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Abstract

Imagine that we are on a train, playing with some mechanical systems. Why can’t we detect
any differences in their behavior when the train is parked versus when it is moving
uniformly? The standard answer is that boosts are symmetries of Newtonian systems. In this
article, I use the case of a spring to argue that this answer is problematic because symmetries
are neither sufficient nor necessary for preserving its behavior. I also develop a new answer
according to which boosts preserve the relational properties on which the behavior of a
system depends, even when they are not symmetries.

1. Introduction
Why do mechanical systems inside a bigger system behave in the same manner
regardless of the (constant) velocity of the bigger system? For example, why is it that
a pendulum hanging from the roof of a train’s cabin oscillates with the same period
when the train is at rest at the station and when it is moving at a speed of 150 km/h in
a straight line? The standard answer to these questions appeals to the fact that the
laws of mechanical systems are invariant under constant-velocity transformations or,
what amounts to the same thing, to the fact that boosts are dynamical symmetries of
mechanical systems (one could also say that “Newton’s laws are Galilean invariant,”
which includes being invariant under boosts). In this article, I will argue that the
standard answer is wrong. In particular, I will show that some transformations are
dynamical symmetries and do not preserve the behavior of a mechanical system, and
others are not dynamical symmetries, yet they do preserve the behavior of a
mechanical system. Hence, being a dynamical symmetry is neither necessary nor
sufficient for a given transformation (like a boost) to preserve the behavior of a
Newtonian system. The main takeaway of the article is that we should look beyond
dynamical symmetries for an answer to why mechanical systems, such as a pendulum
inside a train, behave the same under boosts of the train.

The arguments in this article pose a problem not only for the standard physics
explanation of why mechanical systems behave in the same way under boosts (i.e., the
explanation that appeals to the fact that boosts are symmetries of Newtonian
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systems) but also for any philosophical view of symmetries that entails the standard
explanation. For example, although they adopt rather different approaches to
elucidating the connection between symmetries, observations, and measurements,
Healey (2009), Dasgupta (2016), and Wallace (2022) have developed frameworks that
seem to agree on this particular point: in order to explain why in Newtonian
mechanics experiments confined to the cabin of a train yield the same outcomes
regardless of the constant velocity of the train, we must appeal to (among other
things) the fact that boosts are dynamical symmetries of the laws that characterize
the mechanical systems in the cabin (see Dasgupta 2016, sec. 4.3; Healey 2009, sec. 5;
Wallace 2022, sec. 4 and 5). Hence, these different approaches seem to recover the
standard physics explanation that aims to derive sameness in behavior for a system
from its dynamical symmetries, at least when restricted to the case of boosts in
Newtonian mechanics. Hence, these accounts are also vulnerable to the arguments
developed in this article.

The structure of the article is as follows. In section 2, I will present a simple
mechanical system (a spring inside a spaceship) around which the rest of the article
will be structured. The point of using this system is to examine, as concretely as
possible, different explanations for why it is that the system remains invariant under
the boosts of the spaceship. In section 3, I consider the standard approach to
explaining why the system behaves in the same way under boosts; boosts are
dynamical symmetries of the laws characterizing the system. Section 4 shows a
problem with this kind of approach, having to do with a proliferation of dynamical
symmetries. Section 5 shows a second problem: being a dynamical symmetry is not
sufficient for explaining sameness in behavior. And section 6 shows a third problem:
being a dynamical symmetry is not necessary for explaining the sameness of
behavior. Section 7 presents a different approach that is more general and simpler
than the one that appeals to dynamical symmetries and that centers on the fact that
boosts can preserve the relative quantities on which the behavior of a system depends
even when they are not symmetries.

Before moving on, it is worth stressing that other scholars, such as Belot (2013) and
Wallace (2022), have already noted that some symmetries do not preserve the
physical behavior of systems. However, in contrast to this article, these works do not
focus on the explanatory role of symmetries and do not question the claim that
symmetries explain why the behavior of simple mechanical systems (such as springs)
remains invariant under boosts.

2 The main question

2.1 Terminology
Before considering the various arguments, it is a good moment to fix some basic
terminology. Roughly, a dynamical symmetry is a mathematical transformation of the
dependent or independent variables appearing in the equation for a law (usually, a
differential equation) that leaves it invariant (equivalently, such transformation maps
solutions to solutions). For the sake of brevity, “symmetry” and “dynamical
symmetry” will be treated as interchangeable unless otherwise noted (this is common
in the literature; see, e.g., Dasgupta 2016 or Wallace 2022). Also for brevity, I say
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“dynamical symmetry of the system” instead of “dynamical symmetry of the system’s
laws,” but it should be clear that the latter is more precise.

2.2 A spring in a spaceship
Suppose that we want to explicitly show that boosts are symmetries of a spaceship
moving in (almost) empty space with some constant velocity with respect to a
faraway star (which is not accelerating). In order to explicitly show that boosts are
symmetries of the spaceship, one can show that the equations representing its
dynamics are invariant under boosts. In practice, this involves showing either that the
two sides of the differential equation remain unchanged under the transformation or
that the two sides are changed by the very same factor so that it cancels out at the
end. In particular, for the present case, one can do the following: because the
spaceship is a mechanical system, and because it is assumed to be isolated (i.e., no
external force acts on it), its dynamics can be represented by the equation 0 � mdv=dt
(Newton’s second law for zero force). Then, we note that a boost of the form v↦v� k
(with k constant) produces no change in the acceleration because d v� k� �=dt � dv=dt
if k is constant, meaning that the right-hand side of equation 0 � mdv=dt does not
change. And then, we show that v↦v� k produces no changes in the force F � 0
because, we assume, the system remains isolated after the boost. Hence, both sides of
0 � mdv=dt remain invariant under a boost, indicating that the simple dynamical law
characterizing the spaceship is preserved by this transformation. We can then say
that the transformation (a boost) is a symmetry of the equation. This entails that such
a boost will map solutions of 0 � mdv=dt into other solutions with higher or slower
velocity (e.g., it will map v � c into v0 � c ± k). This is all very familiar: symmetry
transformations map solutions of the equations of motion of the system into other (or
the very same) solutions.

