
FINITE TIME RUIN PROBLEMS FOR PERTURBED EXPERIENCE
RATING AND CONNECTION WITH DISCOUNTING RISK MODELS

BY F. ABIKHALIL

Universite Libre de Bruxelles

ABSTRACT

We consider a generalisation of a risk process under experience rating when the
aggregation of claims up to time t is a Brownian motion (B.M.) with a drift. We
prove that the distribution of ruin before time t is equivalent to the distribution
of the first passage time of B.M. for parabolic boundary.

Using Wald identity for continuous time we give an explicit formula for this
distribution. A connection is made with discounting risk model when the income
process is a diffusion.

When the aggregation of claims is a mixture of B.M. and compound Poisson
process, we give (using Gerber's result 1973) an upper bound for the distribution
of finite time ruin probability.
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1. INTRODUCTION

The purpose of this paper is to analyse the ruin probabilities (finite- and infinite-
time horizon) for a risk process, where premiums are collected continuously on
the basis of the "perturbed" experience rating model.

The principle of the experience rating is to adjust premiums by taking into
account previous information. Nevertheless, there is a difference between examin-
ing premiums in a theoretical way and how they are applied in reality.

Actually, in practice, the insurer uses "some kind" of experience rating principle
and takes into account, let us say, indirect influence factors like, for example:

(1) Uncertainty of inflation;
(2) Time lags between the calculation of premiums and the collection of data

concerning claims.
(3) Uncertainty due to a lack of precise knowledge about economic activity.

RANTALA (1982), in his studies of the insurance industry in Finland, suggested
(see section 2.2. "models for premiums fluctuation") to add to the experience
rating model (for the discrete case) a "noise" term, which seems to be a good
approximation to real situations.

Following this idea, in order to take into account the indirect influence factors
discussed above, we will add a perturbation by introducing a Brownian motion
(B.M.) for the continuous case considered here, and will say that we have a
perturbed experience rating.
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Our analyses (Section 4) will rely on a fundamental theorem of SHEPP (1967).
For convenience and to make the paper self-contained, this theorem is restated
in the appendix.

This paper is organised as follows. In Section 2 and 3 we describe the risk
process under "perturbed experience rating".

Section 4 is devoted to analyse the ruin probabilities in finite and infinite-times
intervals, when the aggregation of claims up to time t, {5(0, / s= 0} is a B.M. with
a drift. A connection with classical risk process with discounting is done.

Finally, in Section 5, we apply Gerber's result (1973) to give an upper bound
for the ruin probability before /, when {S{t), t^O} is a linear combination of
compound poisson process and a B.M. with a drift.

2. DESCRIPTION OF THE RISK PROCESS AND NOTATIONS

We consider a risk process in which the total premium received in the time-interval
[0, t] is denoted by P(t), and we represent by {5(0, f 3=0} the aggregation of
claims up to time t. We assume that the process {P(t), t &0} and {S(t), t^O} are
Markovian and defined on a probability space (il, F, P).

Finally, let {Z{t), 1^0} be the surplus process of a company, and write x for
Z(0). We have:

(1) Z(t) = x + P(t)-S(t), t^0

3. PERTURBED EXPERIENCE RATING AND THE CORRESPONDING

SURPLUS PROCESS

Consider a risk process satisfying (1) where each element of premium is modified
by refund or surcharge according to the stochastic differential equation:

(2) dP(t) = (p-k(P(t)-S(t))dt + trdW(t), t^0

with P(0) = 0 a.s. and where:

(i) p is the base premium constant rate
(ii) {W(t), t^0} is a standard B.M. process independent of {5(0, t^0}
(iii) a positive constant, k being the "experience rating factor" (0< fc< 1, in

general).

Equation (2) is linear stochastic differential equation. Using classical result from
GIHMAN and SKOROHOD (1972), its solution is

(3)

where

(4) X(t)=
Jo

\
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Substituting (3) in (1), Z(t) becomes

p r
(5) Z(t) = x+-(l-e~k') + ke-kt \ eksS(s) ds + cre-k'X(t)-S(t), «3=0

k Jo

In order to characterise and reduce this expression we have the following two
propositions.

