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NORMS IN POLYNOMIAL RINGS

G. MYERSON

We give a formula for the norm on a polynomial ring modulo an ideal in terms of
the zero—set of the ideal. We hint at the relation to resultants.

1. DEFINITIONS AND STATEMENT OF THEOREM

Let A be a ring (by which we mean a commutative ring with unity). Let B be
a ring containing A, and suppose that, as an .A-module, B is finitely-generated and
free. Let b be any element of B; then multiplication by b is an A-linear operator Tj
on B. The norm from B to A of 6, written N%b, is defined to be the determinant of
Tb.

Perhaps the most familiar example is that in which A is the rationals and B is a
number field; N%b then coincides with the field norm of algebraic number theory.

In what follows, we write An for A[x\, . . . , xn].

THEOREM . Let A be an integral domain, and let I be an ideal in An such that
B = An/I is, as an A-module, finitely-generated and free. Let k be an algebraically
closed Held containing A, and let Z(I) be the set of all zeros of I over k. Then Z(I)
is Unite and, if f is in An, then

where f = f + I is the image of f in B, and mp is the multiplicity of P as a zero of
I.

Multiplicity is used here in the standard sense of algebraic geometry — we elaborate
on this in the course of the proof. We note that the condition on I is quite restrictive;
for example, if A is the ring of integers and n is 1 then / must be principal with monk
generator. Steve Schanuel has suggested that B need only be projective, not free, but
we have not explored this idea.
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382 G. Myerson [2]

2. PROOF OF PART OF THE THEOREM

We believe that the finiteness of Z(I) (under the hypotheses of the theorem) is
due to Grobner [3]. For the reader's convenience, we present a simple proof.

PROOF: (of the finiteness of Z(I)). For a given j , 1 < j ^ n, we consider the
elements 1, Xj, x*, . . . , of An. Their images 1, XJ,X*, .. in B cannot be A -linearly
independent, since B is finitely-generated as an j4-module; thus there exists a positive
integer r and elements a<>, . . . , aP of A such that ao + a{xj + ... + arify = 0 in B. Let
fj{x) = a0 +axXj + ... + arx

Tj ; then /;- = 0, so fj € I. Now let P = (ax, . . . , an) be
in Z(I). Then fj(P) = 0, so a0 + a^a.j +.. . + a r a j = 0, so there are only finitely many
possible values for otj. But j was arbitrary, so there are only finitely many points in

D

3. CHANGE OF BASE, AND NULLSTELLENSATZ

We wish to reduce the theorem to the case where A = k, that is, where A is an
algebraically closed field.

LEMMA 1. Let A be a ring, let I be an ideal in An, let B = An/I. Let A'
be a ring containing A, with A' D An = A. Let I' be the ideal generated by I in
A'n = A'[xu...,xn),let B< = A'JV. Then

(1) B'~B®AA',

(2) if B is, as an A-module, finitely-generated and free with basis {fi +
/ , . . . , fr + 1} then B' is, as an A'-module, finitely-generated and free

with basis {/i +/ ' , . . . , / , . + / ' } , and, in this case,

(3) if g is in An, then N%{g + I') = Nf {g + I).

PROOF: (with our thanks to Jonathan Hillman). Tensor the exact sequence
0 —> / —> An —> B —> 0 over A with A' to obtain the top row in the follow-
ing commutative diagram:

0

B®A A'
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The map a is defined by a ( / ® a') = a'f and linearity; it is the canonical identi-
fication of An ®x A' with A'n. The map /? is defined by /?(i ® a') = a'i and linearity;
it is surjective since every element of / ' is a sum of terms of the form a'i with a' £ A'

and i £ I. The map 7 is denned to make the triangle commute.

A routine diagram chase establishes that 0 —> / ' —• A'n —* B ®& A' —> 0 is
exact, whence B ®A A' ~ A'n/I' = B'. The rest of the lemma follows from basic facts
about tensor products amd the definition of the norm. D

It follows from Lemma 1 that in proving the theorem we may assume A = k is an
algebraically closed field. We shall have need of the Hilbert Nullstellensatz, which we
state as it appears in [5].

