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Abstract

The Hamiltonian system Y'=BY +CZ, Z'= - AY—-B*Z is considered where the
coefficients are continuous on I=[a,%), C=C*Z0, and A = A*=0. A solution (Y, Z)
satisfying Y*Z = Z*Y is defined to be principal (coprincipal) provided that (i) Y™ ' exists on I
(Z7" exists on I) and (ii) [fiY'CY* '] '>0 as t—= ([fL—Z'AZ*"|' >0 as —>x),
Three conditions are given which are separately equivalent to the condition that a solution is
principal iff it is coprincipal. For a self-adjoint scalar operator L of order 2n, this problem is
related to the deficiency index problem and to a problem of Anderson and Lazer (1970) which
concerns the number of linearly independent solutions of L(y)=0 satisfying y*'e
Fo(a, <}k =0,---, n).

We consider here the Hamiltonian system
y' = B(t)y + C(1)z, ast <o
M 2= — A(t)y - B*(1)z
where y and z are n-vectors; the corresponding matrix equation is
Y'=B(HY+ C(t)Z
@ Z'= —A()Y-B*(1)Z

where Y and Z are n X n matrix functions. The conditions that we will
sometimes impose on the system (1) are:

(Ps) A, B, and C are continuous, complex-valued matrix functions on
[a,¢) with C=C* and A = A*.

(P,) For each t € [a,*), C(1)=0, i.e., n*C(t)n = 0 for all vectors 7.

(P;) For each t €[a,x), —A(t)=0.

(Ps) If (y, z) is a solution of (1) on an interval I and y =0 on I, then z =0
on I
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(P,) If (y, z) is a solution of (1) on an interval I and z =0 on I, theny =0
on L
(Ps) If (y, z) is a solution of (1) such that

“’Pf,}lpf [-y*Ay +2*Cz] <=,

then (y*2z)(t)—0 as t > .

Under (P,) it follows that if (Y, Z,) and (Y, Z,) are solutions of (2), then
YiZ.- Z1Y, is a constant matrix. A solution (Y, Z) of (2) is said to be
isotropic or self-conjoined if the constant matrix Y*Z — Z*Y is zero. An
isotropic solution (Y, Z) of (2) is said to be principal (coprincipal) on an
interval I = fc, b) provided that:

(i) Y ' exists on I (Z ' exists on I).

) [f.Y'CY* ' |"'">0ast—b ([ —-ZAZ*'|'>0 as t > b).

Properties of principal solutions are given in Chapter 2 of Coppel (1971)
or Chapter 7 of Reid (1971). Two important properties are: (i) (Po), (P,), (P3)
and the existence of an isotropic solution (Y, Z) of (2) with Y™ existing on
I = [¢, b) imply that a principal solution exists on L (ii) (Py)-(P;) imply that a
principal solution exists on [a, ). By symmetry, similar conclusions hold for
coprincipal solutions; for example, (P,)-(P;) and (P,) imply that a coprincipal
solution exists on [a, *). We note also that (P,)-(P;) imply uniqueness of a
principal solution (Y, Z) in the sense that if (Y, Z,) is also a principal
solution, then (Y, Z,) = (YK, ZK) for some constant non-singular matrix K.

The main result of this paper is Theorem 3 which gives conditions under
which the concepts of principal and coprincipal solutions coincide. This
problem has been investigated recently by Ahlbrandt (1972, 1976). Ahlbrandt
(1972) considers the system (2) when (P,), (P.), (P3), (Ps), and A ()= 0 hold
and gives a condition for the equivalence of principal and coprincipal
solutions (Theorem 4.1). We consider here only the case A (t) = 0. Ahlbrandt
(1976) considers (2) when A (¢) is of constant sign. Conditions are given which
are equivalent to the statement that a solution of (2) is principal if and only if
it is coprincipal. The conditions of Ahlbrandt are motivated by oscillation
theory whereas conditions (i) and (iv) of our Theorem 3 are motivated by the
limit-point theory of differential equations. This connection is discussed
following Theorem 3. There is some overlap between condition (iii) of
Theorem 3 and the conditions of Ahlbrandt (1976) although Ahlbrandt does
not explicitly give condition (iii).

