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1. Introduction

Let p and q be real parameters such that

p > 1, q > 1,
1
p

+
1
q

� 1, (1.1)

and let p′ and q′ respectively be their conjugate exponents, that is,

1
p

+
1
p′ = 1 and

1
q

+
1
q′ = 1.

Furthermore, define

λ =
1
p′ +

1
q′ (1.2)

and note that 0 < λ � 1 for all p and q as in (1.1). In particular, λ = 1 holds if and
only if q = p′, that is, only when p and q are mutually conjugate. Otherwise, we have
0 < λ < 1, and in such cases p and q will be referred to as non-conjugate exponents.
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Considering p, q and λ as in (1.1) and (1.2), Hardy et al . [3] proved that there exists
a constant Cp,q, dependent only on the parameters p and q, such that the following
Hilbert-type inequality holds for all non-negative functions f ∈ Lp(R+) and g ∈ Lq(R+):

∫ ∞

0

∫ ∞

0

f(x)g(y)
(x + y)λ

dxdy � Cp,q‖f‖Lp(R+)‖g‖Lq(R+). (1.3)

However, the original proof did not provide any information about the value of the best
possible constant Cp,q. That drawback was improved by Levin [4], who obtained an
explicit upper bound for Cp,q:

Cp,q �
(

π cosec
π

λp′

)λ

. (1.4)

This was an interesting result since the right-hand side of (1.4) reduces to the previously
known sharp constant π cosec(π/p′) when the exponents p and q are conjugate.

A simpler proof of (1.4), based on a single application of Hölder’s inequality, was given
later by Bonsall [1]. Moreover, in the same paper, with the same assumptions on p, q, λ,
f and g, he proved another interesting Hilbert-type inequality,

∫ ∞

0

∫ ∞

0

f(x)g(y)
(x + y)λ

dxdy

� Bλ

(
1
p′ ,

1
q′

)
‖f‖p/q′

Lp(R+)‖g‖q/p′

Lq(R+)

[ ∫ ∞

0

∫ ∞

0

x1/p′
y1/q′

(x + y)λ
fp(x)gq(y) dxdy

]1−λ

, (1.5)

with the best possible constant Bλ(1/p′, 1/q′), where B is the usual beta function. The
idea used in the proof of (1.5) has to some extent guided us in the research we present
here.

During the following decades, the Hilbert-type inequalities were discussed by several
authors, who either re-proved them using various techniques, or applied and general-
ized them in many different ways. Here, we emphasize one of the most important such
results, the so-called doubly weighted Hardy–Littlewood–Sobolev inequality of Stein and
Weiss [9],

∫
Rn

∫
Rn

f(x)g(y)
|x|α|x − y|s|y|β dxdy � Cα,β,p,q,n‖f‖Lp(Rn)‖g‖Lq(Rn), (1.6)

which holds for n ∈ N, p, q > 1 such that 1/p + 1/q > 1, λ as in (1.2), 0 � α < n/p′,
0 � β < n/q′, s = nλ−α−β, and all non-negative functions f ∈ Lp(Rn) and g ∈ Lq(Rn).
In [5], Lieb proved the existence of optimizers for (1.6), that is, functions f and g which,
when inserted into (1.6), give equality with the smallest possible constant Cα,β,p,q,n.
Moreover, for p = q and α = β = 0, the constant and maximizing functions were
explicitly computed in [5]. In particular, Lieb obtained

C0,0,p,p,n = πn/p′ Γ ( 1
2n − n/p′)
Γ (n/p)

[
Γ ( 1

2n)
Γ (n)

]2/p′−1

,
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where Γ is the gamma function. Unfortunately, neither Cα,β,p,q,n nor the optimizers
are known for any other case of the parameters in (1.6). It was shown only (see, for
example, [6]) that for the classical Hardy–Littlewood–Sobolev inequality, that is, for (1.6)
with α = β = 0 and s = nλ, the estimate

C0,0,p,q,n � (p′)λ + (q′)λ

(1 − λ)pq

(
λ

n
|Sn−1|

)λ

(1.7)

holds, where

|Sn−1| =
2πn/2

Γ ( 1
2n)

is the area of the unit sphere S
n−1 in R

n. For further details, see [5,6].
On the other hand, here we also refer to [10], in which a general Hilbert-type inequality

was obtained for k � 2 conjugate exponents, that is, real parameters p1, . . . , pk > 1, such
that

k∑
i=1

1
pi

= 1.

