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Hook-content Formulae for Symplectic and
Orthogonal Tableaux

Peter S. Campbell and Anna Stokke

Abstract. By considering the specialisation sλ(1, q, q2, . . . , qn−1) of the Schur function, Stanley was

able to describe a formula for the number of semistandard Young tableaux of shape λ in terms of the

contents and hook lengths of the boxes in the Young diagram. Using specialisations of symplectic and

orthogonal Schur functions, we derive corresponding formulae, first given by El Samra and King, for

the number of semistandard symplectic and orthogonal λ-tableaux.

1 Introduction

To each partition λ with at most n parts there corresponds an irreducible polynomial

representation of the general linear group GL(n) over the field of complex numbers.

Indeed, this representation has a basis indexed by semistandard Young tableaux of

shape λ with entries from {1, 2, . . . , n}. The number of semistandard λ-tableaux is

therefore equal to the dimension of the representation, and this is given by Weyl’s

dimension formula [12].

However, a more combinatorial description of the number of semistandard

λ-tableaux was derived by Stanley ([8]) using Weyl’s character formula. The char-

acter corresponding to the partition λ is the Schur function sλ(x1, . . . , xn), and

Stanley showed that its specialisation sλ(1, q, q2, . . . , qn−1) could be expressed as a

product involving the hook lengths and contents of the boxes in the diagram for λ.

This provides a generating function for the semistandard λ-tableaux with entries in

{1, 2, . . . , n} and, in particular, taking q = 1 yields a formula for the number of such

tableaux.

A similar situation exists for the classical groups Sp(2n) and O(m) over the com-

plex numbers. Semistandard symplectic and orthogonal λ-tableaux, which index

bases for the irreducible polynomial representations associated with λ for Sp(2n)

and O(m) respectively, have been introduced by various authors (see, for instance,

[3, 5, 7, 11]). El Samra and King ([2]) were able to manipulate Weyl’s dimension

formula to produce formulae for the number of semistandard symplectic and odd

orthogonal λ-tableaux in terms of hook lengths and contents.

The aim of this paper is to adapt Stanley’s approach using Weyl’s character formula

to these cases. We obtain expressions for the specialisations

spλ,2n(q, q3, q5, . . . , q2n−1), oλ,2n+1(q2, q4, q6, . . . , q2n), and oλ,2n(q, q3, q5, . . . , q2n−1)
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of the symplectic, odd orthogonal, and even orthogonal Schur functions. These

give generating functions for the semistandard symplectic and orthogonal tableaux

of shape λ with entries in the sets {1, 1, 2, 2, . . . , n, n} or {1, 1, 2, 2, . . . , n, n,∞} as

appropriate, and we recover the formulae from [2] as a special case by setting q = 1.

The specialisations in the symplectic and odd orthogonal cases have previously

been studied by Koike ([6]), who was primarily concerned with the quantum dimen-

sions of the irreducible modules as opposed to the associated tableaux. Using the

principal specialisation of the Weyl character formula, Koike ([6]) also obtained for-

mulae like the ones in which we are interested. By using different specialisations and

by using an approach that is more direct and closer to the approach taken by Stanley,

we obtain these results much more easily, and the result we obtain is different in the

even orthogonal case.

We begin with a preliminary section that recalls the basic combinatorics of Young

tableaux. The following section describes the symplectic and orthogonal tableaux

that we will be considering. In the remaining sections we derive the generating func-

tions for the symplectic and orthogonal cases.

2 Young Tableaux

A partition of a positive integer r is a k-tuple λ = (λ1, λ2, . . . , λk) of weakly decreas-

ing non-negative integers such that
∑k

i=1 λi = r. The non-zero λi in the k-tuple are

called the parts of λ. The Young diagram of shape λ is the subset of Z
2 defined by

[λ] = {(i, j) | i, j ∈ N, 1 ≤ i ≤ k, 1 ≤ j ≤ λi}.

This is represented in the plane by arranging r boxes in k left-justified rows with the i-

th row containing λi boxes. The conjugate of λ is the partition λt
= (λt

1, λ
t
2, . . . , λ

t
s),

where λt
i is the number of boxes in the i-th column of the Young diagram of shape λ.

