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Abstract

We classify all polynomials P(X) ∈ Q[X] with rational coefficients having the property that the quotient
(λi − λ j)/(λk − λ`) is a rational number for all quadruples of roots (λi, λ j, λk, λ`) with λk , λ`.
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1. Introduction

In this paper, we address the following question.

Question 1.1. Let P(X) ∈ Q[X] be a monic squarefree nonconstant polynomial. Let
Z(P) be the set of roots of P(X). Is it true that if

(λi − λ j)/(λk − λ`) ∈ Q for all {λi, λ j, λk, λ`} ⊂ Z(P)4, λk , λ`, (1.1)

then Z(P) ⊂ Q?

Neither of the conditions ‘monic’ or ‘squarefree’ is essential in the above question.
We have only imposed them for simplicity.

Condition (1.1) is not so unusual. Characteristic polynomials of certain graphs
satisfy condition (1.1) (see [3]). In [2], it is shown that if λ1, λ2, λ3, λ4 are roots of
unity with λ3 , λ4 and (λ1 − λ2)/(λ3 − λ4) ∈ Q then there exist i, j ∈ {1, 2, 3, 4} such
that λi = −λ j.

The example

P(X) = Xn
k∏

j=1

(X2 − de2
j) for n ∈ {0, 1}, (1.2)

where d is a squarefree integer (not 0 or 1), k ≥ 1 is a positive integer and e1, . . . , ek
are distinct positive rational numbers, shows that the answer to Question 1.1 is no.

The author is supported by grant CPRR160325161141 from the NRF of South Africa, an A-rated scientist
award from the NRF of South Africa and the grant no. 17-02804S of the Czech Granting Agency.
c© 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 $16.00

185

https://doi.org/10.1017/S0004972717000508 Published online by Cambridge University Press

http://orcid.org/0000-0003-1321-4422
https://doi.org/10.1017/S0004972717000508


186 F. Luca [2]

We first show that every polynomial P(X) ∈ Q[X] satisfying condition (1.1) is given,
up to a translation in the variable X, by (1.2) for suitable values of d, k, e1, . . . , ek.

Theorem 1.2. If P(X) ∈ Q[X] is a monic polynomial with simple roots and satisfies
(1.1) but Z(P) 1 Q, then there is a rational number a such that Q(X) := P(X − a) is
given by (1.2) for suitable values of d, k, e1, . . . , ek.

Note that in this case the splitting field of P(X) is Q(
√

d), so the Galois group of
f (X) is Z/2Z. This suggests that, instead of asking that the ratios (λi − λ j)/(λk − λ`)
are rational numbers, we could take

f (X1, . . . , Xm+k) =
F(X1, . . . , Xk)

G(Xk+1, . . . , Xm+k)
,

where F(X1, . . . , Xk) and G(Y1, . . . , Ym) are homogeneous polynomials of degree D in
Q[X1, . . . , Xk] and Q[Y1, . . . ,Ym], respectively, and impose the condition that

f (λ1, . . . , λk+m) ∈ Q for all (λ1, . . . , λk+m) ∈ Z(P)k+m (1.3)

whenever G(λk+1, . . . , λk+m) , 0. Can we say anything special about the roots of P(X)?
For example, if k = m = 2, F(X1, X2) = X1 − X2 and G(Y1,Y2) = Y1 − Y2, then

f (X1, X2, X3, X4) =
F(X1, X2)
G(X3, X4)

.

By Theorem 1.2, the condition (1.3) for this example implies that the splitting field of
P(X) over Q has degree at most 2.

We prove that the splitting field of P(X) has bounded degree under the more general
condition given by (1.3) when D = 1 and that the bound is independent both of the
numbers k and m and of the two forms F and G.

Theorem 1.3. Assume that D = 1 and that condition (1.3) holds. Then the Galois group
of P(X) over Q is of order at most 132.

Almost surely, 132 is not optimal in Theorem 1.3. We leave it as a challenge to find
the optimal bound and give an example of when it is attained.