Namely, let µ1, . . . , µk be positive σ-finite measures on Ω and let K : Ωk → R and
φij : Ω → R, i, j = 1, . . . , k, be non-negative measurable functions. If

∏k
i,j=1 φij(xj) = 1

a.e. on Ωk, then the inequality

∫
Ωk

K(x1, . . . , xk)
k∏

i=1

fi(xi) dµ1(x1) · · ·dµk(xk)

�
k∏

i=1

( ∫
Ω

Fi(xi)(φiifi)pi(xi) dµi(xi)
)1/pi

(1.8)

holds for all non-negative measurable functions f1, . . . , fk : Ω → R, where

Fi(xi) =
∫

Ωk−1
K(x1, . . . , xk)

∏
j �=i

φpi

ij (xj) dµ1(x1) · · ·dµi−1(xi−1) dµi+1(xi+1) · · ·dµk(xk),

for i = 1, . . . , k. If there exists l ∈ {1, . . . , k} such that pl < 0 and pi > 0 for i �= l, then
the sign of the inequality in (1.8) is reversed.

In this paper we extend (1.8) to a more general case with k � 2 non-conjugate expo-
nents, introduced in the following section, and point out that relations (1.5) and (1.8)
are only special cases of our result. The technique we establish appears to be fruitful
since, by choosing particular parameters in the general Hilbert-type inequality obtained
and applying the well-known Selberg integral formula (see, for example, [8]), we obtain
explicit upper bounds for the general case of the doubly weighted Hardy–Littlewood–
Sobolev inequality (1.6). Moreover, using a similar approach, we derive some further
generalizations of (1.3), that is, Hilbert-type inequalities for k non-negative functions
defined on R

n and non-conjugate exponents.
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1.1. Conventions

Throughout this paper, let r′ be the conjugate exponent to a positive real number
r �= 1, that is,

1
r

+
1
r′ = 1 or r′ =

r

r − 1
.

The Euclidean norm of the vector x ∈ R
n will be denoted by |x|. Furthermore, empty

sums are assumed to equal zero, all measures are assumed to be positive and σ-finite and
all functions are assumed to be non-negative and measurable. Finally, we shall denote
by f∗ the symmetric-decreasing rearrangement of a function f : R

n → R vanishing at
infinity.

2. A general Hilbert-type inequality

Before presenting our idea and results, we introduce the notion of general non-conjugate
exponents. Let k ∈ N, k � 2, and let real parameters p1, . . . , pk be such that

p1, . . . , pk > 1,

k∑
i=1

1
pi

� 1. (2.1)

Define

λ =
1

k − 1

k∑
i=1

1
p′

i

and
1
qi

= λ − 1
p′

i

, i = 1, . . . , k. (2.2)

Obviously, we always have 0 < λ � 1, while the equality λ = 1 holds if and only if∑k
i=1 1/pi = 1. As we stated in § 1, in this special case the parameters p1, . . . , pk will

be called conjugate exponents. Otherwise, that is, for
∑k

i=1 1/pi > 1, they are non-
conjugate. Observe that for conjugate exponents we have qi = pi, i = 1, . . . , k, while, for
k = 2, p1 = p and p2 = q, relations (2.1) and (2.2) respectively reduce to (1.1), (1.2),
q1 = q′ and q2 = p′.

On the other hand, for any choice of the parameters in (2.1), it follows from (2.2) that

1
qi

+ (1 − λ) =
1
pi

, i = 1, . . . , k, (2.3)

and
k∑

i=1

1
qi

+ (1 − λ) = 1. (2.4)

Hence, in order to apply Hölder’s inequality with exponents q1, . . . , qk and 1/(1 − λ), we
require that

1
qi

> 0, i = 1, . . . , k. (2.5)

Note that for k � 3 conditions (2.1) and (2.2) do not automatically imply (2.5). More
precisely, since (2.1) and (2.2) give only

1
qi

>
2 − k

k − 1
1
p′

i

, i = 1, . . . , k,
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some of the qi can be negative. For example, for p1 = 2 and p2 = p3 = 20
19 we have

1/q1 = − 1
5 < 0. Therefore, condition (2.5) is not redundant.

We are now ready to state and prove our basic result, a general Hilbert-type inequality.

Theorem 2.1. Let k ∈ N, k � 2, and parameters p1, . . . , pk, λ and q1, . . . , qk be as
in (2.1), (2.2) and (2.5). Let µ1, . . . , µk be positive σ-finite measures on Ω. If K is a
non-negative measurable function on Ωk, F1, . . . , Fk are positive measurable functions
on Ωk, and φij , i, j = 1, . . . , k, are non-negative measurable functions on Ω, such that

k∏
i,j=1

φij(xj) = 1 a.e. on Ωk, (2.6)

then the inequality

∫
Ωk

K(x1, . . . , xk)
k∏

i=1

fi(xi) dµ1(x1) · · ·dµk(xk)

�
k∏

i=1

[ ∫
Ωk

(KF pi−qi

i )(x1, . . . , xk)(φiifi)pi(xi)
∏
j �=i

φqi

ij (xj) dµ1(x1) · · ·dµk(xk)
]1/qi

×
[ ∫

Ωk

K(x1, . . . , xk)
k∏

i=1

F pi

i (x1, . . . , xk)(φiifi)pi(xi) dµ1(x1) · · ·dµk(xk)
]1−λ

(2.7)

holds for all non-negative measurable functions f1, . . . , fk on Ω.