PROPOSITION 1. {X(t),t3=0} is a gaussian process with zero mean and with
covariance:

/"min(s,() i

(6) co\(X(s),X(t))=\ e2kudu=—(e2kimin(l's)-l).
Jo 2fc

PROOF. The fact that X(t) is gaussian with !zero means is obvious. For relation
(6), it suffices to use the well-known property:

r j*b /*c ~] /*min(b,c)

(7) £ f(t)dW(t)-\ g(t)dW(t)\=\ f(t)-g(t)dt

where in this formula / and g are assumed to be continuously differentiable on
the indicated intervals of integration. The proposition follows then by an elemen-
tary computation. •

Assume now that {S(t), 13=0} is stationary, independent increments, finite vari-
ance with S(0) = 0 a.s. and belonging to D[0, oo) where D[0, oo) denotes the
space of functions on [0, oo) that are right-continuous and have left-hand limits,
we have

PROPOSITION 2. The process {{0 e
1™ dS(s), 13=0} is well defined, a.s. finite, and

every sample path satisfies the following relation:

(8) I eksdS(s) = ek'S(t)-k\ e^Sis) ds.
Jo Jo

PROOF. See HARRISON (1977) Proposition 2.1. •

COROLLARY. Under the assumption of proposition 2 and substituting (8) in (5)
the surplus process can be expressed as:

(9) = x + ̂ {l-e-
k')-e'kl | eks

k Jo

4. RUIN PROBABILITIES WHEN {S(t), 13= 0} IS A B.M. WITH A DRIFT

4.1. Description and Characterisation of the Surplus Process

Assume moreover that S(t) satisfies the differential (stochastic) equation;

(10)
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where m is a positive constant and { Wx{t), t s= 0} is a standard B.M. independent
of {W(t), t^O}.

Then the relation (9) gives:

(11) Z{t) = x + ̂ {\-e-k')-e'kt I e1" m ds + e-k'(o-1Xl(t) + aX(t))
k Jo

where we define, as before

X1(t) = -
Jo

From proposition 1, {X^t), t s= 0}, is a gaussian process independent of {X(t), t 3=
0} with zero mean and as covariance function;

cov (X^s), X1(t))= — (e2k(m'"as)) -1 ) .

It is well-known that the sum of two independent gaussian processes is a gaussian
one. So we can write:

(12)

where

(i) {X{t), f 3=0} is a gaussian process with zero mean and having the same
covariance function as {X^t), f 3*0}

(ii)

(13) 2

Consequently;

(14) ^
Ac

where /J.= p — m>0
Now let fi * = /u. + kx.

PROPOSITION 3. If{S(t), 13= 0} is a B.M. with a drift m, the process {Z{t), 13* 0},
is an Ornstein-Uhlenbeck process with a drift fi(y) = AI* — ky and an infinitesimal
variance cr2(y) = cr2.

PROOF. It is clear that Z(t) is a gaussian and has continuous sample paths
with independent increments.

Write

(15) Z(t) = k

with

(16) at) = xek'+^(

By differentiating (15) we get

(17) dZ(t) = -kZ(t) dt + fi* dt + adW2(t),
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where {W2(t), fs=0} is a standard B.M. From this, the proposition follows
immediately. •

REMARK. We will call £(0, the modified surplus process, and will represent
it by the compounding B.M.:

-A

(18) £(t) = xek'+-{ek'-l)+-?= W(e2k'-\),
k V2fe

4.2. The Ruin Functions

We are interested in the random variable "time of ruin" defined as usual by:

(19) T = inf{f5=O:Z(f)=sO}.

Introduce the ruin functions, respectively on finite and infinite-time horizons:

(20)

(21)

4.2.1. The Ultimate Ruin is Certain

It is obvious that Z{t) and £(f) hit zero at the same random time T, so at this
time and from (18),

(22) xekT + ̂ (ekT

k 4lk

Let v be the scale change in time defined by v = e2kt - 1 and let v* = e2kT - 1 .
In terms of v (22) gives: W(v*) = £(u*) where

(23) ij(v) = a-yJv+l,

a, y beine two positive constants defined by

7^ and y= J--
k a V k a-

Obviously

(i) g{v) is continuous
(ii) £(0) = a - y = W

(Hi) £(»)/»-•• „-.«<>

We can then apply Shepp's result (see appendix, corollary A) for the function
(23) and deduce that the ultimate ruin is certain.

