NORMS IN POLYNOMIAL RINGS

G. Myerson

We give a formula for the norm on a polynomial ring modulo an ideal in terms of the zero-set of the ideal. We hint at the relation to resultants.

1. Definitions and statement of theorem

Let A be a ring (by which we mean a commutative ring with unity). Let B be a ring containing A, and suppose that, as an A-module, B is finitely-generated and free. Let b be any element of B; then multiplication by b is an A-linear operator T_{b} on B. The norm from B to A of b, written $N_{A}^{B} b$, is defined to be the determinant of T_{b}.

Perhaps the most familiar example is that in which A is the rationals and B is a number field; $N_{A}^{B} b$ then coincides with the field norm of algebraic number theory.

In what follows, we write A_{n} for $A\left[x_{1}, \ldots, x_{n}\right]$.
Theorem. Let A be an integral domain, and let I be an ideal in A_{n} such that $B=A_{n} / I$ is, as an A-module, finitely-generated and free. Let k be an algebraically closed field containing A, and let $Z(I)$ be the set of all zeros of I over k. Then $Z(I)$ is finite and, if f is in A_{n}, then

$$
\begin{equation*}
N_{A}^{B} \bar{f}=\prod_{P \in Z(I)} f(P)^{m_{P}} \tag{1}
\end{equation*}
$$

where $\bar{f}=f+I$ is the image of f in B, and m_{P} is the multiplicity of P as a zero of I.

Multiplicity is used here in the standard sense of algebraic geometry - we elaborate on this in the course of the proof. We note that the condition on I is quite restrictive; for example, if A is the ring of integers and n is 1 then I must be principal with monic generator. Steve Schanuel has suggested that B need only be projective, not free, but we have not explored this idea.

[^0]
2. Proof of part of the theorem

We believe that the finiteness of $Z(I)$ (under the hypotheses of the theorem) is due to Gröbner [3]. For the reader's convenience, we present a simple proof.

Proof: (of the finiteness of $Z(I)$). For a given $j, 1 \leqslant j \leqslant n$, we consider the elements $1, x_{j}, x_{j}^{2}, \ldots$, of A_{n}. Their images $1, \bar{x}_{j}, \bar{x}_{j}^{2}, \ldots$ in B cannot be A-linearly independent, since B is finitely-generated as an A-module; thus there exists a positive integer r and elements a_{0}, \ldots, a_{r} of A such that $a_{0}+a_{1} \bar{x}_{j}+\ldots+a_{r} \bar{x}_{j}^{r}=0$ in B. Let $f_{j}(\underline{x})=a_{0}+a_{1} x_{j}+\ldots+a_{r} x_{j}^{r}$; then $\bar{f}_{j}=0$, so $f_{j} \in I$. Now let $P=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be in $Z(I)$. Then $f_{j}(P)=0$, so $a_{0}+a_{1} \alpha_{j}+\ldots+a_{r} \alpha_{j}^{r}=0$, so there are only finitely many possible values for α_{j}. But j was arbitrary, so there are only finitely many points in $Z(I)$.

3. Change of base, and Nullstellensatz

We wish to reduce the theorem to the case where $A=k$, that is, where A is an algebraically closed field.

Lemma 1. Let A be a ring, let I be an ideal in A_{n}, let $B=A_{n} / I$. Let A^{\prime} be a ring containing A, with $A^{\prime} \cap A_{n}=A$. Let I^{\prime} be the ideal generated by I in $A_{n}^{\prime}=A^{\prime}\left[x_{1}, \ldots, x_{n}\right]$, let $B^{\prime}=A_{n}^{\prime} / I^{\prime}$. Then
(1) $B^{\prime} \simeq B \otimes_{A} A^{\prime}$,
(2) if B is, as an A-module, finitely-generated and free with basis $\left\{f_{1}+\right.$ $\left.I, \ldots, f_{r}+I\right\}$ then B^{\prime} is, as an A^{\prime}-module, finitely-generated and free with basis $\left\{f_{1}+I^{\prime}, \ldots, f_{r}+I^{\prime}\right\}$, and, in this case,
(3) if g is in A_{n}, then $N_{A^{\prime}}^{B^{\prime}}\left(g+I^{\prime}\right)=N_{A}^{B}(g+I)$.

Proof: (with our thanks to Jonathan Hillman). Tensor the exact sequence $0 \longrightarrow I \longrightarrow A_{n} \longrightarrow B \longrightarrow 0$ over A with A^{\prime} to obtain the top row in the following commutative diagram:

The map α is defined by $\alpha\left(f \otimes a^{\prime}\right)=a^{\prime} f$ and linearity; it is the canonical identification of $A_{n} \otimes_{A} A^{\prime}$ with A_{n}^{\prime}. The map β is defined by $\beta\left(i \otimes a^{\prime}\right)=a^{\prime} i$ and linearity; it is surjective since every element of I^{\prime} is a sum of terms of the form $a^{\prime} i$ with $a^{\prime} \in A^{\prime}$ and $i \in I$. The map γ is defined to make the triangle commute.