One obtains a λ-tableau by filling [λ] with entries from a set {1, 2, . . . , n}, where n

is a positive integer. A λ-tableau is semistandard if the entries in each row are weakly

increasing from left to right and the entries in each column are strictly increasing

from top to bottom.

For a λ-tableau T, let ai(T) denote the number entries equal to i in T. The weight

of T is the monomial in the variables x1, x2, . . . , xn defined by wt(T) =

∏n
i=1 xai (T)

i .
The Schur function corresponding to λ is

sλ(x1, x2, . . . , xn) =
∑

T

wt(T),

where the sum runs over all semistandard λ-tableaux T with entries in {1, 2, . . . , n}.

Each box in [λ] has an associated hook that consists of that box, all boxes to the

right of it in that row, and all boxes below it in that column. The hook length of the

box is then the number of boxes in its hook. Specifically, for (i, j) ∈ [λ] we have

h(i, j) = λi + λt
j − i − j + 1.
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Using the Schur function sλ(x1, x2, . . . , xn), Stanley ([8]) obtained the follow-

ing formula for the number of semistandard λ-tableaux with entries in the set

{1, 2, . . . , n}:

sλ(1n) =
∏

(i, j)∈[λ]

n + c(i, j)

h(i, j)
,

where c(i, j) = j − i is the content of the (i, j)-th box. More generally, he proved that

for an indeterminate q

(2.1) sλ(1, q, . . . , qn−1) = qb(λ)
∏

(i, j)∈[λ]

[n + c(i, j)]

[h(i, j)]
,

where b(λ) =

∑k
i=1(i − 1)λi and [i] = qi − 1. If we let |T| denote the sum of the

entries in the tableau T, then the coefficient of qi in sλ(1, q, . . . , qn−1) is the num-

ber of semistandard λ-tableaux with entries in {1, 2, . . . , n} that have |T| = i + r.

Consequently, (2.1) can be interpreted as providing a generating function for such

tableaux.

3 Symplectic and Orthogonal Tableaux

Throughout, fix positive integers r and n and let λ be a partition of r into at most

n parts. We will consider a set of 2n symbols {1, 1, 2, 2, . . . , n, n} with the ordering

1 < 1 < 2 < 2 < · · · < n < n. A semistandard symplectic tableau (see [3]) of shape

λ is a λ-tableau T with entries from {1, 1, 2, 2, . . . , n, n} that is semistandard in the

usual sense and satisfies the additional property that the entries in the i-th row of T

are greater than or equal to i for each i.

The weight of a symplectic λ-tableau T is defined by wt(T) =

∏n
i=1 x

ai (T)−ai (T)

i ,

where, as in the previous section, ai(T) is equal to the number of entries equal to

i that appear in T. Then spλ,2n(x1, x2, . . . , xn) =

∑

T wt(T), where the sum runs

over all semistandard symplectic λ-tableaux and is the symplectic Schur function

corresponding to λ. It is the character of the irreducible polynomial Sp(2n)-module

with highest weight λ [4].

Example The semistandard symplectic λ-tableaux for λ = (1, 1) and n = 2 are as

follows:

1

2
, 1

2
, 1

2
, 1

2
, 2

2
.

The corresponding symplectic Schur function is

spλ,2n(x1, x2) = x1x2 + x1x−1
2 + x−1

1 x2 + x−1
1 x−1

2 + 1.

For the even orthogonal tableaux we will use the same set as in the symplectic case,

while for the odd tableaux we use 1 < 1 < 2 < 2 < · · · < n < n < ∞ and set

∞ = ∞. Let αi and βi denote the number of entries that are at most i in the first and

second columns of a tableau T, respectively, and let Ti, j denote the entry in the (i, j)-

th box of T. A semistandard even orthogonal or odd orthogonal tableau (see [5]) of
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shape λ is a semistandard λ-tableau T with entries from the set {1, 1, 2, 2, . . . , n, n}
or {1, 1, 2, 2, . . . , n, n,∞}, respectively, such that for each 1 ≤ i ≤ n:

(i) αi + βi ≤ 2i;

(ii) if αi + βi = 2i with αi > βi and Tαi ,1 = i and Tβi ,2 = i, then Tαi−1,1 = i;

(iii) if αi + βi = 2i with αi = βi = i and Tαi ,1 = i and Tαi , j = i, then Tαi−1, j = i.