Proof. Note that from (2.3) we have

pi

qi
+ pi(1 − λ) = 1, i = 1, . . . , k.

Using this and (2.4), the left-hand side of (2.7) can be written as

∫
Ωk

K(x1, . . . , xk)
k∏

i=1

fi(xi) dµ1(x1) · · ·dµk(xk)

=
∫

Ωk

K
∑k

i=1(1/qi)+1−λ(x1, . . . , xk)
k∏

i=1

f
(pi/qi)+pi(1−λ)
i (xi)

×
k∏

i=1

F
(pi/qi)−1+pi(1−λ)
i (x1, . . . , xk)

k∏
i=1

φ
(pi/qi)+pi(1−λ)
ii (xi)

×
∏
j �=i

φij(xj) dµ1(x1) · · ·dµk(xk)
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=
∫

Ωk

k∏
i=1

[
(KF pi−qi

i )(x1, . . . , xk)(φiifi)pi(xi)
∏
j �=i

φqi

ij (xj)
]1/qi

×
[
K(x1, . . . , xk)

k∏
i=1

F pi

i (x1, . . . , xk)(φiifi)pi(xi)
]1−λ

dµ1(x1) · · ·dµk(xk).

The inequality (2.7) now follows by using Hölder’s inequality with the exponents
q1, . . . , qk and 1/(1 − λ). �

Remark 2.2. Observe that, without loss of generality, condition (2.6) from the state-
ment of Theorem 2.1 can be replaced by

k∏
i=1

φij(xj) = 1 a.e. on Ω,

for j = 1, . . . , k, since (2.6) implies that

k∏
i=1

φij(xj) = cj = const., j = 1, . . . , k, (2.8)

where c1 · · · ck = 1.

Remark 2.3. Obviously, (2.7) becomes an equality if at least one of the functions
involved in its left-hand side is a zero function. To discuss other non-trivial cases of
equality in (2.7), we can assume without loss of generality that the functions K and fi,
i = 1, . . . , k, are positive. Otherwise, instead of Ωk, we consider the set

S =
{

x = (x1, . . . , xk) ∈ Ωk : K(x)
k∏

i=1

fi(xi) > 0
}

,

which has a positive measure. Now, note that the equality in (2.7) holds if and only if it
holds in Hölder’s inequality, that is, only if the functions

KF pi−qi

i (φiifi)pi

∏
j �=i

φqi

ij , i = 1, . . . , k, and K

k∏
i=1

(Fiφiifi)pi

are effectively proportional. Therefore, equality in (2.7) occurs if and only if there exist
positive constants αi, βij , i, j = 1, . . . , k, j �= i, such that

KF pi−qi

i (φiifi)pi

∏
l �=i

φqi

il = αiK

k∏
l=1

(Flφllfl)pl , i = 1, . . . , k, (2.9)

and

KF pi−qi

i (φiifi)pi

∏
l �=i

φqi

il = βijKF
pj−qj

j (φjjfj)pj

∏
l �=j

φ
qj

jl , i �= j. (2.10)
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Moreover, the relation (2.9) is equivalent to

F−qi

i = αi

∏
l �=i

φ−qi

il (Flφllfl)pl , i = 1, . . . , k. (2.11)

In the special case when Fi ≡ Fi(xi), i = 1, . . . , k, the functions fi and φij from (2.10)
and (2.11) can be expressed explicitly in terms of φii. More precisely, from (2.11) we have

Fi ≡ const., i = 1, . . . , k, (2.12)

directly, since the right-hand side of this relation depends on xl, l �= i, while the left-hand
side in this setting is a function of xi. Considering this, (2.10) becomes

(φiifi)piφ
−qj

ji = γij(φjjfj)pj

∏
l �=i,j

φ
qj

jl

∏
l �=i

φ−qi

il , i �= j, (2.13)

for some positive constants γij . Thus,

(φiifi)piφ
−qj

ji ≡ const., i = 1, . . . , k, j �= i, (2.14)

where again we have exploited the fact that the left-hand side of (2.13) depends only
on xi, while its right-hand side is a function of xl, l = 1, . . . , k, l �= i. The relation (2.14)
further implies that φ

qj

jiφ
−ql

li = const., i = 1, . . . , k, j, l �= i, which, combined with (2.8),
gives

φiiφ
qj

∑
l �=i 1/ql

ji ≡ const., i = 1, . . . , k, j �= i. (2.15)

Since by (2.2) and (2.4) we have

qj

∑
l �=i

1
ql

= qj

(
λ − 1

qi

)
=

qj

p′
i

,

(2.15) can be transformed into

φ
p′

i
ii φ

qj

ji ≡ const., i = 1, . . . , k, j �= i, (2.16)

while (2.14) becomes

fpi

i ≡ Ciφ
−(pi+p′

i)
ii , i = 1, . . . , k, (2.17)

for some positive constants Ci, i = 1, . . . , k. Hence, if Fi ≡ Fi(xi), the conditions (2.12),
(2.16) and (2.17) are necessary and sufficient for equality in (2.7).