The following example is pertinent to the connection with limit point
theory and also gives an example where the notions of principal and
coprincipal are different.
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Let p be a positive continuous function on [0,) with [ pdt <. The
scalar equation (y'/p) = py has the system formulation

3 y'=pz, z'=py.
Clearly, (Py)-(P.) hold. One solution of (3) is

y()= 2u(0) = exp| - [ o]

A linearly independent solution is given by

7=y [ piyi

z, ()= Yo(t)fp/yﬁ— 1/yo(1).

It may be verified that (y,, z,) is a principal solution of (3). However, (yi, z1) is
not coprincipal since z,(t)— — 1 as t > .
A differentiation shows that if (Y, Z) is an isotropic solution of (2) and

(P,) holds, then
4) (Y*ZY=(ZY*) = - Y*AY + Z*CZ,
and at any t where (Y*Z)™' exists,
®) -[(Y*2)' =Y 'CY*"'-Z"'AZ*"".

THEOREM 1. Suppose (P;)-(Ps) hold, (Y, Z) is a principal solution of (2)
onI=][cb), and W =ZY'. Then

(i) limit Je[— Y*AY + Z*CZ] exists and is finite.

(ii) Ifalso (P.) holds, then W(t)<0,c=t<b,and Y*Z—>0ast—b.

Proof. Since (Po)-(Ps) imply that W(t)=<0 [p. 55 of Coppel], we may
integrate (4) to obtain

f [-Y*AY+Z*CZ]=Y*Z|,

(6)
=Y*WY|,= - [Y*WY](¢).
Since — A 20 and C = 0, the integral in (6) is non-decreasing and bounded
above by a hermitian matrix; hence (i) holds.
Now W(r)=0and Y ' exists; hence W(t)< 0 if Z " exists on I. Suppose
to the contrary Z(t)n =0 for some n#0 and ¢ = t, < b. Then for t > t,,
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ogf' n*[— Y*AY + Z*CZ]n = n*[(Y*Z)(t1) - (Y*Z)(to)]n

0

(7
=n*(Y*WY)t)n =0;

thus (Yn)*A(Y7n)=(Zn)*C(Zn)=0 on [t t) which implies that AYn =
CZn =0 on [t,t] since C =0 and — A = 0. Therefore the vectors (y,z)=
(Yn, Zn) satisfy y'= By, z'= — B*z and z(t,) =0 which implies z =0 on
[to, t]. By (Ps), y = Y =0 on [to, t] which contradicts Y being non-singular;
hence W(t)<0 on I Note also that Y*Z = Y*WY <(.

Since W (1)< 0, Z is also invertiable, and we have by (5).

—(Y*Z)'()=(Y*Z) (c)~(Y*Z)'(1)

= f[[Y"CY*"‘—Z"AZ*"]zf Y'CY*!.
This inequality and the definition of principal solutions yield that Y*Z — 0 as
t—b.

It is possible that W = 0 in Theorem 1 as is shown by the scalar system
y' =z, z' =0 which has as principal solution (y, z)=(1,0).

We note from the above proof that if (Y, Z) is an isotropic solution of (2)
and (P,)-(P.) hold, then: (i) Y*Z is strictly increasing on I = [¢, b)if Y ™' and
Z™" exist on I (integrate (5) and use the fact that [,Y'CY*™' is strictly
increasing [p. 38 of Coppel]), and (ii) if for some t,, one of Y (&) and Z(t,) is
zero and the other is non-singular, then (Y*Z)(t)>0 for ¢>1t, and
(Y*Z)(t) <0 for t <1, To establish this last fact it follows from (4) that if
(Y*Z)(t)n =0 for some t# t, and n# 0, then

f n*[-Y*AY + Z*CZ]n =0
and we may repeat the argument following (7) to obtain a contradiction. Since
Y*Z is non-decreasing, this completes the proof.