Let wt(T) denote the weight of the tableau T as defined above. The even or-

thogonal and odd orthogonal Schur functions corresponding to λ are defined to be

oλ,m(x1, x2, . . . , xn) =
∑

T wt(T), where m = 2n or 2n + 1 and the sum runs over the

semistandard even orthogonal and odd orthogonal λ-tableaux respectively. These

are then the characters for the irreducible polynomial O(2n) and O(2n + 1)-modules

of highest weight λ [7].

Example Let λ = (1, 1) and n = 2. The semistandard odd orthogonal tableaux of

shape λ are

1

2
, 1

2
, 1

2
, 1

2
, 1

∞
, 1

∞
, 2

∞
, 2

∞
, 1

1
, 2

2
.

The odd orthogonal Schur function is

oλ,2n+1(x1, x2) = x1x2 + x1x−1
2 + x−1

1 x2 + x−1
1 x−1

2 + x1 + x−1
1 + x2 + x−1

2 + 2.

4 Generating Function for Semistandard Symplectic Tableaux

Our aim is to produce an analogue of (2.1) for the symplectic Schur function, and we

start with the determinantal formula [1, Equation 24.18]

(4.1) spλ,2n(x1, x2, . . . , xn) =
|xλi +n−i+1

j − x−λi−n+i−1
j |ni, j=1

|xn−i+1
j − x−n+i−1

j |ni, j=1

.

Let q be an indeterminate, and for a positive integer i define 〈i〉 = qi − q−i with

〈i〉! = 〈1〉〈2〉 · · · 〈i − 1〉〈i〉. When necessary, we will also set 〈0〉! = 〈0〉 = 1. The

following result is a generalisation of [1, Exercise 24.20].

Lemma 4.1 Let λ be a partition with at most n parts and set µi = λi + n − i. Then

(4.2)

spλ,2n(q, q3, q5, . . . , q2n−1) =

∏n
i=1〈µi + 1〉

∏

1≤i< j≤n〈µi − µ j〉〈µi + µ j + 2〉
∏n

i=1〈2i − 1〉!
.

Proof Let d and d ′ denote the denominator and numerator of (4.1) respectively after

setting x j = q2 j−1. Elementary row operations allow us to rewrite the denominator

as

d = (−1)n(n−1)/2
∣

∣ (q2 j−1 + q1−2 j)i−1
∣

∣

n

i, j=1

n
∏

j=1

(

q2 j−1 − q1−2 j
)

.
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The determinant in this expression is the determinant of the transpose of a Vander-

monde matrix

∣

∣ (q2 j−1 + q1−2 j)i−1
∣

∣

n

i, j=1
=

∏

1≤i< j≤n

[

(q2 j−1 + q1−2 j) − (q2i−1 + q1−2i)
]

.

Rewriting (q2 j−1 + q1−2 j) − (q2i−1 + q1−2i) = (q j−i − qi− j)(qi+ j−1 − q1−i− j) then

gives

d = (−1)n(n−1)/2
n
∏

i=1

2i−1
∏

k=1

(qk − q−k) = (−1)n(n−1)/2
n
∏

i=1

〈2i − 1〉!.

For the numerator we proceed similarly:

d ′
=

∣

∣ (qµi +1 + q−µi−1)2( j−1)
∣

∣

n

i, j=1

n
∏

i=1

(qµi +1 − q−µi−1)

with

∣

∣ (qµi +1 + q−µi−1)2( j−1)
∣

∣

n

i, j=1
=

∏

1≤i< j≤n

[

(qµ j +1 + q−µ j−1)2 − (qµi +1 + q−µi−1)2
]

.

Here (qµ j +1 +q−µ j−1)2−(qµi +1 +q−µi−1)2
= (qµ j−µi −qµi−µ j )(qµi +µ j +2−q−µi−µ j−2),

so we obtain

d ′
= (−1)n(n−1)/2

n
∏

i=1

〈µi + 1〉
∏

1≤i< j≤n

〈µi − µ j〉〈µi + µ j + 2〉,

and the result follows.

We need to identify the right-hand side of (4.2) as a suitable product over the boxes

in the diagram. First, we consider the contribution from the hook lengths. Although

this is identical to the result for GL(n), for completeness we provide a proof.