Remark 2.4. If the parameters p1, . . . , pk in Theorem 2.1 are such that

0 < pi < 1,
k − 1

pi
+ 1 <

k∑
j=1

1
pj

, i = 1, . . . , k, (2.18)
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and λ and q1, . . . , qk are defined by (2.2), then the sign of inequality in (2.7) is reversed. To
justify this assertion, observe that the first inequality in (2.18) gives 1/p′

i < 0, i = 1, . . . , k,
so we have λ < 0. Similarly, from the second relation in (2.18) it follows that

1
qi

= λ − 1
p′

i

=
1

k − 1

(
k − 1

pi
+ 1 −

k∑
j=1

1
pj

)
< 0, i = 1, . . . , k.

Therefore, qi < 0, i = 1, . . . , k, and 0 < 1/(1 − λ) < 1, so (2.7) holds with the reversed
sign of inequality as a direct consequence of Hölder’s inequality (for details on the so-
called reversed Hölder’s inequality, see, for example, [7, Chapter V]). The same result is
also achieved with the parameters p1, . . . , pk satisfying

k∑
i=1

1
pi

< 1 and 0 < pl < 1,
k − 1

pi
+ 1 <

k∑
j=1

1
pj

, i �= l, (2.19)

for some l ∈ {1, . . . , k}, since from (2.19) we obtain 1/(1 − λ) < 0, ql > 0, and qi < 0,
i �= l.

Remark 2.5. Note that in the case of conjugate exponents (λ = 1) the inequality (2.7)
becomes

∫
Ωk

K(x1, . . . , xk)
k∏

i=1

fi(xi) dµ1(x1) · · ·dµk(xk)

�
k∏

i=1

[ ∫
Ωk

K(x1, . . . , xk)(φiifi)pi(xi)
∏
j �=i

φpi

ij (xj) dµ1(x1) · · ·dµk(xk)
]1/qi

,

whence, by Fubini’s theorem, we obtain the right-hand side of (1.8). This means that
Theorem 2.1 may be regarded as a generalization of the mentioned result from [10].

To conclude this section, we restate Theorem 2.1 for the case when k = 2. This result
is interesting in its own right, since it will be applied in the following section, where we
consider a particular kernel K.

Theorem 2.6. Let p, q and λ be as in (1.1) and (1.2). Let µ1 and µ2 be positive
σ-finite measures on Ω. If K, F and G are non-negative measurable functions on Ω2,
and ϕ and ψ are non-negative measurable functions on Ω, then the inequality∫

Ω2
K(x, y)f(x)g(y) dµ1(x) dµ2(y)

�
[ ∫

Ω2
(KF p−q′

)(x, y)ψ−q′
(y)(ϕf)p(x) dµ1(x) dµ2(y)

]1/q′

×
[ ∫

Ω2
(KGq−p′

)(x, y)ϕ−p′
(x)(ψg)q(y) dµ1(x) dµ2(y)

]1/p′

×
[ ∫

Ω2
(KF pGq)(x, y)(ϕf)p(x)(ψg)q(y) dµ1(x) dµ2(y)

]1−λ

(2.20)

holds for all non-negative measurable functions f and g on Ω.
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Proof. The proof follows directly from Theorem 2.1 using substitutions p1 = p, p2 =
q, q1 = q′, q2 = p′, φ11 = ϕ and φ22 = ψ. Observe that from φ11φ21 = 1 and φ12φ22 = 1
we have φ21 = 1/ϕ and φ12 = 1/ψ. �

Remark 2.7. If we rewrite Theorem 2.6 with Ω = R+, Lebesgue measures, kernel
K(x, y) = (x + y)−λ and functions F (x, y) = G(x, y) ≡ 1, ϕ(x) = x1/pp′

and ψ(y) =
y1/qq′

, we obtain (1.5). Hence, Theorem 2.6 can be seen as a generalization of the Bonsall
result mentioned in [1].

3. Explicit upper bounds for the doubly weighted
Hardy–Littlewood–Sobolev inequality

In this section, we consider a special case of Theorem 2.6 with Ω = R
n and the kernel

K(x, y) = |x|−α|x − y|−s|y|−β . More precisely, we use our general result to obtain a
form of the doubly weighted Hardy–Littlewood–Sobolev inequality (1.6) with an explicit
constant factor on its right-hand side. In fact, we derive explicit upper bounds for the
sharp constant Cα,β,p,q,n for (1.6).

Our results in the following two sections will be based on Theorems 2.1 and 2.6 and
the well-known Selberg integral formula

∫
Rkn

|xk|αk−n

( k−1∏
i=1

|xi+1 − xi|αi−n

)
|x1 − y|α0−n dx1 · · ·dxk

=
Γn(α0) · · ·Γn(αk)
Γn(α0 + · · · + αk)

|y|α0+···+αk−n, (3.1)

for arbitrary k, n ∈ N, y ∈ R
n, and 0 < α0, . . . , αk < n such that 0 <

∑k
i=0 αi < n, where

Γn(α) =
πn/22αΓ ( 1

2α)
Γ ( 1

2n − 1
2α)

.