A routine diagram chase establishes that $0 \longrightarrow I^{\prime} \longrightarrow A_{n}^{\prime} \longrightarrow B \otimes_{A} A^{\prime} \longrightarrow 0$ is exact, whence $B \otimes_{A} A^{\prime} \simeq A_{n}^{\prime} / I^{\prime}=B^{\prime}$. The rest of the lemma follows from basic facts about tensor products amd the definition of the norm.

It follows from Lemma 1 that in proving the theorem we may assume $A=k$ is an algebraically closed field. We shall have need of the Hilbert Nullstellensatz, which we state as it appears in [5].

Lemma 2. If J is an ideal of $k_{n}=k\left[x_{1}, \ldots, x_{n}\right]$, if $f \in k_{n}$, and if $Z(J) \subseteq Z(f)$ then there is a non-negative integer m such that f^{m} is in J.

4. Proof of the theorem by commutative algebra

We take as given the hypotheses of the theorem, with $A=k$.
LEMMA 3. I has a reduced primary decomposition, $I=\bigcap_{j} Q_{j}$.
Proof: k_{n} is Noetherian.
Lemma 4. For each $j, Z\left(Q_{j}\right)$ is a single point.
Proof: $Z\left(Q_{j}\right)$ is certainly a finite set, since $Z(I)=\bigcup_{j} Z\left(Q_{j}\right)$. Suppose $Z\left(Q_{j}\right)=$ $S \cup T$, where S and T are disjoint and non-empty. Construct f, g in k_{n} such that f vanishes on S but not on T, and g vanishes on T but not on S (such f and g exist since S and T are finite sets and k is an infinite field). Then $Z\left(Q_{j}\right) \subseteq Z(f g)$, so, by the Nullstellensatz, $(f g)^{m}$ is in Q_{j} for some non-negative integer m. Since Q_{j} is primary, some power of f or g is in Q_{j}; but this is absurd, since f does not vanish on T and g does not vanish on S.

Lemma 5. The Q_{j} are pairwise relatively prime.
Proof: For each j, let $Z\left(Q_{j}\right)=\left\{P_{j}\right\}$. If $r \neq s$ then $P_{r} \neq P_{s}$, since $I=\bigcap_{j} Q_{j}$ is a reduced primary decomposition. Assume P_{r} and P_{s} differ in coordinate ℓ, that is, $P_{r}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), P_{s}=\left(\beta_{1}, \ldots, \beta_{n}\right)$, with $\alpha_{\ell} \neq \beta_{\ell}$. Let $f(\underline{x})=x_{\ell}-\alpha_{\ell}$, let $g(\underline{x})=x_{\ell}-\beta_{\ell}$. Then $f\left(P_{r}\right)=0$, so by the Nullstellensatz f^{u} is in Q_{r} for some nonnegative integer u; similarly, g^{v} is in Q, for some non-negative integer v. It follows that

$$
0 \neq\left(\alpha_{\ell}-\beta_{\ell}\right)^{u+v-1}=(g-f)^{u+v-1}=f^{u} F+g^{v} G
$$

for some F, G in k_{n}. Thus $Q_{r}+Q_{\mathbf{a}}=k_{n}$.

LEMMA 6. $B \simeq \bigoplus_{j} k_{n} / Q_{j}$ (isomorphism as k-algebras).
Proof: Chinese Remainder Theorem.
[
Now let $B_{j}=k_{n} / Q_{j}$, and let m_{j} be the dimension of B_{j} as a k-vector space this is the standard definition of the multiplicity of P as a zero of I.

Proof of the Theorem: Let $f \in k_{n}$. Then for each $j,\left(f+Q_{j}\right) B_{j} \subseteq B_{j}$, so $N_{k}^{B} \bar{f}=\prod_{j} N_{k}^{B_{j}}\left(f+Q_{j}\right)$. Let T_{j} be the restriction to B_{j} of the linear operator, "multiplication by \bar{f} ", and let λ be an eigenvalue of T_{j} with corresponding eignevector $b \neq 0$. Thus $\left(f+Q_{j}\right) b=\lambda b$. Let $b=v+Q_{j}$ for some $v \in k_{n}$; then $(f-\lambda) v \in Q_{j}$. Now $b \neq 0$ implies $v \notin Q_{j}$. Since Q_{j} is primary, there is a positive integer m such that $(f-\lambda)^{m} \in Q_{j}$. Thus $\left(f\left(P_{j}\right)-\lambda\right)^{m}=0$, so $\lambda=f\left(P_{j}\right)$. Hence $N_{k}^{B_{j}}\left(f+Q_{j}\right)=$ $f\left(P_{j}\right)^{m_{j}}$, whence $N_{k}^{B} \bar{f}=\prod_{j} f\left(P_{j}\right)^{m_{j}}$.