By symmetry, conclusion (i) of Theorem 1 holds for a coprincipal
solution if (P,)-(P,) and (P,) hold, and conclusion (ii) holds for a coprincipal
solution if (P)-(P,) hold.

THEOREM 2. Suppose (Po)-(Ps) hold, (Y., Z)) is a principal solution of (2)
onI=[cb), and (Y., Z,) is a coprincipal solution of (2) on I. Then

(i) Zz,Y{'=Z,Y;'on L.

(it) If (Y,Z) is an isotropic solution of (2) satisfying Z.(c)Y7'(c)=
Z(c)Y ()= Zc)Y3'(c), then Y and Z™' exist on L
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Proor. By Theorem 1, Z7' and Y:' exist on I. Let W, = Z,Y7' and
W,= Z,Y3'. Since both W, and W, are symmetric solutions on I of the
matrix Riccati equation

(8) W'+ A(t)+ WB(t)+ B*(1)W + WC(H)W =0,
we must have (i) by Theorem 8, p. 54 of Coppel.

Let W= ZY™'; then W, is a solution of (8) and again by Coppel W,
exists on I which implies Y ™' exists on I Since W3'(c)=Y(c)Z7'(c)=
Y:(c)Z3'(c), and W3' and Y.Z3' satisfy the Riccati equation

W —-C-WB*-BW- WAW =0,

we again apply Theorem 8 of Coppel to conclude that W3' exists on I; hence
Z™' exists on L

THEOREM 3. Suppose (P,)-(P.) hold. Then the following are equivalent.

(i) (Ps)

(ii) An isotropic solution (Y,Z) of (2) is principal if and only if it is
coprincipal {on [a,=)).

(ii1) If (Y, Z) is an isotropic solution of (2) with (Y*Z)c)>0, ¢ Z a, then
(Y*Z)'—0 as t > =,

(iv) dim Q = n where Q is the set of all solutions (y, z) of (1) such that
[Z[-y*Ay + z*Cz] <.

Proor. (i)— (ii). Let (Y}, Z,) be a principal solution of (2) on [a, «) and
(Y., Z,) be a coprincipal solution of (2) on [ga, %). Define the solution (Y3, Z3)
of (2) by

Y:(t)= Yi(1)Yi'(a) - Y1) Y2 (a)

Z(1)=Z()Y7(a)— Z:() Y32 (a).
By Theorem 1,
©) [ triaviszicz) <=

for i = 1,2;hence (9) holds for i = 3. By (Ps), this implies diagonal Y%Z;—0
as t - <. Now Y,(a)= 0 and (4) imply that (Y*Z)(¢) = 0; hence Y3iZ,—0 as
t —» . Therefore

= —-(Y?{Z;)(a)=f [-YIAY,+ Z3CZ;),

from which we conclude that AY;=0 and CZ,=0. The function Y, then
satisfies Y3 = B(?)Y;, Yi(a)=0 which yields Y;=0 or

Y.=Y.Y7'(c)Yc).
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Therefore [[:Y>'CY37']"'— 0ast— b or (Y>, Z,) is principal. Since principal
and coprincipal solutions are unique up to constant multiples, this completes
the proof.

(ii)— (iii). Let (Y,, Z,) be a principal solution of (2) on [¢, ), and let
(Y,Z) be an isotropic solution with (Y*Z)(c)>0. Now Y*Z is non-
decreasing so that Y*Z is invertiable on [c, ). Define

s(t)=f Y'CcYr, so(t)=f Y'Yy,

§(t)= f ~-Z'AZ*, $o(t) = f —-ZJ,AZY
By applying Proposition 1 of Coppel, p. 35, to (2) and also to (2) with the
order of the equations reversed, we obtain
Y(t) = Yo(£)[M: + so(¢)N1],
Z(t) = Zo(t)[ M2+ 5o(t)N-],
where Y(c)= Yo(c)M,, Z(c)= Zy(c)M,, and
Ni=Y8(c)Z(c)—-Z¥x)Y(c)= —[Z¥%(c)Y(c)— Yi(c)Z(c)}]= — N..
Also from Coppel (1971)
s(t)=[M;+ so(t)N\] 'so(0 )M,
$(t) = [M,— So(t )N '$Se()M 37,