In [8], Stein derived the Selberg integral formula with two parameters using the Riesz
potential (see also [2]). Observe that

Γn(n − α) =
(2π)n

Γn(α)
, 0 < α < n. (3.2)

In the next lemma we give a form of (3.1), more suitable for our computations.

Lemma 3.1. Suppose that k, n ∈ N, 0 < β1, . . . , βk, s < n are such that
∑k

i=1βi +s >

kn and y ∈ R
n. Then

∫
Rkn

|x1|−β1 · · · |xk|−βk

|x1 + · · · + xk + y|s dx1 · · ·dxk

=
Γn(n − β1) · · ·Γn(n − βk)Γn(n − s)
Γn((k + 1)n − β1 − · · · − βk − s)

|y|kn−β1−···−βk−s. (3.3)
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Proof. Set αi = n−βi+1, i = 0, . . . , k−1, and αk = n−s. Substituting first t1 = x1+y

and then t2 = t1 + x2, the left-hand side of (3.3) becomes

∫
Rkn

|x1|−β1 · · · |xk|−βk

|x1 + · · · + xk + y|s dx1 · · ·dxk

=
∫

Rkn

|t1 − y|α0−n|x2|α1−n · · · |xk|αk−1−n

|t1 + x2 + · · · + xk|n−αk
dt1 dx2 · · ·dxk

=
∫

Rkn

|t1 − y|α0−n|t2 − t1|α1−n|x3|α2−n · · · |xk|αk−1−n

|t2 + x3 + · · · + xk|n−αk
dt1 dt2 dx3 · · ·dxk. (3.4)

After the sequence of similar substitutions ti = ti−1+xi, i = 2, . . . , k, the last line of (3.4)
is finally equal to

∫
Rkn

|tk|αk−n

( k−1∏
i=1

|ti+1 − ti|αi−n

)
|t1 − y|α0−n dt1 · · ·dtk

=
Γn(α0) · · ·Γn(αk)
Γn(α0 + · · · + αk)

|y|α0+···+αk−n

=
Γn(n − β1) · · ·Γn(n − βk)Γn(n − s)
Γn((k + 1)n − β1 − · · · − βk − s)

|y|kn−β1−···−βk−s,

where the last two equalities are obtained by Selberg’s integral formula (3.1) and by
replacing αi by the corresponding expressions including βi. �

Since the case k = 1 of Lemma 3.1 will be of special interest to us, we state it as a
separate result.

Lemma 3.2. Let n ∈ N and y ∈ R
n. If 0 < β, s < n are such that β + s > n, then

∫
Rn

|x|−β

|x + y|s dx =
Γn(n − β)Γn(n − s)

Γn(2n − β − s)
|y|n−β−s.

We can now obtain the doubly weighted Hardy–Littlewood–Sobolev inequality (1.6)
mentioned above. The first step is to consider the case in which the function g ∈ Lq(Rn)
on its left-hand side is symmetric-decreasing, that is, g(x) � g(y) whenever |x| � |y|. For
such a function and y ∈ R

n, y �= 0, we have

gq(y) � 1
|B(|y|)|

∫
B(|y|)

gq(x) dx

� 1
|B(|y|)|

∫
Rn

gq(x) dx

=
n

|Sn−1| |y|−n‖g‖q
Lq(Rn), (3.5)

where B(|y|) denotes the ball of radius |y| in R
n, centred at the origin, and |B(|y|)| =

|y|n|Sn−1|/n is its volume.
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Theorem 3.3. Let n ∈ N, p > 1 and q > 1 such that 1/p + 1/q > 1, and set λ as
in (1.2). Let 0 � α < n/p′, 0 � β < n/q′ and s = nλ − α − β. Then the inequality∫

Rn

∫
Rn

f(x)g(y)
|x|α|x − y|s|y|β dxdy � (2π)2n(|Sn−1|/n)λ−1

Γn(n/p + α)Γn(n/q + β)Γn(s)
‖f‖Lp(Rn)‖g‖Lq(Rn)

(3.6)
holds for all non-negative functions f ∈ Lp(Rn) and symmetric-decreasing functions
g ∈ Lq(Rn).

Proof. Suppose that in Theorem 2.6 we have Ω = R
n, K(x, y) = |x|−α|x−y|−s|y|−β ,

F (x, y) = G(x, y) ≡ 1, ϕ(x) = |x|n/pp′
, ψ(y) = |y|n/qq′

and the Lebesgue measure dx.
Then the left-hand side of (2.20) reads

L =
∫

Rn

∫
Rn

f(x)g(y)
|x|α|x − y|s|y|β dxdy, (3.7)

while its right-hand side is a product R = I
1/q′

1 I
1/p′

2 I1−λ
3 , where

I1 =
∫

R2n

|x|n/p′ |y|−n/q

|x|α|x − y|s|y|β fp(x) dxdy,

I2 =
∫

R2n

|x|−n/p|y|n/q′

|x|α|x − y|s|y|β gq(y) dxdy,

I3 =
∫

R2n

|x|n/p′ |y|n/q′

|x|α|x − y|s|y|β fp(x)gq(y) dxdy.