Lemma 4.2 Let λ be a partition of at most n parts. Then

∏

(i, j)∈[λ]

〈h(i, j)〉 =

∏n
i=1〈µi〉!

∏

1≤i< j≤n〈µi − µ j〉
.

Proof Consider only the i-th row of the diagram. The hook lengths strictly decrease

from left to right along the row, so it is enough to show that for each 1 ≤ j ≤ λi

we have h(i, j) ≤ µi , but that h(i, j) 6= µi − µℓ for any i < ℓ ≤ n. Let ℓ = λt
j

so that h(i, j) = (λi − i) + (ℓ − j) + 1. Then λℓ+1 < j < λℓ + 1 implies that

µi − µℓ < h(i, j) < µi − µℓ+1, where this gives µi − µn < h(i, j) ≤ µi for ℓ = n.

In the case of GL(n) the content of a box is defined independently of the partition.

For symplectic tableaux, however, we take (see [10])

rλ(i, j) =

{

λi + λ j − i − j + 2 if i > j,

i + j − λt
i − λt

j if i ≤ j.
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Lemma 4.3 Let λ be a partition of at most n parts. Then

(4.3)
∏

(i, j)∈[λ]

〈2n + rλ(i, j)〉 =

∏n
i=1〈µi + 1〉!

∏

1≤i< j≤n〈µi + µ j + 2〉
∏n

i=1〈2i − 1〉!
.

Proof Let λ = (λ1, . . . , λk) so that k = λt
1 and consider λ ′

= (λ2 − 1, . . . , λk − 1),

the partition obtained by removing the hook with corner (1, 1) from the diagram for

λ. The content of the (i, j)-th box in [λ ′] is rλ ′(i, j) = rλ(i + 1, j + 1), so we may

calculate (4.3) by induction on the number of parts of λ. We begin by examining the

entries of the boxes lying in the (1, 1)-hook of λ.

Recall that µi = λi + n − i for each 1 ≤ i ≤ n. It is clear that for 1 < i ≤ k we

have 2n + rλ(i, 1) = µ1 +µi + 2. Further, for 1 ≤ j ≤ λ1 we may write 2n + rλ(1, j) =

(n − k) + (µ1 − h(1, j)) + 2, where h(1, j) is the corresponding hook length in [λ].

From the proof of Lemma 4.2 we know that, as we run along the first row, h(1, j) will

take on the values 1 up to µ1 excluding those of the form µ1−µℓ for 1 < ℓ ≤ n. Thus

λ1
∏

j=1

〈2n + rλ(1, j)〉 =
〈(n − k) + µ1 + 1〉!

〈(n − k) + 1〉
∏n

ℓ=2〈(n − k) + µℓ + 2〉
.

However, µi = n − i for all k < i ≤ n, so we may express 〈(n − k) + µ1 + 1〉!
in the numerator as the product of 〈µ1 + µk+1 + 2〉 · · · 〈µ1 + µn + 2〉 and 〈µ1 + 1〉!.
Consequently, the product over all the boxes in the hook is

(4.4)
∏

(i, j)∈[(λ1,1k−1)]

〈2n + rλ(i, j)〉 =
〈µ1 + 1〉!

∏n
j=2〈µ1 + µ j + 2〉

〈(n − k) + 1〉!
∏n

j=2〈(n − k) + µ j + 2〉
.

To prove the base case suppose that the diagram for λ is a single hook; that is,

λ = (λ1, 1k−1). This gives µi = n − i + 1 for 1 < i ≤ k and n − i for i > k. In

particular,

〈µi +1〉!
n
∏

j=i+1

〈µi +µ j +2〉 =

{

〈2(n − i + 2) − 1〉!/〈(n − k) + µi + 2〉 if 1 < i ≤ k,

〈2(n − i + 1) − 1〉! if k < i ≤ n,

so

n
∏

i=2

〈µi + 1〉!
∏

2≤i< j≤n

〈µi + µ j + 2〉 =

∏n
i=1〈2i − 1〉!

〈2(n − k) + 1〉!
∏k

i=2〈(n − k) + µi + 2〉
.