Now, even though we just showed that the boosts of the spaceship are symmetries
(they preserve the law describing the spaceship’s behavior), notice that the previous
explanation does not really say anything concrete about what is happening inside the
spaceship. Arguably, the most important feature of Galileo’s famous ship thought
experiment is that mechanical systems confined to the ship behave in the same
manner no matter what the velocity of the ship with respect to an external system is
(see Brown and Sypel (1995) for a historically informed discussion of this thought
experiment). So, how do we show in an explicit way that the behavior of mechanical
systems inside the spaceship in question (which is a version of Galileo’s ship) remains
the same under the boosts of the spaceship? To be as concrete as possible, let’s
consider this question in the context of a particular Newtonian system inside the
spaceship’s cabin. In particular, let’s focus on a block of mass M, which is connected to
the back cabin’s wall by an ideal spring that is measured by a detector inside the cabin
that is located at the equilibrium position (see figure 1). Given this setup, consider the
following question:

Main question:Why is it that the behavior of the block, as seen inside the cabin
(e.g., as measured by the detector), remains invariant under the boosts of the
spaceship?
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This apparently simple question will be the focus of attention of the present
article.

3 The dynamical symmetries approach
The standard way to answer why the behavior of a system remains invariant under
boosts appeals to the dynamical symmetries of the system (in particular, it appeals to
showing that boosts are symmetries of such a system). For example, Steven Weinberg
(2021, 90) illustrates that Newtonian gravity is invariant under boosts by showing
explicitly that the equation that describes two massive bodies interacting via
Newtonian gravitation is invariant under transformations of the form r↦r� vt (with
v constant). The idea, then, is to use the exact same kind of strategy in order to answer
the main question (where the relevant system is a spring seen by a detector at the
equilibrium position).

It will be convenient to call the view that purports to answer the main question
along these lines—that is, by focusing on the relevant dynamical symmetries of the
laws that characterize the system—“dynamical symmetries explain” (DSE). Although
DSE is widely defended in physics circles, it is no less popular in philosophical
accounts of symmetries. For example, according to Dasgupta (2016), symmetries
preserve appearances (according to Dasgupta, they do so by definition). Hence, if one
can show that boosts are symmetries of a certain law characterizing a given system,
then it follows that the measurement outcomes of such a system will be preserved
under boosts (see also Roberts 2008). To give another example, Healey (2009, 707–8)
explicitly points out that the fact that boosts are dynamical symmetries of Newtonian
mechanics explains why mechanical systems look the same after a boost.

Let’s then follow DSE for the case of the spring. First, it is clear that the relevant
law characterizing the block’s behavior is Hooke’s because the block is attached to an
ideal spring. Second, according to DSE, we need to show that Hooke’s law is invariant
under boosts—showing this would suffice for answering the main question because
all the detector does is measure the displacement of the spring with respect to
equilibrium. Mathematically, Hooke’s law can be expressed as

xb � �ω2 d2
dt2 xb; (1)

where xb is the position of the endpoint of the spring (the point at which the block is
attached) measured with respect to the equilibrium position of the spring (we follow

Figure 1. A block attached to an ideal spring that is
itself attached to a wall of the spaceship. The
detector is also rigidly attached to the same wall, and
it is located at the equilibrium position. We want to
understand why the behavior of the spring with
respect to the detector looks the same after boosts.
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physics practice and use a coordinate system where the equilibrium position is the
origin), ω depends on the spring’s constant k and the block’s mass via ω � ���������

m=k
p

, and
t represents the time. The general solution of equation 1 can be written as
xb � A cos ωt� � � B sin ωt� �, where A represents the initial amplitude and B the initial
speed. Hence, the actual motion of the spring as a function of time is determined by a
specific value of A and B (the initial conditions). For simplicity, I will refer to
equation 1 as “Hooke’s law,” although the more precise terminology would be “the
law for a classic harmonic oscillator.”

Now, let’s try to answer the main question by showing that equation 1 is invariant
under a boost, that is, under a transformation of the form x↦x� vt. Notice that the
right-hand side of equation 1 remains invariant under this transformation because
the second derivative of vt vanishes.1 However, the left-hand side of equation 1 is not
invariant, for xb is obviously different from xb � vt. Hence, the transformation
x↦x� vt takes equation 1 into equation xb � vt � �ω2 d2

dt2 xb, which is not the
equation of an ideal spring. This seems to be suggesting that, contrary to what we
expected, boosts are not dynamical symmetries of ideal springs! And this suggestion
seems reinforced by the fact that the transformation in question does not map
solutions into solutions. For instance, it takes xb � A1 cos ωt� � (a particular solution of
equation 1 for B � 0 and A � A1) into xb � A1 cos ωt� � � vt, which is not a solution.
Does this then mean that, contrary to what DSE says, the reason a spring behaves in
the same manner in a spaceship at rest and in a spaceship that is moving is not a
consequence of boosts being dynamical symmetries of the spring? Not so quickly!

A defender of DSE might point out that we have misinterpreted the transformation
x↦x� vt. Recall that xb represents the position of the block (the endpoint of the
spring) with respect to the equilibrium position. Hence, if we take the transformation
x↦x� vt as acting only on the endpoint xb, then we seem to be representing a boost
of the block with respect to the equilibrium position as if we were stretching the end of
the spring in a way proportional to speed and time. And of course, if we stretch the
spring in this manner, we no longer expect the spring to behave like an ideal spring.
Hence, what we really need to do according to DSE is show that the behavior of the
block remains the same under boosts of the spring taken as a whole (instead of boosts
of just the spring’s endpoint).

Motivated by the previous remarks, let’s write Hooke’s law (or something that
looks like it) in a different form that explicitly relates the endpoint to the equilibrium
position of the spring via xb � xf � xeq. Here, xf is the position of the block (the
endpoint), and xeq is the position of the equilibrium point with respect to a certain
coordinate system (initially, we take the equilibrium position to be at the origin of
such a system). With these conventions, we can write the following equation:

xf � xeq � �ω2 d2
dt2 xf � xeq

� �
: (2)

Mathematically speaking, equation 2 is what we get if we make the identification
given by xb � xf � xeq in equation 1. The point of this identification is simply that it
makes it easier to keep track of the equilibrium position, which will be useful for what

1 Explicitly, �ω2 d2
dt2 xb � vt� � � �ω2 d2

dt2 xb� � � ω2 d2
dt2 vt� � � �ω2 d2

dt2 xb� � (because v is constant).
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comes next. As before, the general solution of this differential equation
is xb � xf � xeq � A cos ωt� � � B sin ωt� �.2

Consider a boost that acts on both the endpoint xf and the equilibrium point xeq
(and any other point of the spring, for that matter). Explicitly, let’s interpret the boost
transformation x↦x� vt as a transformation acting on every single point of the
spring so that in particular, it acts on xf like xf↦xf � vt and on xeq as xeq↦xeq � vt
(this means that the equilibrium point of the spring is no longer at rest). It is trivial to
show that equation 2 remains invariant under such transformation, for xf � xeq is just
a difference between two terms, and so the left-hand side of equation 2 is invariant
under the transformation. And of course, if this difference is preserved, so is any
derivative of it, meaning the right-hand side is invariant too. Hence, both sides of
equation 2 remain invariant, meaning that x↦x� vt (when interpreted as explained
here) is indeed a dynamical symmetry, just as DSE expected to show!