Recalling that the definition of principal solution gives that s;'(¢) and §5' tend
to 0 as t — », we then have that (note that N7' exists since it is sufficient that
Yo(c)= Y(c)= E in which case Zy(c)<0, Z(c)>0, and N,>0)

limit [s()+5@)])=Ni'MI"'-NIM3"
Now by (5),
(Y*Z) ' ()=(Y*Z) ()= [s() + 5]
hence using the above relations and the fact that (Y, Z) is isotropic, we obtain
li{r_t}it (Y*ZY'(t)=(Y*Z) (c)— NT'"MY '+ NT'M%™!
=NI(Y¥H)Z(c)= ZH)Y (Y *Z)Y (c)- Mt '+ M3
=NU[Y3)Y* ()= Z¥(c)Z* (c)— Mt + M3
= NT[YHMIYH(0) ' = ZHeHMIZE(e) ™ - Mi™ + M1
=N/ IMI7"-M"'-MI'"+ M3'|=0.
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(iii)— (iv). Define the isotropic solution (Y, Z) of (2) by the initial
conditions Y(a)=0, Z(a)= E. Then (Y*Z)(t)>0 for t > a which by (iii)
implies (Y*Z) '(1)— 0 as t > «. Suppose now dim Q > n. Hence there is a
member (y, z) in Q with y(a)=0, y#0. This implies that y = Y7, z = Zy
where 7 = z(a) #0. By (4) we have for t > q,

0<n* (Y 2)m =20 = [ [-y* Ay +2eCe]

which implies that (y *z)(¢) tends to a positive constant as ¢t — . Now for a
positive matrix T and a vector v,

v*o =(v,0)={(Tv, T"'0) = (Tv, v)TT ‘v, T 'v)"?
={(Tv, v)"T 'v, v)"".

Using this inequality with v = n and T = (Y*Z)(t) contradicts the fact that
(Y*Z)'(1)—0 as t —»; hence dim Q = n.

(iv)—>(i). Let (Y, Z)be a principal solution of (2) on [a, »). If (y, z;) are
the ith columns of Y, Z respectively, then part (i) of Theorem 1 implies
(y» z:) € Q. Since Q is n dimensional and the n columns of Y, Z are linearly
independent solutions of (1), the members (y, z) of Q are of the formy = Yn,
z = Zn for some constant vector 7. Therefore by part (ii) of Theorem 1,

limity*z = limitn*(Y*Z)n = 0.
The scalar equation

(10) Lex)= 3 (~1)(pa)0=0, asi<w,

where the p; are real, continuous functions with p, >0 can be put into the
form (1). Let the quasi-derivatives x"), i = n,--,2n, be defined by: x'"'=
pax ™, xP = (x4 px ™D (i=0,--+,n~1). Then L(y)=
x>")=0 has the form (1) where

11) y =[x x' o, x) 2= (x0T

0, i#j 0, jAi+1 0, i#n, j#n
A, = B, = G, =

- Di-1s '=]’ l; ]=l+l7 p;" l=]=n
Clearly (Po), (Py), and (Ps) hold. (P.) holds if p, does not vanish identically on

any interval. The condition (P,) is equivalentto p, 20,0 i =n — 1. With Q
as in Theorem 3 and each p; =0, (y, z) € Q if and only if
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(12) f: [P (x™Y + -+ -+ pox?] < oo,