4.2.2. Ruin Probability on Finite-Time Interval

Our objective in this section is to study the function </>(x, t), which we assume
to have density p(t) (the argument x is omitted), or in terms of v, we are interested
in the density g(v), where g(v) dv = p(t) dt.
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From theorem A (appendix) we have

(24) e~Ka+ky^ri~KHv'2)g{v)dv = \, A >0 .
Jo

then following the method used by SHEPP (1967) or DANIELS (1969), for
Re(s)>0,

poo Too poo

(25) A e a A = I A e^ a A l e g(v) dv
Jo Jo Jo

f e""!' dy (v + iys/2g(v)dv
Jo Jo

where >» = AVJH-1

Relation (25) gives the Mellin transform of g(v), or the Laplace transform of
the first passage time density of the process Z{t) (cf. v+\ = e2kl), which means
that if we set T = kt, this density is h(r) where h(r) dr = g(v) dv and consequently
(25) becomes:

(26) h*(s) = f
Jo

h(T)dr ^ \
I(s, y)

where

(27) S,a)=-L| /-'e^
i ( i ) Jo

in terms of the parabolic cylinder function.
KEILSON and Ross (1975) prepared tables of h(t) which give numerically the

simple zero, - /} , , of the denominator of (26) on the negative real axis with the
appropriate coefficients

of the simple spectral decomposition

GO

(29) HT)=Z cr^a, fl) e ^ .
7 = 1

The preceding result can be summarised in the following proposition.

PROPOSITION 4.

(30) </<(*, 0 = [ Hr)dr
Jo

Where cr^a, fi) and fij are defined above.
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4.3. Connection with Classical Discounted Risk Process

In his paper, HARRISON (1977) studied the ultimate ruin probability for a classical
model with interest rate /3. The basic equation for the surplus process denoted
here by Z(t), was (see example 3.3. of HARRISON 1977)

Jo
(31)

where /2, a are two positive constants and {W3(t), /3=0} a standard B.M.
This process is a diffusion, and its infinitesimal mean and variance are /2(y) =

jl+y and 6-2{y) = a2, yeR, respectively.
The modified process, (the square-bracketed term in (31) denoted by

(32

where {W4(t), f 3=0} is a standard B.M.
In this case, Harrison showed that the ultimate ruin is not certain and its

probability is:

(33)

where a and b are two positive constants defined by:

a = y]~z^ and b= —

and <!>( •) being the standardised normal distribution.
This result is not surprising, because if we make in (32) the scale change in

time J = (1 - e 2^'), the process {£((), ts?0} hits zero when

so in terms of v, the B.M. stops at i; = 1 and it is not certain that W4(u) will hit
the parabolic boundary before v = \.

IMPORTANT REMARKS
(1) The rescaling of B.M. representation is a very delicate operation. We cannot

make it for a process like Z(t) as was done in HARRISON (1977). The
reason is that the covariance of the integral representation of Z(t), see
equation (31) is not the same as that of the rescaling B.M. (see equation
(18) in HARRISON 1977).

(2) The difference between the two processes ({Z{t), 13=0} is characterised as
being a B.M. plus an elastic force that pulls the process back toward zero
with a constant proportionality to the current absolute positions k(k>0).
While, {Z(t), ts=0} is characterised similarly but the elastic force is a
repulsive one pushing the process away from zero (constant proportionality
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5. UPPER BOUND FOR RUIN PROBABILITY WHEN THE AGGREGATION OF

CLAIMS IS A COMPOUND POISSON PROCESS

Let S(t) be a compound Poisson process; we can write,

JV(O

(35) S(t)= I A , , t&O
1 = 1

where {A} l S , is a sequence of positive independent, identically distributed
random variables with a common distribution function F ( ) , and {N(t), t^O}
is a Poisson stochastic process, independent of the {A,},si, having parameter A.