Moreover, we can replace the factorial 〈2(n − k) + 1〉! in the denominator by the

product of 〈(n − k) + µk+1 + 2〉 · · · 〈(n − k) + µn + 2〉 and 〈(n − k) + 1〉!. Hence we

find that (4.4) is equivalent to (4.3) in this case.

Now suppose that [λ] is more than a single hook and let λ ′
= (λ2−1, . . . , λk−1)

as above. By induction we know that

∏

(i, j)∈[λ ′]

〈2n + rλ ′(i, j)〉 =

∏n
i=1〈µ

′
i + 1〉!

∏

1≤i< j≤n〈µ
′
i + µ ′

j + 2〉
∏n

i=1〈2i − 1〉!
,
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where µ ′
i = λ ′

i + n− i. Here we see that µ ′
i = µi+1 for 1 ≤ i < k and µi for k < i ≤ n

with µ ′
k = n − k. We may therefore reexpress this as

∏

(i, j)∈[λ ′]〈2n + rλ(i + 1, j + 1)〉

〈(n − k) + 1〉!
∏n

j=2〈(n − k) + µ j + 2〉
=

∏n
i=2〈µi + 1〉!

∏

2≤i< j≤n〈µi + µ j + 2〉
∏n

i=1〈2i − 1〉!
.

Combining with (4.4) we obtain (4.3), and we are done.

Remark 4.4 In [9] the formula for the product of the hook lengths is derived by

manipulating the diagram for λ. We add k−i boxes to the i-th row of the diagram, fill

the row with the numbers 1 up to µi −(n−k) starting from the right, and remove the

columns 1 +µ j for 1 < j ≤ n. The boxes remaining form the diagram for λ with the

hook lengths in the appropriate places, while the boxes removed are precisely those

containing µi − µ j for 1 ≤ i < j ≤ k. For example, when λ = (7, 5, 4, 1) and n = 4,

we have µ = (10, 7, 5, 1) and obtain

10 9 8 7 6 5 4 3 2 1

7 6 5 4 3 2 1

5 4 3 2 1

1

−→

10 8 7 6 4 2 1

7 5 4 3 1

5 3 2 1

1

A similar method can be used to derive (4.4), the formula for the product of the

contents in the (1, 1)-hook. We add k − 1 boxes to the arm of the hook and label

the boxes in the following way: the leg of the hook, excluding (1, 1), is filled with the

numbers µ1 + µ j + 2 for 1 < j ≤ k starting from the top and the arm of the hook,

including (1, 1), with 2(n − k) + 2 up to µ1 + (n − k) + 1 starting from the left. We

then remove the boxes in the arm at positions µ j − (n − k) + 1 for 1 < j ≤ k. The

eliminated boxes contain µ j + (n − k) + 2 for 1 < j ≤ k and the remaining boxes the

values of 2n + rλ(i, j) for the hook. We therefore have

∏

(i, j)∈[(λ1,1k−1)]

〈2n + rλ(i, j)〉 =
〈µ1 + (n − k) + 1〉!

〈2(n − k) + 1〉!
∏k

j=1〈(n − k) + µ j + 2〉

and note that 〈µ1 + (n − k) + 1〉! = 〈µ1 + 1〉!〈µ1 + µk+1 + 2〉 · · · 〈µ1 + µn + 2〉, while

〈2(n − k) + 1〉! = 〈(n − k) + 1〉!〈(n − k) + µk+1 + 2〉 · · · 〈(n − k) + µn + 2〉.
For example, λ = (7, 5, 4, 1) with n = 4 and µ = (10, 7, 5, 1) gives

2 3 4 5 6 7 8 9 10 11

19

17

13

−→

2 4 5 6 8 10 11

19

17

13

for the first hook. To continue, we consider the partition λ ′
= (4, 3), where we still

have n = 4 but now k = 2. Consequently, µ ′
= (7, 5, 1, 0), and we obtain

6 7 8 9 10

14
−→

6 7 8 10

14
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for the second hook. Finally, for the third hook we use λ ′ ′
= (2) with µ ′ ′

=

(5, 2, 1, 0), which simply produces

8 9

Combining yields the complete diagram

2 4 5 6 8 10 11

19 6 7 8 10

17 14 8 9

13

.