Similarly, it is easy to show that the transformation in question maps solutions to
solutions (this is a different way of establishing the same thing, namely, that boosts
are symmetries of equation 2). To see this, notice that the only reference the general
solution (i.e.., xf � xeq � A cos ωt� � � B sin ωt� �) of equation 2 makes to either xf or xeq
comes from the term xf � xeq, which is preserved by the transformation, as explained
earlier. Hence, the transformation maps solutions into themselves:
xf � xeq
� �

↦ xf � xeq
� �

or, using the variables of equation 1, xb↦xb (contrast this
with the case of the spaceship at the beginning of the section, where a solution is
mapped to a different solution, v � c↦v0 � c ± k).

It is worth mentioning that the argument just given in no essential way depends on
choosing the formulation given in equation 2 as opposed to the one given in
equation 1. One only needs to be careful, remembering that if the boost acts on the
whole spring, this amounts to xb↦xb in equation 1 and to xf � xeq

� �
↦ xf � xeq
� �

in the
newer formulation. That is, once we recognize that the boost acts on the whole spring,
both formulations of the law are left invariant under boosts. In short, it seems that
DSE offers the right answer to our original question:

DSE’s answer: The spring (and so the block attached to it) behaves the same way
before and after the boost because boosts (understood as applying to all points of
the spring) are dynamical symmetries of Hooke’s law, which is the law that
characterizes the motion of the spring. And because the spring’s behavior does
not change under the boosts of the spaceship, the detector will not detect any
differences in behavior.

4 Problem 1: Proliferation
Although DSE’s answer seems to match our expectations, a closer inspection reveals
an interesting problem. If DSE is right, then, contrary to conventional wisdom, there
is nothing special about boosts or spatial translations because infinitely many

2 To be more precise, we are solving for xf as a function of time, and we take xeq as an external
parameter that depends on the situation (if the spaceship is at rest, xeq � 0; if the spaceship is moving at
a constant velocity, xeq � vt, and so on). So the general solution can be written as
xf t� � � A cos ωt� � � B sin ωt� � � xeq t� �.
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transformations in one dimension preserve the difference xf � xeq and hence leave
equation 2 invariant (this includes transformations that are not normally counted as
dynamical symmetries of springs). Hence, according to DSE, infinitely many
transformations would make the behavior of the block remain invariant. To see
this, notice that x↦x� g t� �, if applied to both xf and xeq, will leave equation 2
invariant, no matter what alteration of one-dimensional motion g(t) is taken to represent!3

For example, g t� � can represent a constant acceleration (in which case we can write
the transformation as x↦x� 0:5at2),4 or it can also represent a variable acceleration,
or it can correspond to a bizarre transformation such as this one: x↦x� cost� t3

(here, g t� � � cost� t3). This last transformation has no natural physical interpreta-
tion (it looks like a weird combination of a harmonic motion combined with a jolt
term). However, whatever motion g t� � represents here (if any!), if the transformation
were to act on all the points of the spring simultaneously, then it would leave
equation 2 invariant.

The fact that so many transformations, from the very mundane ones like shifts and
boosts all the way to rather bizarre ones like x↦x� cost� t3 � t6, would, if
implemented, leave Hooke’s law invariant should puzzle defenders of DSE. At the very
least, it seems puzzling that the reasoning in DSE’s answer ends up generalizing way
beyond the transformations that physicists usually take to be relevant when discussing
Newtonian systems (e.g., see Weinberg 2021, ch. 4; Feynman et al. 1963, ch. 52). And it is
worth pointing out that the proliferation of symmetries for Hooke’s law affects not only
springs but also any other systems that obey the equations of the harmonic oscillator,
including, for instance, pendulums undergoing small oscillations, the vibrating particles
of the medium in a sound wave, or even a ball rolling in a curved dish.

The proliferation of dynamical symmetries is also problematic for formal reasons.
For example, it has been shown that ideal springs are characterized by a finite group of
eight independent symmetry transformations (e.g., see Wulfman and Wybourne
1976), which would be in clear tension with the existence of infinite independent
symmetries (and none of the symmetries discussed in the literature include
transformations such as x↦x� cost� t3 � t6). Related to this, as Belot (2013) points
out, dynamical symmetries are hard to come by. The fact that we just found an
infinite number of them (g t� � can be any smooth function) with one simple line of
elementary math should make us a bit suspicious of the approach!

3 For xf � g t� �� �� xeq � g t� �� � � xf � xeq, and if xf � xeq is preserved, then any derivatives of it are
preserved too.

4 One might suggest that constant accelerations of mechanical systems are indeed dynamical
symmetries of Newtonian systems (including springs) by appealing to something like Corollary VI to the
laws of Newton’s Principia (e.g., see Saunders 2013). As provocative and interesting as this might sound,
however, this kind of approach faces some problems. To name a rather obvious one, notice that equation
�G m2

jr1�r2j3 r1 � r2� � � d2r1
dt2 (describing the motion of a body gravitating with respect to another one) is not

invariant under constant accelerations, and neither is the equation of the spaceship at the beginning of
section 2.2. More generally, the fact that, locally, a system looks the same in the presence of a constant
acceleration does not imply that the differential equation characterizing such a system is invariant under
constant accelerations (e.g., the differential equation might explicitly characterize the system with
respect to an inertial frame, in which case the equation will fail to be invariant under constant
accelerations). We will come back to this point in section 6.

Philosophy of Science 7

https://doi.org/10.1017/psa.2023.170 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.170


5 Problem 2: Stretching the spring
Given the nature of the questions discussed here, it seems rather important to look at
what physicists and mathematicians working on the dynamical symmetries of the
classical harmonic oscillator have said. It turns out that if we do this, a different
problem for DSE appears (a problem already identified by Belot (2013), although in a
different context). If we read physics articles on the symmetries of the harmonic
oscillator (e.g., see Wulfman and Wybourne 1976; Lutzky 1978), we find that there are
plenty of dynamical symmetries that do not preserve the physical behavior of springs (it is
also worth pointing out that in those same articles, boosts are not counted among the
symmetries of Hooke’s law). This highlights a second problem for DSE: to be a
dynamical symmetry is not a sufficient condition for preserving the behavior of
mechanical systems. Schematically, this suggests that we need to replace DSE with
DSE � X, where X refers to some property that distinguishes those dynamical
symmetries that preserve behaviors from those that do not.