5. Proof of the theorem by linear algebra

We present a second proof which does not involve primary ideals or the Chinese Remainder Theorem (at least, not overtly). We let $Z(I)=\left\{P_{1}, \ldots, P_{\ell}\right\}$.

Lemma 7. Given f, g in k_{n} with $f g \in I$, if $Z(f) \cap Z(I)=\phi$, then $g \in I$.
Proof: Let $h=\prod_{j=1}^{\ell}\left(f-f\left(P_{j}\right)\right)$. Then $Z(I) \subseteq Z(h)$ so, by the Nullstellensatz, h^{m} is in I for some non-negative integer m. Thus $h^{m} g$ is in I. Now $h^{m}=f r+c$ for some $r \in k_{n}$ and some non-zero c in $k-$ in fact $c=(-1)^{\ell m}\left[\prod_{j} f\left(P_{j}\right)\right]^{m}$. So from $h^{m} g$ in I we deduce $f r g+c g$ in I, whence $c g$ is in I, whence g is in I.

Lemma 8. Let T_{f} be the linear operator on B given by multiplication by \bar{f}. Then the eignevalues of T_{f} are precisely the quantities $f\left(P_{j}\right), j=1,2, \ldots, \ell$.

Proof: Assume $T_{f} b=\lambda b$ for some non-zero b in B and some λ in k. Choose g in k_{n} such that $b=g+I$; note that $b \neq 0$ implies g is not in I. Then $(f-\lambda) g$ is in I. By Lemma 7, $Z(f-\lambda) \cap Z(I) \neq \emptyset$; hence, $\lambda=f\left(P_{j}\right)$ for some j.

Conversely, for each j, choose u_{j} in k_{n} such that $u_{j}\left(P_{r}\right)=\delta_{j r}$. Such polynomials are easily constructed explicitly, and we omit the details. Let $v_{j}=\left(f-f\left(P_{j}\right)\right) u_{j}$. Then $Z(I) \subseteq Z\left(v_{j}\right)$, so, by the Nullstellensatz, $v_{j}^{m}=\left(f-f\left(P_{j}\right)\right)^{m} u_{j}^{m}$ is in I for some positive integer m. On the other hand, u_{j}^{m} is not in I, since $u_{j}^{m}\left(P_{j}\right) \neq 0$. So there is an integer $r, 0 \leqslant r<m$, such that $\left(f-f\left(P_{j}\right)\right)^{r} u_{j}^{m}$ is not in I but $\left(f-f\left(P_{j}\right)\right)^{r+1} u_{j}^{m}$ is. Let $w_{j}=\left(f-f\left(P_{j}\right)\right)^{r} u_{j}^{m}$; then \bar{w}_{j} is an eigenvector for T_{f} with corresponding eigenvalue $f\left(P_{j}\right)$. For, $T_{j} \bar{w}_{j}=f w_{j}+I=\left(f-f\left(P_{j}\right)\right) w_{j}+f\left(P_{j}\right) w_{j}+I=f\left(P_{j}\right) w_{j}+I=$ $f\left(P_{j}\right) \bar{w}_{j}$.

It follows from Lemma 8 that for every f in k_{n} there exist positive integers m_{1}, \ldots, m_{ℓ} such that $N_{k}^{B} \bar{f}=\prod f\left(P_{j}\right)^{m_{j}}$. To conclude the proof of the theorem it remains only to show that the m_{j} can be chosen independently of f.

Proof of the theorem: Choose h in k_{n} such that $r \neq s$ implies $h\left(P_{r}\right) \neq h\left(P_{s}\right)$. Let $B=B_{1} \oplus \ldots \oplus B_{\ell}$, where B_{j} is the eigenspace of T_{h} corresponding to the eigenvalue $h\left(P_{j}\right), j=1, \ldots, \ell$. Let $m_{j}=\operatorname{dim}_{k} B_{j}$. By Lemma 8, each m_{j} is positive. It is clear that $N_{k}^{B} \bar{h}=\prod h\left(P_{j}\right)^{m_{j}}$.

Now for $j=1, \ldots, \ell$ let u_{j} be as in the proof of Lemma 8. By the argument of that lemma, $\left(h-h\left(P_{j}\right)\right)^{m} u_{j}^{m}$ is in I for some integer m. Equivalently, $\left(T_{h}-h\left(P_{j}\right)\right)^{m} \bar{u}_{j}^{m}=$ 0 , so \bar{u}_{j}^{m} is a non-zero element of B_{j}.