Therefore, applying Fubini’s theorem, Lemma 3.2, identity (3.2), and the fact that α +
β + s = nλ, respectively, we have

I1 =
∫

Rn

|x|(n/p′)−αfp(x)
∫

Rn

|y|−((n/q)+β)

|x − y|s dy dx

=
∫

Rn

|x|(n/p′)−αfp(x)
∫

Rn

|z|−((n/q)+β)

|z + x|s dzdx

=
Γn(n − n/q − β)Γn(n − s)

Γn(2n − n/q − β − s)

∫
Rn

|x|(n/p′)−α+n−(n/q)−β−sfp(x) dx

=
(2π)2n

Γn(n/p + α)Γn(n/q + β)Γn(s)
‖f‖p

Lp(Rn).

Analogously,

I2 =
(2π)2n

Γn(n/p + α)Γn(n/q + β)Γn(s)
‖g‖q

Lq(Rn),

and, by (3.5),

I3 � n

|Sn−1| ‖g‖q
Lq(Rn)

∫
Rn

|x|(n/p′)−αfp(x)
∫

Rn

|y|−((n/q)+β)

|x − y|s dy dx

=
n

|Sn−1| · (2π)2n

Γn(n/p + α)Γn(n/q + β)Γn(s)
‖f‖p

Lp(Rn)‖g‖q
Lq(Rn).
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Finally, (3.6) follows by combining (3.7) and the expressions we have obtained for the
integrals I1, I2 and I3. �

To obtain an analogous result for arbitrary non-negative functions f ∈ Lp(Rn) and
g ∈ Lq(Rn), we use the fact that for parameter γ > 0 the function h : R

n → R,
h(x) = |x|−γ , is symmetric-decreasing and vanishes at infinity. Hence, h∗ = h.

Theorem 3.4. Let n ∈ N, p > 1 and q > 1 such that 1/p + 1/q > 1, and set λ as in
(1.2). Suppose that 0 � α < n/p′, 0 � β < n/q′ and s = nλ−α−β. Then the inequality
(3.6) holds for all non-negative functions f ∈ Lp(Rn) and g ∈ Lq(Rn).

Proof. Since x �→ |x|−α, x �→ |x|−s and x �→ |x|−β are symmetric-decreasing functions
vanishing at infinity, the general rearrangement inequality (see, for example, [6]) implies
that ∫

Rn

∫
Rn

f(x)g(y)
|x|α|x − y|s|y|β dxdy �

∫
Rn

∫
Rn

f∗(x)g∗(y)
|x|α|x − y|s|y|β dxdy. (3.8)

Clearly, by Theorem 3.3, the right-hand side of (3.8) is not greater than

Kα,β,p,q,n‖f∗‖Lp(Rn)‖g∗‖Lq(Rn) = Kα,β,p,q,n‖f‖Lp(Rn)‖g‖Lq(Rn), (3.9)

where Kα,β,p,q,n is the constant from the right-hand side of (3.6). To obtain equality
in (3.9), we have used the fact that the symmetric-decreasing rearrangement is norm-
preserving. �

Remark 3.5. Note that Cα,β,p,q,n � Kα,β,p,q,n, where Cα,β,p,q,n is the sharp con-
stant for (1.6) and Kα,β,p,q,n is the constant factor involved in the right-hand side
of (3.6). Hence, we obtained new explicit upper bounds for the doubly weighted Hardy–
Littlewood–Sobolev inequality. In particular, for α = β = 0 we have

K0,0,p,q,n =
(2π)2n(|Sn−1|/n)λ−1

Γn(n/p)Γn(n/q)Γn(nλ)
, (3.10)

while for p = q the constant (3.10) becomes

K0,0,p,p,n =
(2π)2n(|Sn−1|/n)(2/p′)−1

Γ 2
n(n/p)Γn(2n/p′)

= πn/p′ Γ ( 1
2n − n/p′)
Γ (n/p′)

[
Γ (n/2p′)
Γ (n/2p)

]2

[Γ ( 1
2n + 1)]1−(2/p′).

Although (1.7) provides a better estimate for C0,0,p,q,n than (3.10), it is important to
note that our result covers all admissible choices of the parameters p, q, α and β in (1.6),
so our main contribution is in extending Lieb’s result given in § 1.
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4. Multiple Hilbert-type inequalities

In the previous section, by applying Theorem 2.6 and Lemma 3.2, we obtained inequali-
ties with two non-conjugate parameters. Our aim here is to establish some new specific
Hilbert-type inequalities related to k � 2 non-conjugate parameters and k non-negative
functions. To derive such results, we shall use Theorem 2.1, Lemma 3.1 and the kernel
K(x1, . . . , xk) = |x1 + · · · + xk|−(k−1)nλ on R

kn. The corresponding Hilbert-type inequal-
ity is given in the following theorem.