Consider the following symmetry transformation of the harmonic oscillator
equation:5

xb↦xb � cos t� �: (3)

Here, we assume that the equilibrium point is initially placed at the origin of the
coordinate system, and xb is understood as the position of the endpoint with respect
to such origin (following Wulfman and Wybourne (1976), we also assume units such
that ω � 1). Here, the transformation is understood as only acting on the endpoint of
the spring with respect to the origin (but see sec. 6 for alternative interpretations).
Using the notation introduced earlier, this means that xf↦xf � cos t� � and xeq↦xeq (or
xb↦xb � cos t� � using the original variables).6

For our purposes, the crucial point of this transformation is this: in contrast to the
transformations we discussed in prior sections, this one does map a solution of the
classic harmonic oscillator equation to a different solution. For instance, it takes
xb � A cos t� � into xb � A � 1� �cos t, which is a solution with a different amplitude.
Hence, this dynamical symmetry of the spring does not preserve the behavior of the
spring (the spring is less stretched or more stretched after the transformation takes
place). More generally, one can check that any given spring state (even a spring that is
not oscillating) can be mapped to any other spring state via a symmetry of the form
xb↦xb � α sin t� � � ɛ cos t� �, where α and ɛ are real numbers (see footnote 6). This
illustrates how some dynamical symmetries of the spring disrupt the behavior in a
rather significant way.

This is a good moment to point out in passing that, contrary to what is often said in
the philosophy literature, this is a dynamical symmetry that does not fix how “things

5 A slightly different version of this symmetry transformation is discussed by Wulfman and Wybourne
(1976, 516). The authors do not write the generator of this symmetry explicitly, but given their prior
results, one can show that the generator is SB � sint @

@x.
6 To see that this transformation is a symmetry, note that

xb � cos t� � � � d2
dt2 xb � cos t� �� �

xb � cos t� � � � d2
dt2 xb � cos t� �:

This is actually an instance of the much more general symmetry xb↦xb � α cos t� � � ɛ sin t� � (where α

and ɛ are real numbers) that can map a spring state to any other state given a suitable choice of α and ε.
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look” (e.g., see Dasgupta 2016), and it does not seem to map a solution to another one
with the same representational capacities (see, e.g., Fletcher (2020) for a recent
defense of a nuanced version of this thesis). The amplitude, the period, and the elastic
energy of the spring (all things that we can measure inside the spaceship) are all
changed by this symmetry transformation. Hence, equation 3 provides a surprisingly
simple but effective illustration of a point already suggested by Belot (2013) (see also
Belot 2018 for a similar point, and Luc 2022 and Wallace 2022 for recent responses),
namely, that many of the allegedly important features about symmetries so often
discussed in philosophy fail to hold for some of the symmetries that physicists discuss
in their research (and this is true of other cases as well, including physicists’
discussions of the symmetries of the Kepler problem; e.g., see Prince and
Eliezer 1981).7

Going back to the discussion of DSE, the fact that x↦x� cos t� � is a symmetry of the
spring shows that defenders of DSE need to say more when presenting their accounts.
In particular, at the very least, they need to exclude those dynamical symmetries that
change the behavior of the spring with respect to equilibrium. Hence, the defenders of
DSE need to add the requirement that the symmetries must preserve the values of A
and B (changes in these variables would represent changes in the initial amplitude or
the initial speed, respectively). This requirement amounts to demanding that the
symmetry acts like the identity in the space of solutions of the harmonic oscillator—
that is, it maps every solution of the harmonic oscillator to itself: xb↦xb (or
xf � xeq↦xf � xeq). Let’s follow mathematical jargon and call “trivial” those symmetry
transformations that act like the identity. DSE’s answer to the main question might
then be modified as follows:

DSE*’s answer: The spring (and so the block attached to it) behaves the same way
before and after the boost because boosts, when understood as applying to all
points of the spring, are trivial dynamical symmetries of Hooke’s law.

Schematically, X in DSE � X corresponds to something like “the transformation is
trivial.” Notice that x↦x� cos t� � is a nontrivial symmetry, so it does not pose a
problem for DSE*. Also, notice that boosts acting on the whole spring are trivial, but
boosts acting on the endpoint are not (in that second case, they are not even
symmetries).

How compelling is DSE*? It is better than DSE in that it avoids, by fiat, the case of
dynamical symmetries that do not preserve the behavior of the spring. But
unfortunately for the defenders of DSE*, it still suffers from the other problems
affecting DSE. For instance, it is still vulnerable to the proliferation of symmetries
because the bizarre transformations that we considered then are also trivial (all these
transformations act trivially in the solution space if they are applied to both xf and xeq).

In addition to not solving the proliferation issue, DSE* seems to be ad hoc; the
justification for adding the triviality condition seems to be that not adding it leads to
counterexamples. Third, DSE* seems so restrictive that it leaves out other cases that

7 For example, symmetries like the one discussed in this section suggest that Dasgupta’s definition of
symmetries is not extensionally adequate because it leaves out symmetries that relate empirically
inequivalent states.
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one might have wanted to explain by appealing to symmetries. For instance, go back
to the case of the spaceship governed by 0 � m d

dt v. If someone asks why it is that the
spaceship still behaves like an object in free fall even after being boosted, one would
imagine that part of the answer (at least for a sympathizer of DSE) is that 0 � m d

dt v is
invariant under boosts. And yet, boosts map solutions of that equation to different
solutions (boosts do not act trivially over the space of solutions). And fourth, there just
seems to be something highly suspicious in trying to explain a deep fact about
mechanical systems of our world (i.e., the fact that their behavior is preserved under
boosts) in terms of mathematically trivial transformations such as xb↦xb. The fact
that mapping xb to itself does not change equations that contain xb seems too trivial of
a fact to offer a substantive resolution to the main question.

6 Problem 3: Active and passive

6.1 Where did the inertial effects go?
In this section, we will consider another problem that a defender of DSE (or DSE*)
faces. We will see how the resolution to this problem provides some insights into both
the issue of proliferation of symmetries and the distinction between trivial and
nontrivial symmetries introduced in the previous section.

It is a basic fact of Newtonian mechanics that if we are using an equation to
describe a system from the perspective of an inertial frame, and we “switch” to an
accelerating frame, then we need to use a modified equation to take into account the
emergence of some inertial or “fictitious” forces. These fictitious forces appearing in
the modified equation for the system signal that we are no longer describing the
target system from the perspective of an inertial frame. To illustrate this, consider
again the case of a spaceship in outer space whose motion is described by 0 � mdv=dt.
Take a case where we transform the frame via v↦v� at (this is not a symmetry of this
differential equation). Notice that if we do that, we can no longer use 0 � mdv=dt in
order to describe the spaceship’s motion because, from the perspective of the new
frame, it looks as if the spaceship had started accelerating. Instead, we need to
consider a fictitious force Ff to account for the apparent acceleration of the object,
and so the equation for the spaceship in this new frame will be Ff � mdv=dt (Newton’s
second law, now with a nonzero fictitious force).