Moreover, we assume S{t) independent of {X(t), 1*0}, denned in section 3.
In the context of classical risk theory:

A, denotes the amount of the ith claim (i = 1, 2 , . . . ) and
N(t) represents the total number of claims occurring in the time-interval
[0, *]•

Thus, the Riemann-Stieltjes integral $'o e
ks dS(s) becomes:

(36) I ek'<A,
1 = 1

where tu t2,..., denote the times at which claims occur.
The surplus process (9) is now:

(37) j

or equivalently

xek'+^(ek'-l) + aX{t)- I ek'-A,\

= e~k'[X(t)-X*(t)], (50

where

(39) X(t) = xek'+^-(ek'-l) + aX(t), l?0
k

NU)

(40) X*(t)= I ekl'An t»0.
1 = 1

As before, {X(t), 13=0} is a gaussian process with independent increments with

(41) k ^ k

+

(42)
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and with as moment generating function:

(43) M(r, t) = exp { - r[x ekt+^(ekl -1)] +~ ^ (e2kt - 1) J.

Consider Z*(t) = ek'Z(t)-x.
Obviously Z*(t) is a process with independent increments, then we can apply

GERBER'S result (1973) to calculate an upper bound for ̂ (x; t).
In our case, we have

(44) ¥(x, t)« min e~rx max E[e"rZ*(s)].
r OssSI

Since {X(t), (^0} and {X*(t), f ̂ 0} are independent, using (43), (44) becomes:

(45)¥(x, t) =s min e~rx max exp) -r(x + ̂ )(eks - l)+^-(e2 f a - I)r2+ K*(r,

where /C*(r, s) is the cumulant generating function of X*(s).
From C. G. TAYLOR'S paper (1979) we have

r*i ^ A frefc' g(«)~l
K*(r,s)=-

(46) K*(r,s)=j\ ^ ^ d u
K J r U

where 5(u) denotes the moment generating function associated with F( •). As in
TAYLOR'S paper (1979) we can only consider values of r such that r> r*(t) with
r*(t) being the unique real and positive solution of

(47)

Then

\ -rx- r( x + y){ekl -l)+E
T(e2kl -\)r2+ K*(r,t)\

I \ K/ 4k J
« min exp

REMARK. If we take for S( /) a linear combination of a compound Poisson process
and a B.M. with a drift (but independent), the whole analysis, in this section is
still valid.

The numerical treatment of proposition 4 and equation (48), with comparison
with other models (JANSSEN and DELFOSSE 1982) will be developed in a forthcom-
ing paper.
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APPENDIX I

FUNDAMENTAL WALD IDENTITY IN CONTINUOUS-TIME

Let f(t), (SO be a continuous function and let r be the first time t, such that
W(t)=f(t) where {W(t),t>0} is a standard B.M., and let
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THEOREM A. //: (1) A >0, (2)/(0)>0, (3) f(t)/t^O as t-*oo, then

f
Jo

PROOF (see SHEPP, 1969). Actually, this result is a direct consequence of the
fact that the process {eAW<')"A2<'/2), f 5=0} is a martingale. •

C O R O L L A R Y A. Letf(t) = cVfe + t-u and suppose u < cslb
poo

(A.2) P|>3=f]= dF(f) = l.
Jo

PROOF. From (A.I) as A -»0 the integrand goes to one dominatedly. •
APPENDIX II

In this appendix we give numerical values to illustrate the upper bound in (48);
when the distribution of individual claim size is negative exponential, i.e. that

(49)

In (49), we assumed that the expected number of claims for unit time is equal
to unity.

For x — (T=l,p = l.3 and various values of t and k, we find:

t/k 0.05 0.10 0.15 0.20

0.1
0.2
0.25
0.3
0.35
0.5
0.9
0.1
1.5
2

1.47001739E-03
0.144325801
0.021223472
0.0263070499
0.0295210032
0.0305188815
0.792848419
0.799357953
0.818592853
0.826321282

1.428926E-03
0.0139840728
0.0205326385
0.0254139702
0.0284802841
0.0293484819
0.787248899
0.793401234
0.811100702
0.81754902

1.38886793E-03
0.0135472572
0.0198601574
0.0245450083
0.0274679932
0.028208696
0.781640129
0.787431127
0.803582347
0.808761104

1.34982067E-03
0.0131219139
0.019205716
0.0236998074
0.026483791
0.0270998241
0.776030215
0.781457787
0.796061988
0.80000189
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