Theorem 4.1. Let n ∈ N, k ∈ N, k � 2, and let parameters p1, . . . , pk, λ and q1, . . . , qk

be as in (2.1), (2.2) and (2.5). If 0 < λ < 1/(k − 1), then the inequality

∫
Rkn

f1(x1) · · · fk(xk)
|x1 + · · · + xk|(k−1)nλ

dx1 · · ·dxk

� (2π)kn(|Sn−1|/n)(k−1)(λ−1)

Γn((k − 1)nλ)
∏k

i=1 Γn(n/pi)
‖f1‖Lp1 (Rn) · · · ‖fk‖Lpk (Rn) (4.1)

holds for all non-negative functions fi ∈ Lpi(Rn), i = 1, . . . , k.

Proof. First, we consider a simpler special case of the functions involved in (4.1).
Namely, suppose that f2, . . . , fk are symmetric-decreasing functions. To prove our result,
we rewrite Theorem 2.1 with Ω = R

n, K(x1, . . . , xk) = |x1 + · · · + xk|−(k−1)nλ,
Fi(x1, . . . , xk) ≡ 1 and φij(xj) = |xj |Aij , where

Aij =

⎧⎪⎪⎨
⎪⎪⎩

n

pip′
i

, i = j,

− n

qipj
, i �= j,

(4.2)

and with Lebesgue measures dxi, for i, j = 1, . . . , k. Then the left-hand side of (2.7)
becomes

L =
∫

Rkn

f1(x1) · · · fk(xk)
|x1 + · · · + xk|(k−1)nλ

dx1 · · ·dxk, (4.3)

while the right-hand side of this inequality is the product of k + 1 factors,

R = I
1/q1
1 · · · I1/qk

k I1−λ
k+1 , (4.4)

where

Ii =
∫

Rkn

|xi|n/p′
i
∏

j �=i |xj |−n/pj

|x1 + · · · + xk|(k−1)nλ
fpi

i (xi) dx1 · · ·dxk, i = 1, . . . , k,

and

Ik+1 =
∫

Rkn

∏k
i=1 |xi|n/p′

i

|x1 + · · · + xk|(k−1)nλ

k∏
i=1

fpi

i (xi) dx1 · · ·dxk.
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Before calculating these integrals, observe that, from (2.1), (2.2) and (2.5), we find that
0 < n/pi < n and

∑
j �=i

n

pj
+ (k − 1)nλ = n

∑
j �=i

(
1
pj

+ λ

)
= n

∑
j �=i

(
1
qj

+ 1
)

= (k − 1)n + n
∑
j �=i

1
qj

> (k − 1)n,

for all i ∈ {1, . . . , k}. Moreover, the conditions from the statement of Theorem 4.1 also
imply that 0 < (k − 1)nλ < n. Therefore, applying Fubini’s theorem, Lemma 3.1 and
(3.2), for i = 1, . . . , k, respectively, we obtain

Ii =
∫

Rn

|xi|n/p′
ifpi

i (xi)
∫

R(k−1)n

∏
j �=i |xj |−n/pj

|x1 + · · · + xk|(k−1)nλ
dx1 · · ·dxi−1 dxi+1 · · ·dxk dxi

=
Γn(n − (k − 1)nλ)

∏
j �=i Γn(n − n/pj)

Γn(kn −
∑

j �=i n/pj − (k − 1)nλ)

×
∫

Rn

|xi|(n/p′
i)+(k−1)n−

∑
j �=i(n/pj)−(k−1)nλfpi

i (xi) dxi

=
(2π)kn

Γn((k − 1)nλ)
∏k

j=1 Γn(n/pj)
‖fi‖pi

Lpi (Rn). (4.5)

To estimate the last integral, Ik+1, in (4.4) we use the assumption that the functions
f2, . . . , fk are symmetric-decreasing. Hence, we can use (3.5), so

fpi

i (xi) � n

|Sn−1| |xi|−n‖fi‖pi

Lpi (Rn)

holds for all xi ∈ R
n, xi �= 0. Again, according to Fubini’s theorem, Lemma 3.1 and the

identity (3.2), by a procedure similar to that used in (4.5) we obtain

Ik+1 �
(

n

|Sn−1|

)k−1 k∏
i=2

‖fi‖pi

Lpi (Rn)

∫
Rkn

|x1|n/p′
1
∏k

i=2 |xi|(n/p′
i)−n

|x1 + · · · + xk|(k−1)nλ
fp1
1 (x1) dx1 · · ·dxk

=
(

n

|Sn−1|

)k−1 k∏
i=2

‖fi‖pi

Lpi (Rn)