Problems seem to arise, however, when we go back to the block attached to the
spring. Take, once again, Hooke’s law as written in equation 2. And now take the
transformation x↦x� 0:5at2 interpreted passively, indicating a shift from an inertial
frame to a non-inertial frame that moves with constant acceleration. As with the case
of the spaceship, we expect that going to such a frame brings about fictional forces in
the (new) equation describing the system. And yet, none of that seems to happen
because, as we already showed, xf � xeq � �ω2 d2

dt2 xf � xeq
� �

(or xb � �ω2 d2
dt2 xb under

the understanding that xb � xf � xeq) is invariant under a transformation that affects
both xf and xeq in the same manner, and in particular, it is invariant under
x↦x� 0:5at2 if applied to both xf and xeq. Mathematically speaking, this is not
surprising: if x↦x� 0:5at2 is a symmetry of Hooke’s law (assuming we act on all the
points of the spring in the same manner), then this remains true regardless of
whether we interpret it actively or passively. But physically speaking, this is
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concerning; Hooke’s law seems to be completely blind to the non-inertial effects that
should arise when the observer jumps into an accelerating frame.

6.2 Recovering the inertial effects
It turns out that the reason inertial effects seem to be missing is connected to an
interesting ambiguity in how we characterize the displacement of a spring. In
particular, let’s go back to the standard formulation of Hooke’s law, xb � �ω2 d2

dt2 xb
(the subscript b in xb refers to the block). There are at least two ways of interpreting
this equation when modeling a spring. First, this equation can be taken “internally,”
as representing the displacement of the endpoint with respect to the equilibrium
point of the spring (I call it “internal” because it focuses on the displacement between
two points in the spring). In this interpretation, it is natural to define xb via
xb � xf � xeq because the latter is the displacement between the endpoint and
equilibrium, and so it is natural to use the equation xf � xeq � �ω2 d2

dt2 xf � xeq
� �

.
Second, the equation can be interpreted “externally,” as representing the
displacement of the endpoint with respect to the origin of an external reference
frame (henceforth “external interpretation”). Notice that in this second interpreta-
tion, it is misleading to define xb in terms of xf � xeq because in this interpretation, xb
in equation xb � �ω2 d2

dt2 xb is not modeling the displacement from the endpoint to
equilibrium. Rather, in this interpretation, xb models the same thing xf does, namely,
the displacement of the endpoint with respect to the origin of the frame. Hence,
instead of xb � xf � xeq, we should write xb � xf . That is, in this interpretation, the
differential equation for the spring can be written as xf � �ω2 d2

dt2 xf , where xf stands
for the endpoint’s position and where the equilibrium point is not modeled (in the
external interpretation, the quantity xf � xeq still represents the internal displace-
ment of the spring; it is just that this quantity does not appear in the differential
equation). The difference between these two interpretations of equation
xb � �ω2 d2

dt2 xb is reflected in the number of dependent variables of the differential
equation; in the internal case, this is a differential equation consisting of two
dependent variables, one representing the endpoint and the other one representing
the equilibrium point (this becomes apparent once we insert xb � xf � xeq in the
equation). In the external case, xb � �ω2 d2

dt2 xb is a differential equation consisting of
one dependent variable, the one representing the endpoint. Note, by the way, that in
the internal case, there are some “external elements” because both xf and xeq
represent the positions of parts of the system with respect to the origin of an external
frame. But only in the internal case does xb � �ω2 d2

dt2 xb model the behavior of the
“internal quantity” xb � xf � xeq (in the external case, that equation models the
behavior of the endpoint alone).

Usually, from a practical point of view, this ambiguity in how to read xb � �ω2 d2
dt2 xb

has little to no importance; in both cases, the displacement is exactly the same because
the standard convention for the frame places the equilibrium position at the origin (i.e.,
xb � xf � xeq and xb � xf coincide when xeq � 0). But the external and internal
interpretations entail different results under certain specific circumstances: a change in
the frame (a shift in the origin, or in the velocity of the frame, or in the acceleration)
will bring no changes to the equation of a spring according to the internal
interpretation because changes in the frame will preserve relational quantities such as
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xf � xeq. This is precisely why xf � xeq � �ω2 d2
dt2 xf � xeq
� �

is invariant under
accelerations of the frame such as x↦x� 0:5at2, and so this is why no inertial effects
appear in such a case. Things are very different, however, if we adopt the external
interpretation.

Passive-external acceleration: Consider the constant-acceleration transforma-
tion given by x↦x� 0:5at2, and let’s interpret it passively. From the perspective of
the new accelerating frame, the endpoint of the spring no longer behaves like a spring
because it acquires some constant acceleration with respect to the frame.
Mathematically, this is reflected in the fact that xb � �ω2 d2

dt2 xb (interpreted
externally) is not invariant under xb↦xb � 0:5at2. Hence, the transformation is not
a dynamical symmetry of Hooke’s law so interpreted. Instead of Hooke’s law, we must
now describe the endpoint by using an equation such as�kxb � Ff � m d2

dt2 xb, where Ff
is a fictitious force (coming from the choice of a non-inertial frame). Thus, the
external interpretation recovers the inertial effects coming from an accelerating
frame. Notice that an acceleration of the frame will not affect the internal
displacement of the spring, which is given by xf � xeq (recall that xeq does not appear
in the external interpretation of xb � �ω2 d2

dt2 xb). In general, a change in the frame
modifies the coordinates of both the equilibrium point and the endpoint by the very
same factor so that the relative displacement of those two points is preserved (clearly,
a change in the frame will not make the spring get more stretched or less stretched).
This is important because it shows a case in which a transformation fails to be a
dynamical symmetry and still preserves the “internal behavior” of a system.