Now let f be an arbitrary element of k_{n}. Since T_{h} and T_{f} commute, B_{j} is an eigenspace for T_{f}. Let λ be the corresponding eigenvalue. Then there is an integer r such that $\left(T_{f}-\lambda\right)^{r} \bar{u}_{j}^{m}=0$, that is $(f-\lambda)^{r} u_{j}^{m}$ is in I. Evaluating at P_{j}, and recalling that $u_{j}\left(P_{j}\right) \neq 0$, we see $\left(f\left(P_{j}\right)-\lambda\right)^{r}=0$, so $\lambda=f\left(P_{j}\right)$. The theorem now follows. []

We note that this proof presents an alternative method of viewing the multiplicity of a zero P_{j} of the ideal I, namely, as the dimension of the generalised eigenspace B_{j} corresponding to the eigenvalue $h\left(P_{j}\right)$ of an operator T_{h}, where h is such that $r \neq s$ implies $h\left(P_{r}\right) \neq h\left(P_{s}\right)$.

6. Resultants

Let A be a commutative ring with unity. Let f and g be polynomials with coefficients in A. The resultant of f and g, written $R(f, g)$, is defined to be the determinant of the Sylvester matrix; this is the matrix

$$
\left[\begin{array}{cccccccc}
a_{n} & a_{n-1} & & \ldots & a_{0} & & & \\
& a_{n} & & \ldots & & a_{0} & & 0 \\
0 & & \ddots & & & & \ddots & \\
& & & a_{n} & \ldots & & & a_{0} \\
b_{m} & b_{m-1} & & \ldots & b_{0} & & & \\
& b_{m} & & \ldots & & b_{0} & & 0 \\
0 & & \ddots & & & & \ddots & \\
& & & b_{m} & & & & b_{0}
\end{array}\right]
$$

where $f(x)=\sum_{j=0}^{n} a_{j} x^{j}$ and $g(X)=\sum_{j=0}^{m} b_{j} x^{j}, a_{n} \neq 0, b_{m} \neq 0$ (in the matrix the coefficients of f fill m rows, and the coefficients of g fill n rows).

If A is an integral domain then there are well-known expressions for $R(f, g)$ in terms of the zeros of f and/or g, for example

$$
R(f, g)=a_{n}^{m} \prod g(\alpha)
$$

where α runs through the zeros of f in a splitting field containing A, with multiplicities. Comparing this with the theorem yields

Corollary 1. Let A be an integral domain. Let f in A_{1} be monic. Let $B=A_{1} /(f)$. Then for all g in A_{1} we have

$$
\begin{equation*}
R(f, g)=N_{A}^{B} \bar{g} \tag{2}
\end{equation*}
$$

Both sides of (2) are defined in terms of the coefficients of f and g alone, from which it follows that (2) holds under the weaker hypothesis that A be a commutative ring with unity. This attractive result has been discovered independently several times. Professor Schinzel informs me that a formula equivalent to (2) appears in a work of Cebotarev [2] to which I have not had access; since then it has appeared in $[6,4,9,1$, 10], and, we regret, [7].

We would like to generalise Cebotarev's result to multivariate polynomial rings. There are difficulties with resultants of systems of multivariate polynomials that do not arise in the one-variable case, but our theorem suggests that here, too, norms and resultants are very closely related - see also the expression for the resultant given by Netto [8]. We hope in a later paper to expand on the relation between the norm as presented here and the resultant of a system of multivariate polynomials.

References

[1] S. Barnett, 'Greatest common divisor of two polynomials', Linear Algebra Appl. 3 (1970), 7-9.
[2] N.G. Cebotarev, Teorija Galua (Mathematika w Monografijach, Serija Obsorow I, Moskwa, Leningrad, 1936).
[3] W. Gröbner, Moderne algebraische Geometrie (Springer, Vienna and Innsbruck, 1949).
[4] R.E. Kalman, 'Mathematical description of linear dynamical systems', SIAM J. Control 1 (1963), 152-192.
[5] S. Lang, Algebra (Addison Wesley, Reading, Mass., 1965).
[6] N.H. McCoy, 'Divisors of zero in matric rings', Bull.Amer.Math.Soc. 47 (1941), 166-172.
[7] G. Myerson, 'On resultants', Proc. Amer. Math. Soc. 89 (1983), 419-420.
[8] E. Netto, Vorlesungen über Algebra, vol II (Leipzig, 1900).
[9] H. Schmidt, 'Bemerkung zur elementaren Algebra: I. Restklassenring und Resultante', Bayer. Akad. Wiss. Math. - Natur. Kl. Sitzungsber. 1966 II (1967), 167-172.
[10] W.G. Vogt and N.K. Bose, 'A method to determine whether two polynomials are relatively prime', IEEE Trans. Automat. Control AC-15 (1970), 379-380.

Australia

[^0]: Received 6 June 1989