If pp=20 (i=1,---,n—1) and po(t)= k >0, then (12) implies
x € %:[a,»).Thus if L in (10) is limit point or limit-n at infinity (which in this
case is equivalent to L(x)=0 having n linearly independent solutions in
Z:|a, )), then dim Q = n. For example (10) is limit-n at infinity if (see Hinton
(1972)) p.(t)=t" (a =2n), p(t) =k >0, and for i =1,---,n—1,

0=pi(t)= kit™, vi =[2(n - i)+ a2i —1)}/2n - 1), ki>0.
As a further example we will prove that dim Q = n =2 for
Lyx)=x""—(qx") + px, ast<o,
where the real, continuous functions q and p satisfy p(1)= k >0, q(1)=0,
q = q:1+ q. where qi(t) = — kot and | gx(t)| = kot, ko> 0. Suppose dim Q > 2.

Then using (12), we have a solution x of L.(x)= 0 such that x(a)=x'(a)=0
and

(13) 1= [P+ a4 prae.

After an integration by parts of

{_(xm_qxr)x +xnxr}1= (xn)2+q(x')2+px2’
we obtain that

1= li’r_rgt f‘ [(x"Y+q(x')+ px2]<1 - %)d*r
(14)

= limitlf [—(x"—gx")x + x"x']dr.

t—0 |

Now (13) implies x, x" € £»(a, ©) which implies x’ € #,(a, ©) and

as) fimit 2 f x"x'dr = 0.

t—>x

Now Li(x)}=0 and x € %,(a,») yields that x is oscillatory by Lemma 2 of
Hinton (1973); hence for x(t,)=0, t,—» as n —>»,

https://doi.org/10.1017/51446788700016268 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700016268

9] Principal solutions 419

(16) "tl "xxdr =1 x"x'dr >0 as n—.

n Ja n Ja

Using (15) and (16) in (14) yields

a7 1= lir_r}it;l—f "[qi+ ga]xx’dr.

However, we have that

t

1{~
— x'xdr = —
], 4 2ty Ja

"qixidr = 2kt° f "rx2dr

and

(% a"qzxx’d'r é%[a"'r(xx’[dr.
The right hand sides of these two inequalities tends to zero as n — o since
f € #i(a,») implies t™" .7 ] f(7)|dr — 0 as t — . This is a contradiction to
(17) and dim Q = 2 is established.

Thus it may be conjectured that the principal and coprincipal solutions of
(10) coincide under the conditions p. >0, pi=0 for i=1,---,n—1, and
Po= k >0. That the condition po= k >0 cannot be replaced by p,=0 is
shown by our first example.

A related problem to showing dim Q = n was considered by Anderson
and Lazer (1970). Assuming the p; in (10) are bounded below, define

o =inf{p ()| 1= a}, q)= 2}(— 1) e,

Assume also ¢, >0 and q(A) = 0 has no zero or purely imaginary roots. This
condition gives that (10) is nonoscillatory, i.e., no solution has a pair of n-fold
zeros [see p. 129 of Glazman (1965)]. Thus by Coppel, p. 45, a principle
solution exists. Let

A'={x|L(x)=0 and xVE€ PLfa,©), i=0,---,n}.

Under these conditions, one of the conclusions of Anderson and Lazer’s
theorem is that dimA* = n.

For¢,=z0,i=1,---,n~1,dim A" = n follows from part (i) of Theorem
1 since we must have ¢, >0, ¢,>0 and from (12) we see that (y,z)E Q
implies that x € £i[a,©), i =0,---, n.

Finally, we note that if v,, -+, v, are the n linearly independent
members of A" as constructed in Anderson and Lazer, then (Y,Z) is a
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principal solution of (2) where the ith column (y; z;) is given by (11) with
x = v. From Anderson and Lazer, we have that Y(a) is a non-singular
diagonal matrix and

(18) Y(@)= lé‘l’_r}it Y. (t)

where (Y., Z,) is certain solution of (2) with Y,.(n)=0. It is sufficient that
Y.(a) = I By p. 44 of Coppel, Y. is unique and the limit in (18) is principal.
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