Passive-external oscillation: To give another example, consider the transforma-
tion x↦x� cos t� �, which we showed to be a dynamical symmetry of xb � � d2

dt2 xb in
section 5 (remember that we are using units so that ω � 1). If we adopt the external
interpretation, then this means that the relative displacement of the endpoint xb � xf
with respect to an external frame (originally at rest) now exhibits some sort of
oscillatory behavior. Read passively, this means that the frame used to describe the
endpoint is starting to oscillate, so it is no longer an inertial frame. Hence, we should
expect some inertial effects! However, as we saw in section 5, the transformation
xb↦xb � cos t� � is a symmetry of xb � � d2

dt2 xb. Back then, this transformation was
understood actively (as deforming the spring), but if T is a symmetry of an equation
when interpreted actively, it remains one when interpreted passively (either an
equation remains invariant under T, or it does not). Hence, xb � � d2

dt2 xb remains
invariant if the frame starts oscillating according to x↦x� cos t� �. This seems
puzzling; we are jumping to a non-inertial frame, and yet the equation describing how
the endpoint behaves with respect to the new oscillatory frame does not change at all.
So where are the inertial effects? It turns out that the fictional force that the non-
inertial frame “produces” is an oscillatory force that can be modeled as the force of an
ideal spring. This means that the original spring still looks like a spring from the
perspective of the new oscillatory frame in the sense that it still obeys xb � � d2

dt2 xb.
However, as seen from the oscillatory frame, the total force acting on the endpoint is
different from the original force: if F � kxb was the original force acting on the block
in the stationary frame, then F0 � k0xb (k0 ≠ k) is the new (partially fictional) force
“acting” on the block according to the oscillatory frame. Given that the magnitude of
the force is different, the amplitude and acceleration as measured with respect to the
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new frame will be different too (this is why the transformation is a nontrivial
symmetry, because it takes us to a different solution). Those differences in force and
acceleration are precisely the inertial effects that we were looking for. Also, notice
that the oscillatory frame preserves the internal displacement, given by xf � xeq
(again, these two variables are transformed equally). So in the external interpretation,
both constant accelerations of the frame and oscillatory accelerations give rise to inertial
effects (as expected), and both preserve the internal behavior of the spring. But only oscillatory
accelerations preserve the form of the equations, and hence only these count as a dynamical
symmetry of the system.

Passive-external boosts: A similar analysis can be done for the case of boosts. We
know that in the internal interpretation, boosts are symmetries (see section 4). But in
the external interpretation, a boost (either active or passive) is not a symmetry of the
equation because it distorts how the oscillation of the endpoint looks with respect to
the origin of the frame.8 Importantly, no inertial effects appear here; from the
perspective of a boosted frame, the acceleration of the endpoint is just the same as it
was before. Also, a boost of the frame will not change how the endpoint moves with
respect to the equilibrium point (i.e., xf � xeq is invariant). This is important because
it shows once again (as constant accelerations did) that according to the external
interpretation, it is not necessary for a transformation to be a symmetry in order for it to
preserve the (internal) behavior of the spring.

Active-external boosts: Just as there are different ways of passively reading a
given transformation of the harmonic oscillator, there are also different ways of
reading a transformation actively. For example, according to the external
interpretation, we can take a boost as acting only on the endpoint xb � xf of the
spring (“active-external-endpoint interpretation”) or as acting on the whole spring
(“active-external-whole interpretation”) so that it affects both xb � xf and xeq. In
both cases, the boost is not a dynamical symmetry from the external perspective
because the endpoint xb � xf is not oscillating around a fixed point (mathematically,
xb � � d2

dt2 xb is not invariant under xb↦xb � vt). However, in the case of the active-
external-endpoint interpretation, the boost does not preserve the internal behavior
of the spring (because xeq is not boosted, xf � xeq changes into xf � vt � xeq). In
contrast, in the active-external-whole interpretation, the boost does preserve the
internal behavior because the relative motion of the endpoint with respect to
equilibrium is preserved in this case ( xf � vt

� � � xeq � vt
� � � xf � xeq). This shows,

once again, that it is not necessary for a boost to be a symmetry of the equations
characterizing a system for it to preserve the (internal) behavior of the system.

Active-external oscillations: Similarly, we can read x↦x� cos t� � according to
the active-external-endpoint interpretation (as we actually did in section 5, where
the endpoint alone is made to oscillate in a new manner) or according to the
active-external-whole one (where all the points of the spring are made to oscillate
with respect to an external frame). In both cases, the transformation is a
nontrivial dynamical symmetry of xb � � d2

dt2 xb (read externally), but only in the

8 Mathematically, this is shown by the fact that xb � � d2
dt2 xb is not invariant under xb↦xb � vt (recall

that xb � xf in this case).
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active-external-endpoint case does it change the internal displacement of the spring.9

Physically, these transformations represent very different states of affairs, even if
both are dynamical symmetries.

Active-internal transformations: A similar analysis shows that for a given
transformation of the harmonic oscillator equation, we can have an active-internal-
whole interpretation or an active-internal-endpoint interpretation. Indeed, the
proliferation of symmetries discussed in section 4 is a direct consequence of the
adoption of an active-internal-whole interpretation; the displacement between the
endpoint and the equilibrium point is not altered if one acts on the endpoint and
equilibrium in the same way. This is why boosts, oscillations, constant accelerations,
and general one-dimensional transformations are trivial symmetries of xb � � d2

dt2 xb
in the active-internal-whole case.

6.3 Is one interpretation more natural in the current context?
Given the fact that, as argued in this section, one can understand a differential
equation such as xb � � d2

dt2 xb both internally and externally, it is natural to ask if, in
the present context, one of the two interpretations is more natural. The only
interpretation that allows a defender of DSE to say that boosts are dynamical
symmetries of a spring (as they want to say in order to answer the main question) is
an internal-whole interpretation, that is, an interpretation for which the boost acts
on the whole spring and xb models the displacement with respect to equilibrium (not
with respect to an external coordinate system). Are there any independent reasons to
believe that the internal-whole interpretation is a natural or well-motivated
interpretation?

I think that there are at least three reasons why the internal-whole interpretation
is not a natural one in the context of physical symmetries. First, physicists seem to
treat xb � � d2

dt2 xb externally. As evidence for this claim, one can point out at least four
(related) things: (i) physicists usually take xb to represent the position with respect to
the origin of an external frame (but they choose the frame so that the equilibrium
point is at the origin); (ii) they treat xb � � d2

dt2 xb as having only one dependent
variable and the solutions as requiring two initial conditions (the initial speed and
initial position); (iii) when physicists investigate the symmetries of xb � � d2

dt2 xb, they
calculate how xb changes after applying the various symmetry transformations on the
spring (in the internal-whole interpretation, xb does not change); (iv) physicists count
xb↦xb cos t, but not boosts, among the symmetries of xb � � d2

dt2 xb (see both Lutzky
(1978) and Wulfman and Wybourne (1976) for examples of the last two points). Only
the external interpretation is consistent with these four points.