Theorem 4.5 Let λ be a partition with at most n parts. Then

spλ,2n(q, q3, . . . , q2n−1) =
∏

(i, j)∈[λ]

〈2n + rλ(i, j)〉

〈h(i, j)〉
.

Proof The result follows from the previous three lemmas.

Define |T| to be the sum of the entries of the symplectic tableau T, where the

symbol i is counted as −i. Let r(T) = r+(T)− r−(T), where r+(T) and r−(T) are the

number of boxes of T containing a symbol from the sets {1, . . . , n} and {1, . . . , n}
respectively. Then

spλ,2n(q, q3, q5, . . . , q2n−1) =
∑

T

q2|T|−r(T),

where T runs over the semistandard symplectic λ-tableaux. As a special case, set-

ting q = 1 recovers King and El-Samra’s expression ([2]) for the dimension of the

irreducible polynomial Sp(2n)-module with highest weight λ.

Corollary 4.6 The number of semistandard symplectic λ-tableaux with entries in the

set {1, 1, 2, 1, . . . , n, n} is

spλ,2n(1, . . . , 1) =
∏

(i, j)∈[λ]

2n + rλ(i, j)

h(i, j)
.

5 Generating Function for Semistandard Orthogonal Tableaux

Although our approach for the orthogonal tableaux will be identical to that for the

symplectic tableaux, there are important differences between the odd orthogonal and

even orthogonal cases. For the odd orthogonal tableaux the relevant determinantal

formula is ([1, Equation 24.28])

oλ,2n+1(x1, x2, . . . , xn) =
|x

λi +n−i+1/2
j − x

−λi−n+i−1/2
j |ni, j=1

|x
n−i+1/2
j − x

−n+i−1/2
j |ni, j=1

.
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However, the situation is more complicated in the case of even orthogonal tableaux

(see [1, pp. 410–411] or [7, p. 356]). If λ has strictly fewer than n parts, then

oλ,2n(x1, x2, . . . , xn) =
|xλi +n−i

j + x−λi−n+i
j |ni, j=1

|xn−i
j + x−n+i

j |ni, j=1

,

whereas for λ with exactly n parts

(5.1) oλ,2n(x1, x2, . . . , xn) = 2
|xλi +n−i

j + x−λi−n+i
j |ni, j=1

|xn−i
j + x−n+i

j |ni, j=1

.

Lemma 5.1 Let λ be a partition with at most n parts and set µi = λi + n − i. Then

oλ,2n+1(q2, q4, . . . , q2n) =

∏n
i=1〈2µi + 1〉

∏

1≤i< j≤n〈µi − µ j〉〈µi + µ j + 1〉
∏n

i=1〈2i − 1〉!

and

oλ,2n(q, q3, q5, . . . , q2n−1) =

∏n
i=1〈2µi〉

∏

1≤i< j≤n〈µi − µ j〉〈µi + µ j〉
∏n

i=1〈µi〉
∏n−1

i=1 〈2i〉!
.

Proof The argument for the odd orthogonal case is analagous to the proof of

Lemma 4.1, but some care needs to be taken in the even orthogonal case. Setting

x j = q2 j−1 means that we should factor 2 out of the last row of the denominator to

obtain

d = 2(−1)n(n−1)/2
n−1
∏

i=1

〈2i〉!.

Further, the determinant in both numerators can be expressed as

d ′
= (−1)n(n−1)/2

n
∏

i=1

(qµi + q−µi )
∏

1≤i< j≤n

〈µ j − µi〉〈µi + µ j〉.

When λ has exactly n parts we may replace qµi + q−µi by 〈2µi〉/〈µi〉 for each i, and

the additional factor of 2 in (5.1) cancels with the denominator. However, when λ
has fewer than n parts we have µn = 0 so qµn + q−µn

= 2, while 〈2µn〉/〈µn〉 = 1. In

this case,

d ′
= 2(−1)n(n−1)/2

n
∏

i=1

〈2µi〉

〈µi〉

∏

1≤i< j≤n

〈µ j − µi〉〈µi + µ j〉,

and the result again holds.