2. The proofs

2.1. The proof of Theorem 1.2. We start by observing that if P(X) has two roots in
Q, then all the roots are in Q. Indeed, assuming, say, λ1 , λ2 are in Q and using

λ1 − λ

λ1 − λ2
∈ Q for all λ ∈ Z(P),

we see that λ ∈ Q for all λ ∈ Z(P), and therefore Z(P) ⊂ Q. From now on, we assume
that P(X) has at most one root in Q. Let λ1 be any irrational root of P(X) of degree
m ≥ 2 and let λ2, . . . , λm be the remaining conjugates of λ1. Condition (1.1) shows that

λ1 − λk = qk(λ1 − λ2) for all k = 1, 2, . . . ,m, (2.1)
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where qk ∈ Q for k = 1, . . . ,m. (We can take q1 = 0 and q2 = 1.) Sum up (2.1) for
k = 1, . . . ,m to give

mλ1 − S = Qλ1 − Qλ2,

where S :=
∑m

k=1 λk ∈ Q and Q :=
∑m

k=1 qk. This gives

(m − Q)λ1 + Qλ2 = S . (2.2)

If Q = 0, we find λ1 = S/m ∈ Qwhich is false. A similar contradiction is obtained from
(2.2) if m − Q = 0, namely λ2 = S/m ∈ Q, contrary to the hypothesis. Thus, putting
α = Q/(m − Q),

λ1 + αλ2 ∈ Q. (2.3)

Let σ be an automorphism of the Galois group of the splitting field of P(X) over Q
such that λ2 = λσ1 and assume that the orbit of λ1 under σ is (λ1, λ2, . . . , λi). That is,
λσj = λ j+1 (mod i). Applying σ successively to (2.3),

λ j + αλ j+1 (mod i) ∈ Q,

for j = 1, . . . , i. Thus,

λ1 ≡ (−α)λ2 (mod Q) ≡ (−α)2λ3 (mod Q) ≡ · · · ≡ (−α)iλ1 (mod Q).

Thus, (1 − (−α)i)λ1 ∈ Q. Since λ1 < Q, this is only possible if α = ±1.
If α = +1, λ1 − λ2 ∈ Q. Condition (1.1) implies that

λ1 − λi = qi(λ1 − λ2) ∈ Q

for i = 1, . . . ,m. Summing up the above relations mλ1 − S ∈ Q, and therefore λ1 ∈ Q a
contradiction. Thus, λ1 + λ2 ∈ Q. This is indeed true if m = 2.

If m ≥ 3, then we can replace λ2 by any λi for i = 2, . . . ,m in the above argument,
getting λ1 + λi ∈ Q for i = 2, . . . ,m. Summing up these relations, (m − 2)λ1 + S ∈ Q,
so λ1 ∈ Q (because m > 2), again a contradiction. Thus, m = 2.

This is true for all irrational roots of P(X). We now distinguish three cases.

Case 1. #Z(P) = 2. In this case, P(X) = X2 + 2aX + b is irreducible in Q[X]. We
therefore obtain P(X − a) = X2 − ∆, where ∆ = a2 − b is not a square of a rational
number, so it can be written in the form e2d, where d is a squarefree integer (not equal
to 0 or 1) and e is some nonzero rational number.

Case 2. #Z(P) = 3. In this case, P(X) has a rational root λ3. Let us write X2 + 2aX + b =

(X − λ1)(X − λ2). Then λ1,2 = −a ±
√

∆, with ∆ = a2 − b not a square of a rational
number, so λ1 − λ2 = 2

√
∆. Since (λ3 − λ1)/(λ1 − λ2) ∈ Q, it follows that λ3 = −a.

Thus, in this case,
P(X) = (X + a)(X2 + 2aX + b).