Second, an internal-whole interpretation renders trivial paradigmatic cases of
physical symmetries such as the ones exhibited in Galileo’s ship thought experiment.
In these cases, we assume that the relevant equations give us the trajectory of the
system with respect to an external frame (e.g., the shore) and that the transformation
changes those trajectories in certain ways. What is interesting about these cases is
that despite the fact that such trajectories do change, they do so in a way that they

9 In both cases, the new solution is related to the original through xb↦xb � cos t. However, in the
active-external-whole case, the equilibrium point is also transformed via xeq↦xeq � cos t, and so the
internal behavior xb � xeq is preserved.
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still satisfy the same differential equations.10 For example, take a rock falling in the
ship’s cabin at rest, which we can model with g � d2

dt2 r (the only acceleration is the
gravitational one). If we boost the ship in any direction, this equation remains
invariant, and so we infer that the rock still behaves as an object in free fall even
though the new trajectory is different (i.e., even if r t� �↦r t� � � vt). If one were to
understand the trajectories r t� � for the rock “internally,” for example, as relating the
rock’s motion to the ship’s floor (with the understanding that both the floor and the
rock are transformed jointly), then it would no longer be interesting to note that
g � d2

dt2 r is preserved under boosts (in such a case, r↦r simply because the floor and
the rock are boosted together). But this last scenario is precisely an instance of the
internal-whole interpretation.

Third, one of the most physically significant features of symmetries is that they are
tightly connected to the conserved quantities of a system (via Noether’s first
theorem). But if one adopts the internal-whole interpretation, then there are no
conserved quantities (they are all zero) associated with the various symmetries
simply because in this interpretation, the apparently different transformations are all
just different ways of writing the identity transformation in the solution space (e.g.,
according to this interpretation, x↦x� cos t amounts to the identity xb↦xb in the
space of solutions of the equation). Adopting an interpretation for which there are no
interesting conserved charges is problematic because conserved or invariant
quantities are usually thought to be paradigmatic examples of quantities that are
observable or measurable. The physically interesting link between conserved
quantities, measurements, and dynamical symmetries seems to collapse under an
internal-whole interpretation. In contrast, the external interpretation does treat the
symmetries (e.g., x↦x� cos t) as giving rise to nonzero conserved quantities (see
Lutzky (1978, 274) for a discussion).

In sum, the defender of DSE (or DSE*) faces a dilemma. On the one hand, if they
want to answer the main question by showing that boosts are symmetries of the
spring, then they must adopt the internal-whole interpretation of boosts. On the
other hand, this interpretation is problematic for various reasons discussed so far: it is
not the one adopted in physics and mathematical circles, it leads to a proliferation of
symmetries, it does not recover inertial effects for non-inertial frames, it is not
connected to (nonzero) conserved quantities, and it seems ad hoc.

7 A relational answer
The previous considerations strongly suggest that answering the main question by
adopting an internal-whole interpretation is problematic on various accounts.
However, if one does not adopt that kind of interpretation, then one is forced to the
conclusion that boosts are not symmetries of springs. If boosts are not symmetries,
what, then, explains the fact that springs in trains behave in the same way regardless
of the velocity of the train? If boosts are not symmetries, how do we answer the main
question?

A clue toward solving these questions comes from the observation, noted in
section 6, that a transformation might fail to be a dynamical symmetry and still

10 As I have argued here, this is not true of all mechanical systems (e.g., springs).
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preserve the internal behavior of a system. In particular, recall that according to the
external-whole interpretation, boosts are not dynamical symmetries of the harmonic
oscillator, and yet they still preserve how the endpoint oscillates with respect to the
equilibrium point (they still preserve xf � xeq). If boosts are not symmetries in this
interpretation, why do they preserve how the endpoint oscillates with respect to the
equilibrium point? I think that there is a simple answer already hinted at in the last
sections: boosts of the whole spring preserve the relevant relational quantities of the
system, and that is precisely why they preserve how it looks from inside the
spaceship. In particular, consider the following answer to the main question:

Relational answer (RA): What is essential in the explanation for why the block
(attached to the spring) behaves the same way under boosts of the spaceship is
that the boost is taken to “act’’ on the whole spring (and the whole spaceship)
simultaneously and in the same way. Any transformation that acts on the spring
in such a manner will automatically preserve the spring’s internal behavior
because it will preserve the relevant relational properties (e.g., it preserves the
spring’s amplitude and the spring’s velocity with respect to equilibrium).

To better see the motivation behind RA, note that if the boost were to act only on a
proper part of the spring, such as its endpoint, then it would not leave the internal
behavior of the spring invariant, as we discussed in prior sections (and this is not
because a transformation acting on the endpoint can’t be a symmetry of the spring,
for x↦x� cost is a symmetry even when acting only on the endpoint). Hence, the
crucial point in the explanation is not that the transformation itself (the boost) is a
dynamical symmetry (it is not in the external interpretation) but simply the fact that
the transformation is assumed to act on all the parts of the system simultaneously
and in the same way.11

To put the point more explicitly, consider the following attempt to justify RA:
Boosting the frame preserves the relative positions between the parts of the spring (it
shifts all the coordinates equally). But boosting the frame is equivalent to boosting
the whole spring in the opposite direction. Therefore, boosting the whole spring
preserves the relative positions between the parts of the spring. Because the internal
behavior of the spring only depends on these relative positions, the boost will
preserve such internal behavior. Note that this reasoning also works for any
transformation of the frame in one dimension, not just boosts. This is why, from the
perspective of RA, there is nothing particularly problematic with a proliferation of
transformations (symmetries or not) that preserve internal behaviors. For example,
according to RA, there is nothing surprising in realizing that a frame transformation
given by x↦x� cost� t3 � t6 � exp t� � preserves internal behaviors because it will
preserve the relative coordinate positions of all the parts of the system as a function
of time. And because this is not surprising, it is also not surprising that the active
version preserves such behaviors as well.

To get a clearer sense of RA and how it compares to DSE, consider the following
scenario. Say that we want to understand the relative motion of two subsystems, S1

11 In future work, it would be worth looking into how the arguments in this article connect to the ones
developed by Saunders (2013).
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and S2 (they could be different parts of the same system, but they do not have to be).
Say that we use differential equation DEQ1 to represent the motion of S1 with respect
to an external frame R, and we use differential equation DEQ2 to represent the motion
of S2 with respect to that same frame (these equations represent the relevant
dynamical laws). From these differential equations (and the initial conditions), we can
obtain a trajectory x1 t� � for the motion of S1 and a trajectory x2 t� � for the motion of S2
(with respect to the same frame). The relative motion of S1 with respect to S2 will be
given by xr t� � � x1 t� � � x2 t� �. Now consider a generic one-dimensional transforma-
tion x↦x� g t� � that acts on all the objects in the same way; x1↦x1 � g t� � and
x2↦x2 � g t� �. Clearly, this transformation will preserve xr t� � � x1 t� � � x2 t� � regard-
less of what g t� � is simply because it affects S1 and S2 in the exact same manner (or in
the passive case, it shifts all the coordinates equally). So if we ask why it is that g t� �
does not affect how S1 behaves with respect to S2 (this is analogous to asking why
boosts preserve how the spring behaves with respect to the detector), RA would
simply note that such a transformation preserves xr t� � � x1 t� � � x2 t� �when acting on
the two systems. Crucially, and unlike DSE, RA does not require that the
transformation is a symmetry of DEQ1 or DEQ2 (notice that nothing in the
explanation just given hinges on g t� � being a symmetry of these equations).

