the branching property of (Zn')n. As ( Z , = j) c ^ ,

- y ) n A) = />(Z\ - 7 ) - 2 ^ > - ^ Z , = A:)P(Z, = k)
k-j

Hence
CO / 00 00

2 P(ZX =j\A)sJ = (1 - z)~l /(z) - z + 2 2
y-o \ y-i fc-y

z) - r + f

(1 - z)~\f{z) - z + A(l - z)s + z) -

REMARK. In the case q = 0 we have the following simplifications: z = q,
x ~ Po>y ~ 0: an y4-male is a male with an infinite Une of descent, and TJ, = 0.

The following two results can be shown in a similar way as the Theorems 2
and 3 of Athreya and Ney (1972), Chapter 1.12.

THEOREM 2. On {Zn -^ oo},

If Zn = 0 for some n, then also Zn. = Ofor some n'.

THEOREM 3. Conditioned on B, the process (Zn)n is a subcritical Galton-Watson
process {that is E(ZX\B) < 1) whose offspring distribution has thep.g.f.

As) =[f(z • s) - (/(z) - z)]/z, 0 < s < 1.

REMARK, (a) On B, Zn is the number of fi-males in the «th generation.

(b) The graph of f(s) can be constructed out of the graph of f(s) by

"stretching" the square with opposite corners (0, y) and (z,f(z)) in Figure 1 into

the unit square, mapping (0,.y) into (0, 0) and (z,f(z)) into (1 , 1).
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