In particular, P(X − a) = X(X2 − ∆), where again ∆ = e2d, with d being an integer
which is squarefree and not 0 or 1 and e is some nonzero rational number.
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Case 3. #Z(p) ≥ 4. In this case, P(X) has at least two irreducible quadratic factors.
Let any two of these irreducible factors be X2 + 2aX + b = (X − λ1)(X − λ2) and
X2 + 2a′X + b′ = (X − λ′1)(X − λ′2). Then λ1 − λ2 = 2

√
∆ and λ′1 − λ

′
2 = 2

√
∆′, where

∆ = a2 − b, ∆′ = a′2 − b′ are not squares of rational numbers. The condition
(λ′1 − λ

′
2)/(λ1 − λ2) ∈ Q shows that ∆′/∆ = u2 is the square of a rational number u

which may be assumed positive. Thus, if we write ∆ = e2d with d a squarefree integer
and a positive rational number e, then ∆′ = e′2d, where e′ := eu. Now looking at

λ′1 − λ1

λ1 − λ2
=
−(a′ − a) + e

√
d(±u ± 1)

2e
√

d
∈ Q,

we see easily that a = a′. All of the above holds for any two quadratic irreducible
factors of P(X). Thus, Q(X) = P(X − a) has the property that every quadratic factor of
it is of the form X2 − e2d, where the squarefree integer d is the same for all factors
(and the positive rational number e varies with the factor). Finally, if there is a rational
root of Q(X) then the argument from Case 2 implies that it is zero.

Collecting all of the above gives the desired conclusion.

2.2. The proof of Theorem 1.3. We assume that

F(X1, . . . , Xk) =

k∑
i=1

fiXi and G(Y1, . . . ,Ym) =

m∑
i=1

giYi with f1g1 , 0.

Assume first that k = m = 1. In this case, λ1/λ2 is a rational number for any two roots
λ1, λ2 ∈ Z(P) with λ2 , 0. Assuming that P has degree at least 2, condition (1.1) applies
to Z(P) and, by Theorem 1.2, the Galois group of P(X) has order at most 2.

From now on, we assume that max{k,m} ≥ 2. We may assume that m ≥ 2 (if not,
we replace F/G by its reciprocal). We assume that P(X) has n distinct roots and that
n > 5, otherwise the Galois group of P(X) is of order at most 5! = 120. We also assume
that P(X) has irrational roots otherwise its Galois group is trivial. Let λ, λ′ be any two
distinct roots of P(X). Let λ2, . . . , λk+m be all in {λ, λ′} such that G(λk+1, . . . , λk+m) , 0.
To see that this is possible, let λk+2, . . . , λk+m be chosen arbitrarily from {λ, λ′}
and note that since g1 , 0 and λ , λ′, it is not possible that G(λ, λk+2, . . . , λk+m)
and G(λ′, λk+2, . . . , λk+m) are both zero. So we can choose λk+1 ∈ {λ, λ

′} such that
f (x, λ2, . . . , λk+m) is defined for any complex number x. Now let λ′′ be any element
in Z(P)\{λ, λ′}. Then since

f (λ′′, λ2, . . . , λk+m) = F(λ′′, λ2, . . . , λk)/G(λk+1, . . . , λk+m) ∈ Q

and f1 , 0, it follows that

λ′′ is a Q-linear combination of
k∑

i=2

fiλi and G(λk+1, . . . , λk+m). (2.4)

In particular, λ, λ′ and λ′′ are linearly dependent over Q. It follows, by the main result
of [1], that if λ is any irrational root of P(X), then its degree is at most 12. Taking λ to
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be some irrational root of P(X) and λ′ to be some conjugate of λ, relation (2.4) (valid
for all λ′′ ∈ Z(P)\{λ, λ′}) shows that

Z(P) ⊂ Q(λ, λ′)

and the field on the right-hand side above has degree at most 12 × 11 = 132. The
theorem is proved.

3. Comments

In case F and G have degree D ≥ 2, we do not necessarily get a bound on the order
of the Galois group of P(X) under the condition (1.3). For example, we can take

F(X1, . . . , Xk) =

k∑
i=1

fiX2
i and G(Y1, . . . ,Ym) =

m∑
i=1

giY2
i

for some vectors of coefficients ( f1, . . . , fk) ∈ Qk and (g1, . . . , gm) ∈ Qm, none of them
zero, and then we can take

P(X) =

N∏
i=1

(X2 − ei)

for any rational numbers ei for i = 1, . . . ,N. In particular, taking ei to be distinct primes,
for example, the Galois group of P(X) can be (Z/2Z)N for arbitrarily large values of N.
It is perhaps true that condition (1.3) implies that the largest prime factor of the order
of the Galois group of P(X) is bounded by a function of D. We leave this problem as a
challenge.
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