×
∫

Rn

|x1|n/p′
1fp1

1 (x1)
∫

R(k−1)n

∏k
i=2 |xi|−n/pi

|x1 + · · · + xk|(k−1)nλ
dx2 · · ·dxk dx1

=
(

n

|Sn−1|

)k−1
Γn(n − (k − 1)nλ)

∏k
i=2 Γn(n − n/pi)

Γn(kn −
∑k

i=2(n/pi) − (k − 1)nλ)

k∏
i=1

‖fi‖pi

Lpi (Rn)

=
(

n

|Sn−1|

)k−1 (2π)kn

Γn((k − 1)nλ)
∏k

i=1 Γn(n/pi)

k∏
i=1

‖fi‖pi

Lpi (Rn). (4.6)
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Now we arrive at inequality (4.1) for this case by combining (4.3)–(4.6). To complete
the proof, we need to consider the general case, that is, arbitrary non-negative functions
f2, . . . , fk. Since the function x �→ |x|−(k−1)nλ is symmetric-decreasing and vanishes at
infinity, by the general rearrangement inequality we have

∫
Rkn

f1(x1) · · · fk(xk)
|x1 + · · · + xk|(k−1)nλ

dx1 · · ·dxk

�
∫

Rkn

f∗
1 (x1) · · · f∗

k (xk)
|x1 + · · · + xk|(k−1)nλ

dx1 · · ·dxk

� (2π)kn(|Sn−1|/n)(k−1)(λ−1)

Γn((k − 1)nλ)
∏k

i=1 Γn(n/pi)
‖f∗

1 ‖Lp1 (Rn) · · · ‖f∗
k ‖Lpk (Rn)

=
(2π)kn(|Sn−1|/n)(k−1)(λ−1)

Γn((k − 1)nλ)
∏k

i=1 Γn(n/pi)
‖f1‖Lp1 (Rn) · · · ‖fk‖Lpk (Rn).

As in the proof of Theorem 3.4, here we used the fact that f∗
2 , . . . , f∗

k are symmetric-
decreasing functions and that the mapping f �→ f∗ is norm-preserving. �

Remark 4.2. Note that the proof of Theorem 4.1 is, in fact, based on Selberg’s
integral formula (3.1). Some further applications of this formula can be found in [2], for
example.

Setting k = 2 and k = 3 in Theorem 4.1, we get the following corollaries.

Corollary 4.3. Let n ∈ N, p > 1 and q > 1 be such that 1/p + 1/q > 1, and let λ be
defined by (1.2). Then

∫
Rn

∫
Rn

f(x)g(y)
|x + y|nλ

dxdy � (2π)2n(|Sn−1|/n)λ−1

Γn(nλ)Γn(n/p)Γn(n/q)
‖f‖Lp(Rn)‖g‖Lq(Rn) (4.7)

holds for all non-negative functions f ∈ Lp(Rn) and g ∈ Lq(Rn). In particular, if n = 1,
then (4.7) becomes

∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)
|x + y|λ dxdy � 2λ−1√π

B(1/2p′, 1/2q′)
B(1/2p, 1/2q)

·
Γ ( 1

2 − 1
2λ)

Γ (1 − 1
2λ)

‖f‖Lp(R)‖g‖Lq(R).

Corollary 4.4. Let n ∈ N and parameters p1, p2, p3, λ, q1, q2 and q3 be as in (2.1),
(2.2) and (2.5). If 0 < λ < 1

2 , then

∫
R3n

f(x)g(y)h(z)
|x + y + z|2nλ

dxdy dz

� (2π)3n(|Sn−1|/n)2(λ−1)

Γn(2nλ)Γn(n/p1)Γn(n/p2)Γn(n/p3)
‖f‖Lp1 (Rn)‖g‖Lp2 (Rn)‖h‖Lp3 (Rn) (4.8)
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holds for all non-negative functions f ∈ Lp1(Rn), g ∈ Lp2(Rn) and h ∈ Lp3(Rn). In
particular, if n = 1, then (4.8) reads

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)h(z)
|x + y + z|2λ

dxdy dz

� 22(λ−1)π
Γ ( 1

2 − λ)
Γ (λ)

3∏
i=1

Γ (1/2p′
i)

Γ (1/2pi)
‖f‖Lp1 (R)‖g‖Lp2 (R)‖h‖Lp3 (R).

Remark 4.5. Note that Fi ≡ 1, i = 1, . . . , k, in all the presented applications of
Theorem 2.1 that we considered, while Theorem 2.6 was applied with F = G ≡ 1.
Obviously, according to the conditions from the statements of these theorems, we can
use any other non-negative functions Fi and, consequently, take the infimum of the right-
hand sides of the inequalities obtained over all such functions. Therefore, to conclude this
paper, we mention the following open problem: can this approach give sharp Hilbert-type
inequalities, that is, do there exist such functions Fi that the related inequalities are
obtained with the best possible constants on their right-hand sides?
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