To illustrate, take S1 to be the endpoint of the spring and S2 to be the equilibrium
point. And say that the spaceship is initially at rest with respect to an external frame
R whose origin initially coincides with the equilibrium point. For the behavior of the
endpoint with respect to the frame, we use xf � � d2

dt2 xf (with units so that ω � 1).
Because the equilibrium point has a constant velocity (zero, in this frame), we can
model it using equation d2

dt2 xeq � 0. The solution of the first equation is
xf t� � � A cos t� B sin t (for some specific A and B, depending on the initial
conditions), and that of the second one is xeq t� � � vt� d � 0 (v � d � 0 in this
frame). The displacement of the endpoint with respect to equilibrium is given by the
relational variable xr t� � � xf t� � � xeq t� �. In this case, xr t� � � A cos t� B sin t
(because xeq � 0). So far, this is just the familiar displacement of a spring found in
textbooks. But now consider a boost that acts on both subsystems according to
xf↦xf � vt and xeq↦xeq � vt. Notice that the boost will be a symmetry of d2

dt2 xeq � 0
but not a symmetry of xf � � d2

dt2 xf . The boost will take xf t� � � A cos t� B sin t into
x�f t� � � A cos t� B sin t � vt (which is not the solution of a harmonic oscillator) and
xeq t� � � 0 into x�eq t� � � �vt (which is a solution for d2

dt2 xeq � 0). However,
xr t� � � xf t� � � xeq t� � will stay just the same because both xf t� � and xeq t� � are shifted
by vt; x�r t� � � xf �t�� � xeq�t�� � xf t� � � vt

� � � xeq t� � � vt
� � � xr t� �. According to RA,

this last fact is what explains why the behavior of the spring with respect to the
detector remains the same under boosts. As another example, take a ball in free fall
inside the cabin of a ship moving uniformly in the sea. As seen from the shore, we can
represent the ball’s behavior with g � d2

dt2 rb, and the floor’s motion can be
represented with d2

dt2 rf � 0 (because the ship is moving with constant velocity).
Then, consider a constant acceleration of both objects, rb↦rb � 0:5at2 and
rf↦rf � 0:5at2. Such acceleration is not a symmetry of either equation, and yet we
can easily see that it would preserve the relative motion of the ball with respect to the
floor (i.e., rb � rf remains invariant). Once again, we have a case where a
transformation preserves relational information even if it does not leave the
dynamical laws invariant.
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Having said this, it is worth pointing out that this kind of framework still allows
symmetries to convey interesting physical information about the system. In
particular, in this kind of framework, dynamical symmetries give us meaningful
information about the type of external behavior of a system (how it behaves with
respect to a frame), but not interesting information about the internal behavior (the
latter is wholly a matter of the relational degrees of freedom, which can be preserved
with or without symmetries). For example, the fact that the transformation
x↦x� cos t is a symmetry of xf � � d2

dt2 xf (read externally) entails that if we had used
an oscillatory frame in order to describe the endpoint xf , we still would have seen that
xf satisfies Hooke’s law, even though the acceleration or amplitude would have looked
very different. Hence, the type of external motion would have been preserved, but the
particular external motion would not have. In contrast, the fact that x↦x� t2 is not a
symmetry of the same equation entails that if we had moved from an inertial frame to
a frame in constant acceleration, we would have seen the endpoint of the spring no
longer obeying Hooke’s law (with respect to the frame). Hence, the type of external
motion would have been different. In short, only those transformations that are
symmetries preserve the type of external behavior of a system, and therein lies an
important part of their physical significance.12

How do we answer the main question, then? Although I believe RA is significantly
better than DSE, it is only the beginning of a better answer. There are other relevant
physical facts that are not considered by RA. For example, we should mention the
rigidity of the bodies constituting mechanical systems, without which we could not
actually boost a real system without deforming it; we should mention the
homogeneity and isotropy of space, without which the direction and location of
the boost might affect the behavior of the system (e.g., if we lived in an Aristotelian
universe, translations of the spring to the center of the universe would greatly disrupt
its behavior); we should mention the absence of an ethereal-like substance, whose
presence might interfere with the motion of material bodies (including springs); and
we should mention the fact (not completely independent from the previous ones) that
the laws of mechanical systems do not make explicit reference to absolute positions
and absolute velocities. Thus, even though RA is right in noting that preserving the
relational quantities is necessary when answering the main question, a more
complete answer worth investigating in future work would have to consider some of
these other facts (it would also be worth investigating the relationship between the
arguments developed in this paper and the Principle of Galilean Relativity).

8 Conclusion
There is a widespread belief in the philosophy literature that there is a strong link
between symmetries and observations (e.g., see Ismael and van Fraassen 2003; Roberts
2008; Healey 2009; Baker 2010; Dewar 2015; Dasgupta 2016). The current article uses
the case of a simple spring to highlight that the alleged link between symmetries and
observations is much weaker than has been recognized.13 In particular, I have shown

12 At the very least, this is the case for those transformations of a system that can be defined with
respect to another system that can work as a frame (such as spacetime transformations).

13 See Read and Møller-Nielsen (2020) for detailed criticism of approaches that define symmetries
purely epistemically (their criticism is different from, but complementary to, the one developed here).
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that even if a transformation is not a symmetry of a system, it can still preserve how
the system looks, provided that the observer (detector) is transformed in the same
way, and I have shown that a transformation can be a symmetry and, at the same
time, fail to preserve how the system looks (as when the endpoint of the spring is
transformed according to x↦x� cos t). In short, whether or not a transformation is a
symmetry of a system and whether or not it preserves how the system looks from the
perspective of an observer (detector) that is also transformed are two rather
independent matters. Thus, contrary to what has been suggested rather often,
dynamical symmetries should not be understood as telling us how things look when
both the system and the detector are transformed together (as happens inside the
cabin of Galileo’s ship or in the Leibniz–Clarke correspondence, where all objects are
transformed together). Rather, they should be understood in an external fashion, as
telling us how things look when only the system or only the detector is transformed
(as when we look at the behavior of a boosted system in a ship from a fixed shore). For
example, the fact that x↦x� cost is a symmetry of springs but x↦x� vt is not tells
us that springs still look like springs when described from the point of view of an
external oscillatory frame, but not when described from a frame in uniform motion.
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