For the orthogonal λ-tableaux, the content of the (i, j)-th box is (see [10])

r ′λ(i, j) =

{

λi + λ j − i − j if i ≥ j,
i + j − λt

i − λt
j − 2 if i < j.
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Lemma 5.2 Let λ be a partition with at most n parts. Then

∏

(i, j)∈[λ]

〈2n + 1 + r ′λ(i, j)〉 =

∏n
i=1〈µi〉!

∏

1≤i≤ j≤n〈µi + µ j + 1〉
∏n

i=1〈2i − 1〉!

and

∏

(i, j)∈[λ]

〈2n + r ′λ(i, j)〉 =

∏n
i=1〈µi〉!

∏

1≤i≤ j≤n〈µi + µ j〉
∏n

i=1〈µi〉
∏n−1

i=1 〈2i〉!
.

Proof These can be derived in the same way as Lemma 4.3.

Note that, using an argument similar to the one at the beginning of the proof

of Lemma 4.3, one can derive orthogonal versions of the formula (4.4). A pictorial

method, as in Remark 4.4, can then be used to derive these formulae.

Theorem 5.3 Let λ be a partition with at most n parts. Then

oλ,2n+1(q2, q4, q6, . . . , q2n) =
∏

(i, j)∈[λ]

〈2n + 1 + r ′λ(i, j)〉

〈h(i, j)〉

and

oλ,2n(q, q3, q5, . . . , q2n−1) =
∏

(i, j)∈[λ]

〈2n + r ′λ(i, j)〉

〈h(i, j)〉
.

Let |T| be the sum of the entries of the odd orthogonal tableau T, where i is

counted as −i and ∞ is omitted. Further, let r(T) = r+(T)− r−(T), where r+(T) and

r−(T) are the number of boxes in T containing symbols from the sets {1, 2, . . . , n}
and {1, 2, . . . , n}, respectively. Then

oλ,2n+1(q2, q4, . . . , q2n) =
∑

T

q2|T|

and

oλ,2n(q, q3, q5, . . . , q2n−1) =
∑

T

q2|T|−r(T),

where the sums run over the odd and even semistandard orthogonal λ-tableaux re-

spectively. Again, setting q = 1 yields King and El-Samra’s expression ([2]) for the

dimension of the irreducible polynomial O(m)-module with highest weight λ.

Corollary 5.4 The number of semistandard orthogonal λ-tableaux with entries in the

set {1, 1, 2, 2, . . . , n, n,∞} for m = 2n + 1 or {1, 1, 2, 2, . . . , n, n} for m = 2n is

oλ,m(1, . . . , 1) =
∏

(i, j)∈[λ]

m + r ′λ(i, j)

h(i, j)
.
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Remark 5.5 The irreducible O(2n + 1)-module of highest weight λ remains irre-

ducible on restriction to the special orthogonal group SO(2n + 1), and the same is

true for the irreducible O(2n)-module when λ has strictly fewer than n parts. How-

ever, if λ has exactly n parts, then the restriction decomposes as the direct sum of

irreducible SO(2n)-modules of highest weights λ+
= (λ1, . . . , λn−1, λn) and λ−

=

(λ1, . . . , λn−1,−λn), and in this case there is a corresponding definition of positive

and negative even semistandard orthogonal λ-tableaux ([5]). The SO(2n)-modules

have characters

soλ±,2n(x1, . . . , xn) =
|xλi +n−i

j + x−λi−n+i
j |ni, j=1 ± |xλi +n−i

j − x−λi−n+i
j |ni, j=1

|xn−i
j + x−n+i

j |ni, j=1

,

so here it is more convenient to use the specialisation x j = q2( j−1), since this elimi-

nates the second term in the numerator above, and in both cases we obtain

soλ±,2n(1, q2, q4, . . . , q2n−2) =
n−1
∏

i=1

〈2i〉

〈i〉

n
∏

i=1

〈µi〉

〈2µi〉

∏

(i, j)∈[λ]

〈2n + r ′λ(i, j)〉

〈h(i, j)〉
,

since µn > 0. It is clear that when we set q = 1 the additional terms reduce to

1/2 so we find that the number of positive or negative semistandard even orthogonal

λ-tableaux with entries in the set {1, 1, 2, 2, . . . , n, n} is

soλ±,2n(1, . . . , 1) =
1

2

∏

(i, j)∈[λ]

2n + r ′λ(i, j)

h(i, j)
,

as one would expect.
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