LEMMA 2 . If J is an ideal of kn = k[xi, . . . , xn], if f Ekn, and if Z(J) C Z(f)

then there is a non-negative integer m such that fm is in J.

4. P R O O F OF THE THEOREM BY COMMUTATIVE ALGEBRA

We take as given the hypotheses of the theorem, with A = k.

LEMMA 3 . / has a reduced primary decomposition, I = |~| Qj .
j

PROOF: kn is Noetherian. D

LEMMA 4 . For eacA j , Z(Qj) is a single point.

PROOF: Z(QJ) is certainly a finite set, since Z(I) = \JZ{Qj). Suppose Z(Qj) =
i

S U T, where 5 and T are disjoint and non-empty. Construct / , g in kn such that /
vanishes on S but not on T, and g vanishes on T but not on 5 (such / and g exist
since S and T are finite sets and Jb is an infinite field). Then Z(Qj) C Z(fg), so,
by the Nullstellensatz, (fg)m is in Qj for some non-negative integer m. Since Qj is
primary, some power of / or g is in Qj; but this is absurd, since / does not vanish on
T and g does not vanish on 5 . D

LEMMA 5 . Tie Qj are pairwise relatively prime.

PROOF: For each j , let Z(Qj) = {Pj}. If r ^ s then Pr / P . , since / = f|<3;
i

is a reduced primary decomposition. Assume PT and P, differ in coordinate I, that
is, PT = ( a i , . . . , a n ) , P. - ( / ? ! , . . . , £ „ ) , with ott ^ fit. Let f(x) = x t - at, let
g(x) = xi — 0i. Then f(PT) — 0, so by the Nullstellensatz fu is in Qr for some non-
negative integer u; similarly, gv is in Q, for some non-negative integer v. It follows
that

0 ^ {at - /3 / ) " + " - 1 = (g - / ) « + - 1 = PF + g"G

for some F, G in Jfen. Thus Qr + Q, - kn. D
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LEMMA 6 . B ~ ® kn/Qj (isomorphism as k-algebras).
j

PROOF: Chinese Remainder Theorem. D

Now let Bj = knIQj, and let m,j be the dimension of Bj as a A:-vector space —
this is the standard definition of the multiplicity of P as a zero of / .

PROOF OF THE THEOREM: Let f e kn. Then for each j , (/ + Qj)Bj c Bj,

so Nj^f = 11-^* ' ( / + Qj)- ^et ^i b e the restriction to Bj of the linear operator,

"multiplication by / ", and let A be an eigenvalue of Tj with corresponding eignevector
6 ^ 0 . Thus ( / + Qj)b = Xb. Let b = v + Qj for some v £ kn; then (/ - X)v € Qj.
Now 6 ^ 0 implies v £ Qj. Since Qj is primary, there is a positive integer m such
that ( / - A)m e Qj • J h u s (/(P,-) - A)m = 0, so A = f{Pj). Hence J \ f ' ( / + Q,) =
f{Pj)mi , whence JVf J = J[ /(P,-)m> . D

j

5. PROOF OF THE THEOREM BY LINEAR ALGEBRA

We present a second proof which does not involve primary ideals or the Chinese
Remainder Theorem (at least, not overtly). We let Z(I) - {Pi, . . . , Pt}.

LEMMA 7 . G i v e n f , g in kn with fg e / , if Z(f) n Z{I) = <f>, then g e l .
l

PROOF: Let h = \{ (/ - f(Pj)). Then Z(I) C Z{h) so, by the Nullstellensatz,

hm is in J for some non-negative integer m. Thus hmg is in / . Now hm = fr + c for
r •] m

some r £ kn and some non-zero c in k — in fact c = (—1) m fj /(-Fj) • So from
|_ i

hmg in / we deduce frg + eg in / , whence eg is in / , whence g is in J. D
LEMMA 8 . Let Tj be the linear operator on B given by multiplication by f.

Then the eignevalues of Tj are precisely the quantities f(Pj), j = 1, 2, ...,£.

PROOF: Assume T/b = Xb for some non-zero b in B and some A in k. Choose g
in kn such that b = g + I; note that 6 ^ 0 implies g is not in / . Then (/ — X)g is in
J. By Lemma 7, Z(f - X) n Z(I) ^ 0; hence, A = /(P,) for some j .

Conversely, for each j , choose Uj in kn such that Uj(Pr) = 6jr. Such polynomials
are easily constructed explicitly, and we omit the details. Let VJ — (f — f{Pj))uj.
Then Z(I) C Z{VJ), so, by the Nullstellensatz, vf - (/ - f{Pj))muJ is in / for some
positive integer m. On the other hand, u™ is not in / , since urJl{Pj) ^ 0. So there is
an integer r, 0 < r < m, such that (/ - f{Pj))Tu? is not in / but (/ - f{Pj))r+luf
is. Let Wj — (/ — f(Pj))ru™\ then Wj is an eigenvector for Tf with corresponding
eigenvalue /(P>). For, TfvJj - fwj+I = ( / - f(Pj))wj + f(Pj)v)j + I = f(Pj)wj + I -

57 , . D
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It follows from Lemma 8 that for every / in kn there exist positive integers
mi, . . . , mt such that N?J = Ylf(Pj)m' • To conclude the proof of the theorem
it remains only to show that the my can be chosen independently of / .

PROOF OF THE THEOREM: Choose h in kn such that r ^ s implies h(PT) ̂  h(P,).
Let B = B\ ©.. .®Bi, where Bj is the eigenspace of 2\ corresponding to the eigenvalue
h(Pj), j = 1, •. •, I. Let m.j = dimjt Bj. By Lemma 8, each my is positive. It is clear
that N?h = I] h(Pj)mi .

Now for j = 1, ..., I let Uj be as in the proof of Lemma 8. By the argument of that
lemma, (h - h(Pj))muf is in I for some integer m. Equivalently, (Th - h(Pj))muf =
0, so u^1 is a non-zero element of Bj.

Now let / be an arbitrary element of kn. Since 2\ and Tf commute, Bj is an
eigenspace for Tf. Let A be the corresponding eigenvalue. Then there is an integer r
such that (Tf - AJ'ttJ1 = 0, that is ( / - X)ruf is in / . Evaluating at Pj, and recalling
that «,(/>,) 4- 0, we see (f(Pj) - A)r = 0, so A = f(Pj). The theorem now follows. D

We note that this proof presents an alternative method of viewing the multiplicity
of a zero Pj of the ideal / , namely, as the dimension of the generalised eigenspace Bj
corresponding to the eigenvalue h(Pj) of an operator 7 \ , where h is such that r ^ s
implies h(PT)£h(P.).

6. RESULTANTS

Let A be a commutative ring with unity. Let / and g be polynomials with
coefficients in A. The resultant of / and g, written R(f, g), is defined to be the
determinant of the Sylvester matrix; this is the matrix

a n in—l • • • ao

an . . . ao 0

0

bm b0.

ft t m

where f(x) — £) <*i*' and g(X) — £) bjX*, an ^ 0, bm ^ 0 (in the matrix the
i=o i=o

coefficients of / fill m rows, and the coefficients of g fill n rows).
If A is an integral domain then there are well-known expressions for R(f, g) in

terms of the zeros of / and/or g, for example
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where a runs through the zeros of / in a splitting field containing A, with multiplicities.
Comparing this with the theorem yields

COROLLARY 1 . Let A be an integral domain. Let f in A\ be monic. Let

B = Ai/(f). Then for all g in Ai we have

(2) R(f, 9) = N%9-

Both sides of (2) are defined in terms of the coefficients of / and g alone, from
which it follows that (2) holds under the weaker hypothesis that A be a commutative
ring with unity. This attractive result has been discovered independently several times.
Professor Schinzel informs me that a formula equivalent to (2) appears in a work of
Cebotarev [2] to which I have not had access; since then it has appeared in [6, 4, 9, 1,
10], and, we regret, [7].

We would like to generalise Cebotarev's result to multivariate polynomial rings.
There are difficulties with resultants of systems of multivariate polynomials that do
not arise in the one—variable case, but our theorem suggests that here, too, norms and
resultants are very closely related — see also the expression for the resultant given by
Netto [8]. We hope in a later paper to expand on the relation between the norm as
presented here and the resultant of a system of multivariate polynomials.
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